
Exercise 6:
Finite State Verification

Gregory Gay
DIT636/DAT560 - February 29, 2024

2

Finish In-Class Activity First!

2018-08-27 Chalmers University of Technology 3

Microwave
Consider a simple microwave controller modeled as a
finite state machine using the following state variables:
• Door: {Open, Closed} -- sensor input indicating

state of the door
• Button: {None, Start, Stop} -- button press

(assumes at most one at a time)
• Timer: 0...999 -- (remaining) seconds to cook
• Cooking: Boolean -- state of the heating element

4

Partial Model
MODULE microwave

VAR

 Door: {Open, Closed};

 Button: {None, Start, Stop};

 Timer: 0..999;

 Cooking: boolean;

ASSIGN

 init(Door) := Closed;

 init(Button) := None;

 init(Timer) := 0;

 next(Timer) :=

 case

 Timer > 0 & Cooking=TRUE : Timer - 1;

 Timer > 0 & Cooking=FALSE & Button!=Stop : Timer;

 Button=Stop : 0;

 Timer=0 : 0..999;

 TRUE: Timer;

 esac;

 init(Cooking) := FALSE;

 next(Cooking) :=

 case

 -- Suggestion: Start by defining the

 -- conditions that would cause

 -- cooking to start. Then add conditions

 -- that would make it stop.

 -- Finally, ensure it will continue

 -- running if it is supposed to.

 (FILL THIS IN)

 TRUE: FALSE;

 esac;

5

Example Properties
• CTL: The microwave shall stop cooking after the

door is opened.
• AG (Door = Open -> AX (!Cooking))

• LTL: It shall never be the case that the microwave
can continue cooking indefinitely.
• G (Cooking -> F (!Cooking))

• Formulate the other informal requirements in
temporal logic.

Linear Time Logic Formulae
Formulae written with propositional variables (boolean
properties), logical operators (and, or, not, implication),
and a set of modal operators:

X (next) X hunger In the next state, I will be hungry.

G (globally) G hunger In all future states, I will be hungry.

F (finally) F hunger Eventually, there will be a state where I am hungry.

U (until) hunger U burger I will be hungry until I start to eat a burger. (hunger does not need to be
true once burger becomes true)

R (release) hunger R burger I will cease to be hungry after I eat a burger. (hunger and burger are true
at the same time for at least one state before hunger becomes false)

6

hunger = “I am hungry” burger = “I eat a burger”

Computation Tree Logic Formulae
Combine one quantifiers (A, E) with a path-specific quantifier (X, G, F, U, W):

X (next) X hunger In the next state on this path, I will be hungry.

G (globally) G hunger In all future states on this path, I will be hungry.

F (finally) F hunger Eventually on this path, there will be a state where I am hungry.

U (until) hunger U burger On this path, I will be hungry until I start to eat a burger. (I must eventually
eat a burger)

W (weak until) hunger W burger On this path, I will be hungry until I start to eat a burger. (There is no
guarantee that I eat a burger)

A (all) A hunger Starting from the current state, I must be hungry on all paths.

E (exists) E hunger There must be some path, starting from the current state, where I
am hungry.

7

8

Try to Verify the Model and Properties
• http://nusmv.fbk.eu/

• NuSMV homepage (tool download, tutorials, etc.)
• Use NuSMV 2.6.

• Define next(Cooking) such that the two example
properties hold. See if your properties hold.
• If they don’t, make sure the properties are correct.
• Then, make sure the model is complete and correct.

• If you get stuck, a sample solution is on Canvas.

http://nusmv.fbk.eu/

