CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Lecture 14: Finite State S/
Verification | |

Gregory Gay
DIT636/DAT560 - March 1, 2023 Koly

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

So, You Want to Perform Verification...

* You have a requirement the program must obey.

* Great! Let’s write some tests!
* Does testing guarantee the requirement is met?

o Not quite...
m Testing can only make a statistical argument.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Testing

* Most systems have near-infinite possible inputs.

« Some failures are rare or hard to recreate.
* Or require specific input.

 How can we prove that our e
system meets the requirements?

it

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

What About a Model?

 We have previously used models to create tests.
* Models are simpler than the real program.

« By abstracting away unnecessary details, we can learn
Important insights.

* Models can be used to verify full programs.
« Can see if properties hold exhaustively over a model.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

sense pace
Dw ’ public static void Main(){
. . \ System.out.printin(“Hell
Specification t D o world!”);
(i mmmmm imeOut —@ }
& _ J
If the model satisfies And If the model is And If the model accurately
well-formed, consistent, represents the program.

the specification...

and complete.

If we can show that the model satisfies the requirement,
then the program should as well.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Finite State Verification

* Express requirements as Boolean formulae.

« Exhaustively search state space of the model for
violations of those properties.

* If the property holds - proof of correctness

« Contrast with testing - 2 #
no violation might Son e
mean bad tests. E i

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Today’s Goals

« Formulating requirements as logical expressions.
* Introduction to temporal logic.

* Building behavioral models in NuSMV.

» Performing finite-state verification over the model.
« Exhaustive search algorithms.

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Expressing Requirements in
Temporal Logic

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Expressing Properties

* Properties expressed in a formal logic.

« Boolean expressions, representing facts we asset over
execution paths.

« EXxpressions contain boolean variables and
subexpressions, as well as temporal operators.

» Temporal logic ensures that properties hold over
execution paths, not just at a single point in time.

{8%)) UNIVERSITY OF GOTHENBURG

Expressing Properties

« Safety Properties
« System never reaches bad state.

« Always in some good state.

« “If the traffic light is red, it will always turn green within 10
seconds.”

« “If an emergency vehicle arrives at a red light, it must turn green
in the next time step.”

{8%)) UNIVERSITY OF GOTHENBURG

Expressing Properties

* Liveness Properties
« Eventually useful things happen.
« Fairness criteria.

« Reason over paths of unknown length.
« “If the light is red, it must eventually become green.”
« “If the package is shipped, it must eventually arrive.”

« “If Player A is taking a turn, Player B must be allowed a turn at
some time in the future.”

g‘_o-&_ﬁ RN
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Temporal Logic
* Linear Time Logic (LTL)

» Reason about events over a single timeline.

« Computation Tree Logic (CTL)

« Branching logic that can reason about multiple timelines.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Linear Time Logic Formulae

Formulae written with boolean predicates, logical
operators (and, or, not, implication), and operators:

hunger = “| am hungry” burger = “| eat a burger”

X (next) X hunger In the next state, | will be hungry.

G (globally) G hunger In all future states, | will be hungry.

F (finally) F hunger Eventually, there will be a state where | am hungry.

U (until) hunger U burger | will be hungry until | start to eat a burger. (hunger does not need to be
true once burger becomes true)

R (release) hunger R burger | will cease to be hungry after | eat a burger. (hunger and burger are true
at the same time for at least one state before hunger becomes false)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

LTL Examples

« X (next) - This operator provides a constraint on
the next moment in time.
e (sad && !rich) -> X(sad)
e (hungry && haveMoney) -> X(orderPizza)

* F (finally) - At some unknown point in the future,
this property will be true.
e (funny && ownCamera) -> F(famous)
e sad -> F(happy)
e (letter==sent) -> F(letter==received)
e

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

LTL Examples

* G (globally) - This property must be true forever.
e winLottery -> G(rich)

* U (until) - One property must be true until the
second becomes true.
e startLecture -> (talk U endLecture)
e born -> (alive U dead)
e requested -> (!replied U acknowledged)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

requested = action requested

M O re LT L Exa m p I es received = request received

processed = request processed
done = action completed

e G (requested -> F (received))

e G (received -> X (processed))

e G (processed -> F (G (done)))
* G (requested -> G (!done)) can never be true.

{8%)) UNIVERSITY OF GOTHENBURG

requested = action requested

M O re LT L Exa m p I es received = request received

processed = request processed
done = action completed

e G (requested -> F (received))
« At any point in this timeline, if the action is
requested, the request must eventually be received.
e X (requested -> F (recieved))

* |If arequestis made in the next step, it must
eventually be received.

* Arequest made now or after the next step does not
have this guarantee.

CHALMERS UNIVERSITY OF GOTHENBURG

NIVERSITY OF TECHNOLOGY

Computation Tree Logic Formulae

Combines all-path quantifiers with path-specific quantifiers:

A (all) A hunger Starting from the current state, | must be hungry on all paths.
E (exists) E hunger There must be some path, starting from the current state, where |
am hungry.
X (next) X hunger In the next state on this path, | will be hungry.
G (globally) G hunger In all future states on this path, | will be hungry.
F (finally) F hunger Eventually on this path, there will be a state where | am hungry.
U (until) hunger U burger On this path, | will be hungry until | start to eat a burger. (I must eventually
eat a burger)
W (weak until) hunger W burger On this path, | will be hungry until | start to eat a burger. (There is no
guarantee that | eat a burger)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

CTL Examples

chocolate = | like chocolate.” warm = “lt is warm.”

e AG chocolate

e EF chocolate

e AF (EG chocolate)

e EG (AF chocolate)

e AG (chocolate U warm)

e EF ((EX chocolate) U (AG warm))
e

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

CTL Examples

* requested: a request has been made
« acknowledged: request has been acknowledged.

®* AG (requested -> AF acknowledged)

« On all paths, at every state in the path (AG)
« If a request is made, then for all paths starting at that point,
eventually (AF), it must be acknowledged.

®* AG (requested -> EF acknowledged)

* On all paths, at every state in the path (AG)
« |If a request is made, then for a subset of paths starting at that
point, eventually (EF), it must be acknowledged.

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Example - Elevator

 If the cabin is moving, the direction is up, and it
Is on floor 3, then it will be at floor 4 next.
e G (((floor==3) && (status==moving) &&
(direction==up)) -> X (floor==4))

« If | request the elevator on floor 1, and the cabin
is not at that floor, it must eventually reach me

(or be broken).
e AG ((request floorl && floor!=1) -> AF
(floor==1 || status==broken))

((

</

4

CHALMERS | UNIVERSITY OF GOTHENBURG

Example - Elevator

» If the elevator is requested on floor 1, and the
cabin is at floor 4, it could stop at floor 3 along @@
the way to let passengers in.

* AG ((request_floorl && floor==4) -> EX
(floor==3 && door==open))

* Leaves open possibility that the cabin is moving up,
could break, could remain at floor 4 longer, no one
requested it on floor 3, ... S)

</

((

* The door must not be open while cabin moving.
e G (status==moving -> door==closed)

CHALMERS | @8§) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Building Models

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Building Models

« Many different modeling languages.
* Most verification tools use their own language.

* Most map to finite state machines.
» Define list of variables.
* Describe how values are calculated.
« Each “time step”, recalculate values of these variables.
« State is the current values of all variables.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Building Models in NuSMV

« NuSMV is a symbolic model checker.
* Models written in a basic language, represented using
Binary Decision Diagrams (BDDs).
« BDDs translate concrete states into compact summary states.
« Allows large models to be processed efficiently.
* Properties may be expressed in CTL or LTL.

 |f a model may be falsified, it provides a concrete
counterexample demonstrating how it was falsified.

@ {
- f
B ‘7‘
y A%
g

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

A Basic NuSMV Model

request: boolean;

status: {ready, busy};

ASSIGN | Expressions define how the state of each variable can change.

init(status) := ready;

next(status) :=

case
status=ready & request: busy;
status=ready & !request : ready;
TRUE: {ready, busy};

esac;

SPEC AG(request -> AF (status = busy)) | Property we wish to prove over the model.

NIVERSITY OF GOTHENBURG

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Checking Properties

 Execute from command line:

NuSVM <model name>

* Properties that are true
are Indicated as true.

 If property is false, a
counter-example is
shown (input violating
the property).

C19ZRMR:bin ggay$./NuSMV main.smv

*** This is NuSMV 2.6.0 (compiled on Wed Oct 14 15:32:58 2015)

*** Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-users@list.fbk.eu>.

#% Please report bugs to <Please report bugs to <nusmv-users@fbk.eu>>

*** Copyright (c) 2010-2014, Fondazione Bruno Kessler

**%* This version of NuSMV is linked to the CUDD library version 2.4.1
*** Copyright (c) 1995-2004, Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver.
*#s** See http://minisat.se/MiniSat.html

*** Copyright (c) 2003-2086, Niklas Een, Niklas Sorensson

*** Copyright (c) 2007-2010, Niklas Sorensson

-- specification AG (request -> AF status = busy) 1is true

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Checking Properties

 New property: AG (status = ready)

-~ specification AG status = ready 1is false

¢ (ObVlOUSIy nOt true = -- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

We Set |t rand0m|y |n the Trace Type: Counterexample

-> State: 1.1 <-

absence of a request) raquest = FALSE
status = ready
« Counterexample: S

 |n first state, request = false, status = ready.

« We set status randomly for second state (because
request was false). It is set to busy, violating property.

CHALMERS UNIVERSITY OF GOTHENBURG

NIVERSITY OF TECHNOLOGY

MODULE main
VAR

traffic_light: {RED, YELLOW, GREEN};
ped light: {WAIT, WALK, FLASH};
button: {RESET, SET};

ASSIGN
init(traffic_light) :

RED;
next(traffic_light) := case

traffic_light=RED & button=RESET:
GREEN;

traffic_light=RED: RED;

traffic_light=GREEN & button=SET:
{GREEN, YELLOW};

traffic_light=GREEN: GREEN;

traffic_light=YELLOW:
{YELLOW, RED};

TRUE: {RED};

esac;

init(ped_light) := WAIT;
next(ped_light) := case

ped_1ight=WAIT &

traffic_light=RED: WALK;
ped_light=WAIT: WAIT;
ped_light=WALK: {WALK,FLASH};
ped_light=FLASH: {FLASH, WAIT};
TRUE: {WAIT};

esac;
next(button) := case

button=SET & ped_light=WALK: RESET;

button=SET: SET;

button=RESET & traffic_light=GREEN:
{RESET,SET};

button=RESET: RESET;

TRUE: {RESET};

esac;

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s Take a Break

CHALMERSE

NIVERSITY OF TECHNOLOGY

MODULE main
VAR

traffic_light: {RED, YELLOW, GREEN};
ped light: {WAIT, WALK, FLASH};
button: {RESET, SET};

ASSIGN
init(traffic_light) :

RED;
next(traffic_light) := case

traffic_light=RED & button=RESET:

GREEN;
traffic_light=RED: RED;

traffic_light=GREEN & button=SET:

{GREEN, YELLOW};
traffic_light=GREEN: GREEN;

traffic_light=YELLOW:
{YELLOW, RED};

TRUE: {RED};

esac;

init(ped_light) := WAIT;
next(ped_light) := case

ped_1ight=WAIT &

traffic_light=RED: WALK;
ped_light=WAIT: WAIT;
ped_light=WALK: {WALK,FLASH};
ped_light=FLASH: {FLASH, WAIT};
TRUE: {WAIT};

esac;
next(button) := case

button=SET & ped_light=WALK: RESET;

button=SET: SET;

button=RESET & traffic_light=GREEN:
{RESET,SET};

button=RESET: RESET;

TRUE: {RESET};

esac;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity - Example
* Safety Property

* A bad thing never happens, or a good thing happens at a
specific time.

e The pedestrian light cannot indicate that | should

walk when the traffic light is green.

« This is a safety property. We are saying that this should
NEVER happen.

e AG (pedestrian_light = walk -> traffic light
= green)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity - Example

* Liveness Property

« Eventually useful things happen.
e G (traffic _light = RED & button = RESET

-> F (traffic_light = green))
* If the light is red, and the button is reset, then eventually,

the light will turn green.
* This is a liveness property, as we assert that something

will eventually happen.

{81)) UNIVERSITY OF GOTHENBURG

Proving Properties Over Models

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Proving Properties
« Search state space for property violations.

* Violations give us counter-examples
« Path that demonstrates the violation.
« (useful test case)

* Implications of counter-example:
* Property is incorrect.
« Model does not reflect expected behavior.
» Real issue found in the system being designed.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Generation from FS Verification

 We can also take properties and negate them.

« Called a “trap property” - we assert that a property can
never be met.

« Shows one way the property can be met.

* Can be used as a test for the real system.
« Demonstrate that final system meets specification.

{81)) UNIVERSITY OF GOTHENBURG

Exhaustive Search

* Algorithms examine all
execution paths through
the state space.

* Major limitation - state
space explosion.

« Limit number of variables
and possible values to
control state space size.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Search Based on SAT

» Express properties in conjunctive normal form:
e f = (!x2 || x5) && (x1 || !x3 || x4) s&s
(x4 || ! xb5) && (x1]] x2)
 Examine reachable states and choose a transition
based on how it affects the CNF expression.

 |f we want x2 to be false, choose a transition that
Imposes that change.

* Continue until CNF expression is satisfied.

{
- f
B ‘7‘
y/ 9.
g

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Boolean Satisfiability (SAT)

* Find assignments to Boolean variables X1,X2,...,X
that results in expression ¢ evaluating to true.

« Defined over expressions written in conjunctive
normal form.
c 9o=(X, VX)) A (TX, VX))
« (X, V —X,)is a clause, made of variables, —, V

« Clauses are joined with A

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Boolean Satisfiability

* Find assignment to X,,X,,X,,X,,X, to solve
* (TX, VX)) A X VX, VX)A X, VX)) A (X
X,)
* One solution: 1,0,1, 1, 1
c (X, VX)AX VX, VX)A X,V —X)A (X
X,)
. (iOV1)/\(1 VAT VHAAY 1)A(1VO0)
* MAMAM)AQN)
o 1

\%

1

\%

1

8 /
- f

‘\;‘,7‘

y A%

g

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Branch & Bound Algorithm

Set variable to true or false.
Apply that value.

Does value satisfy the clauses that it appears in?
 |f so, assign a value to the next variable.
 |f not, backtrack (bound) and apply the other value.

Prunes branches of the boolean decision tree as

values are applied.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

G {
- f
== ‘7‘
4 y/ 9.
g

Branch & Bound Algorithm

e=(%x2V x5 AX1V —x3Vx4) Ax4dV —x5) A (x1V
X2)
1. Set x1 to false.
¢=(—x2V x5 AOV —x3Vx4) A4V —x5)A 0V
X2)
2. Set x2 to false.
Pp=(1Vx5) AOV —x3Vx4) Ax4V —x5) A 0V 0)
3. Backtrack and set x2 to true.
e=(0V x5 AOV x3Vx4) Ax4V —x5)A0VA1)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

DPLL Algorithm

 Set a variable to true/false.
* Apply that value to the expression.
« Remove all satisfied clauses.

 If assignment does not satisfy a clause, then remove that
variable from that clause.

 |f this leaves any unit clauses (single variable clauses),
assign a value that removes those next.

« Repeat until a solution is found.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

DPLL Algorithm

@=(x%x2V x5 AXx1V —x3Vx4) Ax4dV —x5 A (x1V
X2)

1. Set x2 to false.
@=("0VxXx5) AXx1TV —x3V x4) A x4V —x5 A (x1V0)
=1V —x3V x4) A x4V —x5) A (x1)
2. Set x1 to true.
e=(1V —x3Vx4) A(x4V —x5) A (1)
¢ = (x4 V —x5)
3. Set x4 to false, then x5 to false.
¢ =(0V —x5)
¢ =(70)

{81)) UNIVERSITY OF GOTHENBURG

Model Refinement

* Must balance precision ot
with efficiency. /\
* Models that are too simple o s
introduce failure paths that o s
may not be in the real st themoda e e s
system. L [E—

« Complex models may be
infeasible due to resource
exhaustion.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Who Uses This Stuff?

« Used heavily in safety-critical development.
« Verifies certain complex, critical functions.
« Used extensively in automotive, aerospace, medical.

« Used to verify security policies, stateful behaviors.
 Amazon Web Services

* Not used for all functionality.
« Time-consuming, requires additional effort.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« We can perform verification by creating models of

function behavior and proving that the requirements
hold over the model.
« To do so, express requirements as logical formulae
written in a temporal logic.

 Finite state verification exhaustively searches the state
space for violations of properties.

* Presents counter-examples showing properties are
violated.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* By performing this process, we can gain confidence
that the system will meet the specifications.

« (Can also generate test cases to demonstrate that
properties hold over the final system.

* Negate a property, the counter-example shows that the
property can be met.

« Execute the input from the counter-example on the real
system - should give the same result!

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

 Exercise Session: Finite-State Verification

* Lec 15: Testing (Anna Lundberg and Karolina
Hawker, TIBCO) and Quality (Vard Antinyan, Volvo
Cars) in industry.

* Lec 16: Course Review (Practice Exam)
e Lec 16 on Zoom - See Canvas

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

