
Lecture 16:
Course Summary and Review

Gregory Gay
DIT636/DAT560 - March 6, 2024

The Impending Exam
• Wednesday, March 13, 8:30 - 12:30
• Practice exam on Canvas.

• Somewhat longer than the real exam!
• Try solving first without using the sample solutions.

Compare your answers.
• Ask questions about any course content!

2

2018-08-27 Chalmers University of Technology 3

Topics
• Quality Attributes
• Scenarios
• System Testing

• Category Partition
• Combinatorial

Interaction Testing

• Exploratory Testing
• Unit Testing

• Structural Testing
• Control-Flow
• Data-Flow

• Mutation Testing
• Automated Test

Generation
• Model-Based Testing
• Finite State Verification

4

Practice Exam

Question 1
1. A program may be reliable, yet not robust.

a. True
b. False

2. If a system is on an average down for a total 30 minutes
during any 24-hour period:
a. Its availability is about 98% (approximated to the nearest

integer)
b. Its reliability is about 98% (approximated to the nearest integer)
c. Its mean time between failures is 23.5 hours
d. Its maintenance window is 30 minutes

5

Question 1
3. A typical distribution of test types is 40% unit tests,

40% system tests, and 20% GUI/exploratory tests.
a. True
b. False

4. If a temporal property holds for a finite-state model
of a system, it holds for any implementation that
conforms to the model.
a. True
b. False

6

Question 1
5. A test suite that meets a stronger coverage criterion will find any

defects that are detected by any test suite that meets only a weaker
coverage criterion

• True
• False

6. A test suite that is known to achieve Modified Condition/Decision
Coverage (MC/DC) for a given program, when executed, will exercise,
at least once:

• Every statement in the program.
• Every branch in the program.
• Every combination of condition values in every decision.
• Every path in the program.

7

Question 1
7. The Category Partition Testing technique requires identification of:

• Choices
• Representative values
• Def-Use pairs
• Pairwise combinations

8. Validation activities can only be performed once the complete system
has been built.

• True or False

9. Statement coverage criterion never requires as many test cases to
satisfy as branch coverage criterion.

• True or False

8

Question 1
10. Requirement specifications are not needed for selecting

inputs to satisfy structural coverage of program code.
• True or False

11. Any program that has passed all test cases and has been
released to the public is considered which of the following:

• Correct with respect to its specification.
• Safe to operate.
• Robust in the presence of exceptional conditions.
• Considered to have passed verification.

9

Question 2
Consider the software for air-traffic control at an
airport.

Identify one performance, one availability, and one
security requirement that you think would be
necessary for this software and develop a quality
scenario for each.

10

Question 2
Performance Requirement: Under normal load (< 500 aircraft), displayed aircraft positions
shall be updated on a user’s display in under 55 ms.

Performance Scenario:

• Overview: Check system responsiveness for displaying aircraft positions

• System state: Deployment environment working correctly with less than 500 tracked
aircraft.

• Environment state: All aircraft tracking hardware is functional.

• External stimulus: 50 Hz update of ATC system.

• System response: radar/sensor values are computed, new position is displayed to the
air traffic controller with maximum error of 5 meters.

• Response measure: Fusion and display process completes in less than 45 ms 95% of
the time, and in less than 50 ms 99% of the time. There is an absolute deadline of 55 ms.

11

Question 2
Availability Requirement: The system shall be able to tolerate the failure of any single server
host, graphics card, display or network link.

Availability Scenario:

• Overview: One of the monitor display cards fails during transmission of a screen refresh.

• System State: System is working correctly under normal load with no failures.

• Environment state: No relevant environment factors.

• External stimulus: A display card fails.

• Required system response: failure detected within 10 ms and display information routed
through redundant graphics card with no user-discernable change to display. Graphics
card failure will be displayed as error message at bottom right hand of ATC display.

• Response measure: no loss in continuity of visual display and failover with visual warning
completes within 1 s.

12

Question 2
Security Requirement: The system shall maintain audit logs of any logins to the ATC
database, containing sufficient information to identify an attacker.
Security Scenario:

• Overview: A malicious agent gains access to the flight records database in the ATC.

• System state: The system is working correctly under normal load.

• Environment state: No relevant environmental factors.

• External stimulus: A malicious agent obtains access to the flight records database
through password cracking, and downloads flight plans for commercial aircraft.

• Required system response: An audit log will be updated with login and download
information to support future prosecution of malicious users.

• Response measure: The system audit contains time, IP address, and related
information for the download. This information will assist in identifying and analyzing
possible attacks.

13

Question 3
You are building a web store that you feel will unseat Amazon as the king of
online shops. Your marketing department has come back with figures stating
that - to accomplish your goal - your shop will need an availability of at least
99%, a probability of failure on demand of less than 0.1, and a rate of fault
occurrence of less than 2 failures per 8-hour work period.

You have recently finished a testing period of one week (seven full 24-hour
days). During this time, 972 requests were served to the page. The product
failed a total of 64 times. 37 of those resulted in a system crash, while the
remaining 27 resulted in incorrect shopping cart totals. When the system
crashes, it takes 2 minutes to restart it.

14

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

15

● What is the rate of fault
occurrence?

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

16

● What is the rate of fault
occurrence?

● 64/168 hours =
0.38/hour =
3.04/8 hour work day

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

17

● What is the probability of
failure on demand?

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

18

● What is the probability of
failure on demand?

● 64/972 = 0.066

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

19

● What is the availability?

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

20

● What is the availability?
● It was down for (37*2)

= 74 minutes out of
168 hours
= 74/10089 minutes
= 0.7% of the time.
Availability = 99.3%

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

21

● Is the product ready to
ship? If not, why not?

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

22

● Is the product ready to
ship? If not, why not?

● No. Availability,
POFOD are good.
ROCOF is too low.

Question 4
public boolean applyForVacation (String userID,
String startingDate, String endingDate)

• A user ID is a string in the format “firstname.lastname”,
e.g., “gregory.gay”.

• The two dates are strings in the format “YYYY-DD-MM”.
• The function returns TRUE if the user was able to

successfully apply for the vacation time. It returns FALSE
if not. An exception can also be thrown if there is an error.

23

Question 4
User database with following items for each user:
● User ID
● Quantity of remaining vacation days for the user
● An array containing already-scheduled vacation

dates (as starting and ending date pairs)
● An array containing dates where vacation cannot

be applied for (e.g., important meetings).

24

Question 4
Perform category-partition testing for this function.
1. Identify choices (controllable aspects that can be

varied when testing)
2. For each choice, identify representative values.
3. For each value, apply constraints (IF, ERROR,

SINGLE) if they make sense.

25

• Choice: Value of userID
• Existing user
• Non-existing user [error] [property not-exist]
• Null [error]
• Malformed user ID (not in format

“firstname.lastname”) [error]
• Choice: Value of starting date

• Valid date
• Date before the current date [error]
• Current date [single]
• Null [error]
• Malformed date (not in format “YYYY-MM-DD”)

[error]
• Choice: Value of ending date

• Valid date
• Date before the current date [error]
• Current date [single]
• Date before the starting date [error]
• Date same as the starting date [single]
• Null [error]
• Malformed date (not in format “YYYY-MM-DD”)

[error]

● Choice: Remaining vacation time for the userID
(Note: We are assuming the database schema prevents
storing malformed/invalid values)

○ 0 days remaining
○ 1 day remaining, 1 day applied for [single]
○ Number of days remaining < number applied for
○ Number of days remaining = number applied for [single]
○ Number of days remaining > number applied for
○ User does not exist [if not-exist]

● Choice: Conflicts with vacation time
(Note: We are assuming the database schema prevents
storing malformed/invalid date ranges)

○ No conflicts with scheduled vacation or banned dates
○ Banned date(s) fall within the starting and ending dates
○ Starting date falls within already-scheduled vacation time
○ Ending date falls within already-scheduled vacation time
○ Already-scheduled vacation time falls within starting and

ending dates applied for
○ The starting and ending dates fall within

already-scheduled vacation time
○ User does not exist [if not-exist]

26

27

Question 5
Exploratory testing typically is guided by “tours”.
1. Describe one of the tours that we discussed in class.
2. Consider a banking website, where a user can do things like

check their account balance, transfer funds between
accounts, open new accounts, and edit their personal
information. Describe three actions you might take during
exploratory testing of this system, based on the tour you
described above.

28

Question 5
• Supermodel Tour

• Tests the GUI, not focused on functional correctness.
• Visual appearance - are graphical elements in correct

locations, correct size, free of rendering errors?
• Are graphical elements/colors/fonts consistent?
• How long does it take elements to appear?
• Are there typos?
• Usability issues (could this be easier to use?)
• Accessibility issues?

29

Question 5
Describe three actions you might take during
exploratory testing of banking system
1. Click on drop down menu - is it displayed quickly? all items

present? does menu cause issues when appearing over
other elements?

2. Select account - is all information displayed? is location of
info correct? is info easy to find? is information readable?

3. Edit personal info - is existing info displayed? are edited
segments updated and displayed correctly?

Question 6
You are testing the Account class.
Write JUnit-format test cases to do the following:
1. Create a test case that checks a normal

usage of the methods of this class.
2. Create two test cases reflecting either

error-handling scenarios or quality attributes
(e.g., performance or reliability).

30

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Question 6

31

• Withdraw money, verify balance.

@Test

public void testWithdraw_normal() {

 // Setup

 Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);

 // Test Steps

 double toWithdraw = 16.0; //Input

 account.withdraw(toWithdraw);

 double actual = account.getBalance();

 double expectedBalance = 32.5; // Oracle

 assertEquals(expected, actual); // Oracle

}

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Question 6

32

• Withdraw more than is in balance.
• (should throw an exception with

appropriate error message)
@Test

public void testWithdraw_moreThanBalance() {

 // Setup

 Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);

 // Test Steps

 double toWithdraw = 100.0; //Input

 Throwable exception = assertThrows(

 () -> { account.withdraw(toWithdraw); });

 assertEquals(“Amount 100.00 is greater than balance 48.50”,

 exception.getMessage()); // Oracle

}

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Question 6

33

• Withdraw a negative amount.
• (should throw an exception with

appropriate error message)
@Test

public void testWithdraw_negative() {

 // Setup

 Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);

 // Test Steps

 double toWithdraw = -2.5; //Input

 Throwable exception = assertThrows(

 () -> { account.withdraw(toWithdraw); });

 assertEquals(“Cannot withdraw a negative amount: -2.50”,

 exception.getMessage()); // Oracle

}

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

34

Let’s Take a Break

Question 7
After carefully and thoroughly developing a collection of
requirements-based tests and running your test suite, you
determine that you have achieved only 60% statement
coverage. You are surprised (and saddened), since you
had done a very thorough job developing the
requirements-based tests and you expected the result to be
closer to 100%.

35

Question 7
Briefly describe two (2) things that might have happened to
account for the fact that 40% of the code was not exercised
during the requirements-based tests.

● Few tests or poor job choosing test cases.
● Missing requirements.
● Dead or inactive code.
● Error-handling code.
● Support/interfacing code.

36

Question 7
Should you, in general, be able to expect 100% statement
coverage through thorough requirements-based testing
alone (why or why not)?

● No.
● There are almost always special cases not covered by

requirements.
○ Code optimizations, support code, debug code,

exception handling.
37

Question 7
Some structural criteria, such as MC/DC, prescribe
obligations that are impossible to satisfy. What are two
reasons why a test obligation may be impossible to satisfy?

● Impossible combination of conditions
● Defensive programming (situations that may not

happen in practice are planned for).
● Other situations that result in unused code (i.e., code

implemented for future that is currently unreachable).

38

Question 8
• Draw the control-flow graph

for this method.
• Develop test input that will

provide statement coverage.
• Develop test input that will

provide branch coverage.
• Develop test input that will

provide path coverage.

int findMax(int a, int b, int c) {
int temp;
if (a > b)

temp=a;
else

temp=b;
if (c > temp)

temp = c;
return temp;

}

39

Question 8
1. int findMax(int a, int b, int c) {
2. int temp;
3. if (a>b)
4. temp=a;
5. else
6. temp=b;
7. if (c>temp)
8. temp = c;
9. return temp;
10. }

2

3

6

4T

F

8

7

9

T F

Statement:
(3,2,4), (2,3,4)
Branch:
(3,2,4), (3,4,1)

Path:
(4,2,5), (4,2,1), (2,3,4),
(2,3,1)

40

Question 8
• Modify the program to

introduce a fault such that
even path coverage could
miss the fault.

int findMax(int a, int b, int c)
{

int temp;
if (a>b)

temp=a;
else

temp=b;
if (c>temp)

temp = c;
return temp;

}

Use (a > b+1) instead of (a>b) and
the test input from the last slide:
(4,2,5), (4,2,1), (2,3,4), (2,3,1)
will not reveal the fault.

41

Question 9
• Identify all DU pairs

and write test cases
to achieve All DU Pair
Coverage.
• Hint - remember that

there is a loop.

1. public static boolean canPartition(int[] arr) {

2. Arrays.sort(arr);

3. int product = 1;

4. if ((Math.abs(arr[0]) >= arr[arr.length-1])

|| arr[0] == 0) {

5. for (int i = 1; i < arr.length; i++){

6. product *= arr[i];

7. }

8. return arr[0] == product;

9. } else{

10. for (int i = 0; i < arr.length-1; i++){

11. product *= arr[i];

12. }

13. return arr[arr.length-1] == product;

14. }

15. }

42

Question 9

43

1. public static boolean canPartition(int[] arr) {

2. Arrays.sort(arr);

3. int product = 1;

4. if ((Math.abs(arr[0]) >= arr[arr.length-1])

|| arr[0] == 0) {

5. for (int i = 1; i < arr.length; i++){

6. product *= arr[i];

7. }

8. return arr[0] == product;

9. } else{

10. for (int i = 0; i < arr.length-1; i++){

11. product *= arr[i];

12. }

13. return arr[arr.length-1] == product;

14. }

15. }

arr (1, 2), (2, 4), (2, 5), (2, 6), (2, 8), (2, 10),
(2, 11), (2, 13)

product (3, 6), (6, 6), (3, 8), (6, 8), (3, 11), (11, 11),
(11, 13)

i (5, 5), (5, 6), (10, 10), (10, 11)

Question 9

44

1. public static boolean canPartition(int[] arr) {

2. Arrays.sort(arr);

3. int product = 1;

4. if ((Math.abs(arr[0]) >= arr[arr.length-1])

|| arr[0] == 0) {

5. for (int i = 1; i < arr.length; i++){

6. product *= arr[i];

7. }

8. return arr[0] == product;

9. } else{

10. for (int i = 0; i < arr.length-1; i++){

11. product *= arr[i];

12. }

13. return arr[arr.length-1] == product;

14. }

15. }

arr (1, 2), (2, 4), (2, 5), (2, 6), (2, 8), (2, 10),
(2, 11), (2, 13)

product (3, 6), (6, 6), (3, 8), (6, 8), (3, 11), (11, 11),
(11, 13)

i (5, 5), (5, 6), (10, 10), (10, 11)

Input Additional DU Pairs Covered

[2, 8, 4, 1] arr: (1, 2), (2, 4), (2, 10), (2, 11), (2, 13)
product: (3, 11), (11, 11), (11, 13)
i: (10, 10), (10, 11)

[-1, -10, 0, 10] arr: (2, 5), (2, 6), (2, 8)
product: (3, 6), (6, 6), (6, 8)
i: (5, 5), (5, 6)

[0] arr: (3, 8)

Question 10
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid + 1, end);
} else {

return mid;
}

}

45

1. Create an equivalent
mutant.

Question 10
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid + 1, end);
} else {

return mid;
}

}

46

1. Create an equivalent
mutant.

} else if (value > A[mid]) {
return bSearch(A, value,

mid+1, end);
} else {
}
return mid;

}

SES - End Block Shift

Question 10
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid + 1, end);
} else {

return mid;
}

}

47

2. Create an invalid
mutant.

Question 10
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid + 1, end);
} else {

return mid;
}

}

48

2. Create an invalid mutant.
mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid + 1,
end);
} else {

return mid;
}

}

SDL - Statement Deletion

Question 10
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid + 1, end);
} else {

return mid;
}

}

49

3. Create a
valid-but-not-useful
mutant.

Question 10
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid + 1, end);
} else {

return mid;
}

}

50

3. Create a
valid-but-not-useful
mutant.

bSearch(A, value, start, end) {
if (end > start)

return -1;
mid = (start + end) / 2;

ROR - Relational Operator
Replacement

Question 10
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid + 1, end);
} else {

return mid;
}

}

51

3. Create a useful mutant.

} else if (value > A[mid]) {
return bSearch(A, value,

mid + 2, end);
} else {

return mid;
}

}

CRP - Constant for Constant
Replacement

Question 11
Suppose that finite state verification of an abstract
model of some software exposes a counter-example to
a property that is expected to hold true for the system.

Briefly describe the follow-up actions you would
take and why you would take them.

52

Question 11
Tells us one of the following is an issue:
• The model

• Fault in the model, bad assumptions, incorrect
interpretation of requirements

• The property
• Property not formulated correctly.

• The requirements
• Contradictory or incorrect requirements.

53

Question 12
Temporal Operators:

● G p: p holds globally at every state on the path from now until the end
● F p: p holds at some future state on the path (but not all future states)
● X p: p holds at the next state on the path
● p U q: q holds at some state on the path and p holds at every state

before the first state at which q holds.
● A: for all paths reaching out from a state, used in CTL as a modifier for

the above properties (i.e., AG p)
● E: for one or more paths reaching out from a state (but not all), used in

CTL as a modifier for the above properties (i.e., EG p)

54

Question 12
Traffic-light controller, with a pedestrian
crossing and a button to request right-of-way
to cross the road.

State variables:
● traffic_light: {RED, YELLOW, GREEN}
● pedestrian_light: {WAIT, WALK,

FLASH}
● button: {RESET, SET}

Initially: traffic_light = RED,
pedestrian_light = WAIT, button = RESET

55

Transitions:
pedestrian_light:

● WAIT → WALK if traffic_light = RED
● WAIT → WAIT otherwise
● WALK → {WALK, FLASH}
● FLASH → {FLASH, WAIT}

traffic_light:
● RED → GREEN if button = RESET
● RED → RED otherwise
● GREEN → {GREEN, YELLOW} if button = SET
● GREEN → GREEN otherwise
● YELLOW→ {YELLOW, RED}

button:
● SET → RESET if pedestrian_light = WALK
● SET → SET otherwise
● RESET → {RESET, SET} if traffic_light = GREEN
● RESET → RESET otherwise

Formulate a safety
property in CTL.

AG (pedestrian_light =
walk -> traffic_light !=
green)

Question 12
Traffic-light controller, with a pedestrian
crossing and a button to request right-of-way
to cross the road.

State variables:
● traffic_light: {RED, YELLOW, GREEN}
● pedestrian_light: {WAIT, WALK,

FLASH}
● button: {RESET, SET}

Initially: traffic_light = RED,
pedestrian_light = WAIT, button = RESET

56

Transitions:
pedestrian_light:

● WAIT → WALK if traffic_light = RED
● WAIT → WAIT otherwise
● WALK → {WALK, FLASH}
● FLASH → {FLASH, WAIT}

traffic_light:
● RED → GREEN if button = RESET
● RED → RED otherwise
● GREEN → {GREEN, YELLOW} if button = SET
● GREEN → GREEN otherwise
● YELLOW→ {YELLOW, RED}

button:
● SET → RESET if pedestrian_light = WALK
● SET → SET otherwise
● RESET → {RESET, SET} if traffic_light = GREEN
● RESET → RESET otherwise

Formulate a
liveness property
in LTL.

G (traffic_light = RED &
button = RESET -> F
(traffic_light = green))

Question 12
Traffic-light controller, with a pedestrian
crossing and a button to request right-of-way
to cross the road.

State variables:
● traffic_light: {RED, YELLOW, GREEN}
● pedestrian_light: {WAIT, WALK,

FLASH}
● button: {RESET, SET}

Initially: traffic_light = RED,
pedestrian_light = WAIT, button = RESET

57

Transitions:
pedestrian_light:

● WAIT → WALK if traffic_light = RED
● WAIT → WAIT otherwise
● WALK → {WALK, FLASH}
● FLASH → {FLASH, WAIT}

traffic_light:
● RED → GREEN if button = RESET
● RED → RED otherwise
● GREEN → {GREEN, YELLOW} if button = SET
● GREEN → GREEN otherwise
● YELLOW→ {YELLOW, RED}

button:
● SET → RESET if pedestrian_light = WALK
● SET → SET otherwise
● RESET → {RESET, SET} if traffic_light = GREEN
● RESET → RESET otherwise

Write a trap-property that can be
used to derive a test case to
exercise the scenario
“pedestrian obtains right-of-way
to cross the road after pressing
the button”.

Property in temporal logic:
G (button = SET -> F
(pedestrian_light = WALK))

Negate to get trap property:
G !(button = SET -> F
(pedestrian_light = WALK))

Question 13
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

58

In CTL:
● The microwave shall

never cook when the
door is open.

● AG (Door = Open ->
!Cooking)

Question 13
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

59

In CTL:
● The microwave shall

cook only as long as
there is remaining cook
time.

● AG (Cooking ->
Timer > 0)

Question 13
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

60

In CTL:
● If the stop button is

pressed when the
microwave is not
cooking, the remaining
cook time shall be
cleared.

● AG (Button = Stop &
!Cooking ->
AX (Timer = 0))

Question 13
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

61

In LTL:
● It shall never be the

case that the microwave
can continue cooking
indefinitely.

● G (Cooking ->
F (!Cooking))

Question 13
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

62

In LTL:
● The only way to initiate

cooking shall be
pressing the start button
when the door is closed
and the remaining cook
time is not zero.

● G (!Cooking U
((Button = Start &
Door = Closed)
& (Timer > 0)))

Question 13
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

63

In LTL:
● The microwave shall continue

cooking when there is
remaining cook time unless
the stop button is pressed or
the door is opened.

● G ((Cooking & Timer > 0) ->
X (((Cooking |
(!Cooking & Button = Stop)) |
(!Cooking & Door = Open)))

Any other questions?

Thank you for being a
great class!

