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Finish In-Class Activity First!
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Microwave
Consider a simple microwave controller modeled as a 
finite state machine using the following state variables:
• Door: {Open, Closed} -- sensor input indicating 

state of the door
• Button: {None, Start, Stop} -- button press 

(assumes at most one at a time)
• Timer: 0...999 -- (remaining) seconds to cook
• Cooking: Boolean -- state of the heating element
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Partial Model
MODULE microwave

VAR

    Door: {Open, Closed};

    Button: {None, Start, Stop};

    Timer: 0..999;

    Cooking: boolean;

ASSIGN

    init(Door) := Closed;

    init(Button) := None;

    init(Timer) := 0;

    next(Timer) :=

    case

        Timer > 0 & Cooking=TRUE : Timer - 1;

        Timer > 0 & Cooking=FALSE & Button!=Stop : Timer;

        Button=Stop : 0;

        Timer=0 : 0..999;

        TRUE: Timer;

    esac;

    init(Cooking) := FALSE;

    next(Cooking) :=

    case

        -- Suggestion: Start by defining the 

        -- conditions that would cause

        -- cooking to start. Then add conditions 

        -- that would make it stop.

        -- Finally, ensure it will continue 

        -- running if it is supposed to.

        (FILL THIS IN)

        TRUE: FALSE;

    esac;
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Example Properties
• CTL: The microwave shall stop cooking after the 

door is opened.
• AG (Door = Open -> AX (!Cooking))

• LTL: It shall never be the case that the microwave 
can continue cooking indefinitely.
• G (Cooking -> F (!Cooking))

• Formulate the other informal requirements in 
temporal logic.



Linear Time Logic Formulae
Formulae written with propositional variables (boolean 
properties), logical operators (and, or, not, implication), 
and a set of modal operators:

X (next) X hunger In the next state, I will be hungry.

G (globally) G hunger In all future states, I will be hungry.

F (finally) F hunger Eventually, there will be a state where I am hungry.

U (until) hunger U burger I will be hungry until I start to eat a burger. (hunger does not need to be 
true once burger becomes true)

R (release) hunger R burger I will cease to be hungry after I eat a burger. (hunger and burger are true 
at the same time for at least one state before hunger becomes false)
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hunger = “I am hungry”                                   burger = “I eat a burger”



Computation Tree Logic Formulae
Combine one quantifiers (A, E) with a path-specific quantifier (X, G, F, U, W):

X (next) X hunger In the next state on this path, I will be hungry.

G (globally) G hunger In all future states on this path, I will be hungry.

F (finally) F hunger Eventually on this path, there will be a state where I am hungry.

U (until) hunger U burger On this path, I will be hungry until I start to eat a burger. (I must eventually 
eat a burger)

W (weak until) hunger W burger On this path, I will be hungry until I start to eat a burger. (There is no 
guarantee that I eat a burger)

A (all) A hunger Starting from the current state, I must be hungry on all paths.

E (exists) E hunger There must be some path, starting from the current state, where I 
am hungry.
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Try to Verify the Model and Properties
• http://nusmv.fbk.eu/

• NuSMV homepage (tool download, tutorials, etc.)
• Use NuSMV 2.6.

• Define next(Cooking) such that the two example 
properties hold. See if your properties hold.
• If they don’t, make sure the properties are correct.
• Then, make sure the model is complete and correct.

• If you get stuck, a sample solution is on Canvas.

http://nusmv.fbk.eu/



