DIT636/DAT560 - Finite State Verification Activity

Temporal Operators: A quick reference list. p is a Boolean predicate or atomic variable.

- $G p: p$ holds globally at every state on the path from now until the end
- Fp: p holds at some future state on the path (but not all future states)
- $X p: p$ holds at the next state on the path
- $p \cup q$: q holds at some state on the path and p holds at every state before the first state at which q holds.
- A: for all paths reaching out from a state, used in CTL as a modifier for the above properties (AG p)
- E: for one or more paths reaching out from a state (but not all), used in CTL as a modifier for the above properties (EF p)

An LTL example:

- G (MESSAGE_SENT -> F (MESSAGE_RECEIVED))
- It is always true (G), that if the message is sent (property MESSAGE_SENT is true), then at some point after it is sent (F), the message will be received (property MESSAGE_RECEIVED will become true).
- More simply: A sent message will always be received eventually.

A CTL example:

- EG (WIND -> AF (RAIN))
- There is a potential future where it is a certainty (EG) that - if there is wind (property WIND is true) - it will always be followed eventually (AF) by rain (property RAIN will become true).
- More simply: There is some probability that wind will inevitably lead to eventual rain, but we have not established this fact for certain.

Consider a finite state model of a traffic-light controller for a single direction with a pedestrian crossing and a button to request right-of-way to cross the road.

State variables:

- traffic_light: \{RED, YELLOW, GREEN\}
- pedestrian_light: \{WAIT, WALK, FLASH\}
- request_button: \{RESET, SET\}

Initially, the state is: traffic_light = RED, pedestrian_light = WAIT, request_button = RESET
Transitions:
pedestrian_light:

- WAIT \rightarrow WALK if traffic_light = RED
- WAIT \rightarrow WAIT otherwise
- WALK \rightarrow \{WALK, FLASH $\}$
- FLASH \rightarrow \{FLASH, WAIT \}
traffic_light:
- RED \rightarrow GREEN if button $=$ RESET
- RED \rightarrow RED otherwise
- GREEN \rightarrow \{GREEN, YELLOW\} if button = SET
- GREEN \rightarrow GREEN otherwise
- YELLOW \rightarrow \{YELLOW, RED\}
reset_button:
- SET \rightarrow RESET if pedestrian_light = WALK
- SET \rightarrow SET otherwise
- RESET \rightarrow \{RESET, SET\} if traffic_light = GREEN
- RESET \rightarrow RESET otherwise

1. Briefly describe a safety-property (nothing "bad" ever happens) for this model and formulate it in CTL.
2. Briefly describe a liveness-property (something "good" eventually happens) for this model and formulate it in LTL.
