
Lecture 5: System Testing and
Test Case Design

Gregory Gay
DIT636/DAT560 - January 29, 2024

2

Today’s Goals
• Discuss testing at the system level.
• Introduce process for creating System Tests.

• Identify Independently Testable Functions
• For each:

• Identify Choices
• Identify Representative Values for Each Choice
• Generate Test Case Specifications
• Instantiate Concrete Test Cases

Testing Stages
• We interact with systems

through interfaces.
• APIs, GUIs, CLIs

• Systems built from subsystems.
• With their own interfaces.

• Subsystems built from units.
• Communication via method calls.
• Set of methods is an interface.

3

API GUI CLI

API

API

Testing Stages
• System-level Testing

• Tests whole system or
independent subsystems through
an interface.

• Integrates lower-level components
• (Subsystem-level) Do the collected

units work?
• (System-level) Does high-level

interaction through APIs/UIs work?

4

API GUI CLI

API

API

System Testing
Subsystem made up classes
of A, B, and C. Even if we have
performed unit testing...
• Classes work together to

perform subsystem functions.
• Tests applied to the interface of

the subsystem they form.
• Errors in combined behavior not

caught by unit testing.

A

C

B

Test Cases

5

6

Unit vs System Testing
• Unit tests focus on a single class.

• Simple functionality, more freedom.
• Few method calls.

• System tests bring many classes together.
• Focus on testing through an interface.
• One interface call triggers many internal calls.

• Slower test execution.
• May have complex input and setup.

7

System Testing and Requirements
• Tests can be written early in the project.

• Can create tests using the requirements.
• Does not require a detailed design.

• Creating tests supports requirement refinement.
• Tests can be made concrete once code is built.

Interface Types
• Parameter Interfaces

• Data passed from through method parameters.
• Subsystem may have interface class that calls into

underlying classes.

• Procedural Interfaces
• Interface surfaces a set of functions that can be called by

other components or users (API, CLI, GUI).
• Integrates lower-level components and controls access.

8

Interface Types
• Shared Memory Interfaces

• A block of memory is shared between (sub)systems.
• Data placed by one (sub)system and retrieved by another.

• Common if system architected around data repository.

• Message-Passing Interfaces
• One (sub)system requests a service by passing a

message to another.
• A return message indicates the results.

• Common in parallel systems, client-server systems.
9

Interface Errors
• Interface Misuse

• Malformed data, order, number of parameters.

• Interface Misunderstanding
• Incorrect assumptions made about called component.
• A binary search called with an unordered array.

• Timing Errors
• Producer of data and consumer of data access data in

the wrong order.

10

11

Testing
• 70/20/10 recommended.
• Unit tests execute quickly,

relatively simple.
• System tests more complex, require more setup,

slower to execute.
• UI tests very slow, may require humans.

• Well-tested units reduce likelihood of integration
issues, making high levels of testing easier.

12

Creating System Tests
for a REST API
with Postman

13

Postman
• Testing framework for systems with a REST API.

• REST: interface with endpoints we can interact with.
• At an endpoint, we can send HTTPS request to:

• GET information
• DELETE information
• PUT information into storage (ex: create a new entry)
• POST information (ex: update an existing entry)

• Can create requests and tests using Postman.

Writing Tests in Postman

14

Test Input

Test Oracle

● Each tab is a request.
● The request is the test input.

○ GET/POST/PUT/DELETE
○ Body, header, authorization,

etc. for the request.
● Tests tab: test oracles.

○ Write small JavaScript
methods to check correctness
of output.

15

Input - GET

Adapted from https://www.guru99.com/postman-tutorial.html

1. Select GET as the
request type.

2. Set the endpoint URL.
3. Click “Send”
4. The response status is

indicated.
5. The body contains the

returned information.

https://www.guru99.com/postman-tutorial.html

16

Input - POST
1. Set request to POST.
2. Set the endpoint URL.
3. Select the “Body” tab.

1. Click “raw” (raw text), “binary”
(file/executable), etc.

2. Select data format (JSON,
XML, etc.)

Add user data
in proper JSON
format.

Adapted from https://www.guru99.com/postman-tutorial.html

https://www.guru99.com/postman-tutorial.html

17

Output - POST
1. Click Send to

send request.
2. Response

status is
indicated (201,
data created)

3. Body indicates
record “11”
was created.

Adapted from https://www.guru99.com/postman-tutorial.html

https://www.guru99.com/postman-tutorial.html

18

Creating Test Oracles
• “Tests” tab allows creation of JavaScript blocks

used to verify results.
• These are test oracles.
• Embed expectations on results and code to compare

expected and actual values.

• Use pm.test library to create assertions on output.
• https://learning.postman.com/docs/writing-scripts/script-re

ferences/test-examples/ (many example scripts!)

https://learning.postman.com/docs/writing-scripts/script-references/test-examples/
https://learning.postman.com/docs/writing-scripts/script-references/test-examples/

19

Oracle Example - Status Check

1. Create test in “tests tab”
2. Snippets offer pre-built test oracles.
3. Example - “status code must be 200”

Adapted from https://www.guru99.com/postman-tutorial.html

https://www.guru99.com/postman-tutorial.html

20

Oracle Example - Expected Value
1. Choose snippet

“JSON value check”
2. This inserts generic

test body.
3. Change test name,

variable to check
(name of the first
user), value to
check (check for
name “Leanne
Graham”).

Adapted from https://www.guru99.com/postman-tutorial.html

pm.test("Check if user with id1 is Leanne Graham",
function () {
 var jsonData = pm.response.json();
 pm.expect(jsonData[0].name).to.eql("Leanne Graham");
});

3

https://www.guru99.com/postman-tutorial.html

21

Test Execution Results

Both tests should pass. Status and test names
indicated in GUI.

22

Creating System-Level Test Cases

Creating System-Level Tests
Identify an Independently

Testable Function

Identify Choices

Identify Representative
Input Values

Generate Test Case
Specifications

Generate Test
Cases

Identify a function that can be tested in (relative) isolation.

Identify controllable aspects of the input and environment
that determine the outcome of that function.

Identify options for each choice that lead
to different function outcomes.

Select a value for all choices to
form abstract test case “recipe”.

Replace
representative

values with
concrete values.

23

Independently Testable Functionality
• A well-defined function that can be tested in

(relative) isolation.
• Based on the “verbs” - what can we do with this system?
• The high-level functionality offered by an interface.
• UI - look for user-visible functions.

• Web Forum: Sorted user list can be accessed.
• Accessing the list is a testable functionality.
• Sorting the list is not (low-level, unit testing target)

24

Identify an Independently
Testable Function

Identify Choices
• What choices do we make when using a function?

• Anything we control that can change the outcome.
• What are the input parameters to that feature?
• What configuration choices can we make?
• Are there environmental factors we can vary?

• Networking environment, file existence, file content, database
connection, database contents, disk utilization, …

25

Identify Choices

Ex: Register for Website
• From the input parameters:

• First Name, Last Name,
Username, E-Mail Address,
Password, Short Bio

• Other environmental factors:
• Is there a database

connection?
• Is this user already in the

database?

26

Identify Choices

Parameter Characteristics
• Identify choices by understanding how parameters

are used by the function.
• Type information is helpful.

• firstName is string, database contains UserRecords.

• … but context is important.
• Reject registration if in database.
• … or database is full.
• … or database connection down.

27

Identify Choices

Parameter Context
• Input parameter split into multiple “choices” based

on contextual use.
• A database affects User Registration, but there is more

than one choice.
• Choice: Is there a database connection?
• Choice: Is there already a record for the user?
• Choice: How full is the database storage?

28

Identify Choices

29

Ex: Binary Search
Boolean binarySearch(String[] array, String toFind)

● Choice: How many items are in the array?
○ (Empty array might behave differently than one with

several items)
○ (Could also provide a null pointer instead of a real

array)
● Choice: Is the array sorted?

○ (Binary search assumes the array is sorted)

● Choice: Is the string in
the array?

○ (Different function
outcomes)

Identify Choices

30

Let’s take a break.

Example
Class Registration System
What are some independently testable functions?

• Register for class
• Drop class
• Transfer credits from another university
• Apply for degree

31

Identify an Independently
Testable Function

Example - Register for a Class
Input: Route: /registrations/, Method: POST,

Input: { “studentID”: VALUE, “courseID”: VALUE }

Output: Status Code: (201 if registration OK, 200 for input-based errors, others

for other errors), JSON message: { “result”: VALUE } (“OK”, error messages)

Example Oracle: pm.test(“Normal Case”, function() {

 pm.response.to.have.status(201);

 var jsonData = pm.response.json();

 pm.expect(jsonData.result).to.eql(“OK”);

 });

32

Identify Choices

Input: Route: /registrations/, Method: POST,

Input: { “studentID”: VALUE, “courseID”: VALUE }

Example Oracle: pm.test(“Normal Case”, function() {

 pm.response.to.have.status(201);

 var jsonData = pm.response.json();

 pm.expect(jsonData.result).to.eql(“OK”);

 });

What are the choices we make when we design a test case?

• Does student meet prerequisites?
• Does the course exist?
• What else influences the outcome?

33

Identify Choices

Example - Register for a Class
• During setup, we can influence a student’s record

and the course records.
• These are “inputs” to consider.

• How are they used?
• Has a student already taken the course?
• Do they meet the prerequisites?
• Does a course exist?
• What are the prerequisites of a course.

34

Identify Choices

35

Example - Register for a Class
• Parameter: studentID

• Choice: Validity of Student ID
• Choice: Courses Student Has Taken Previously

• Parameter: courseID
• Choice: Validity of Course ID
• Choice: Prerequisites of Course ID

Identify Choices

Identifying Representative Values

• We know the functions.
• We have choices for each.
• Representative values are the

options for each choice.

Test Input Data

Test Output Results

Program

36

Identify Representative
Input Values

37

Ex: Binary Search
Boolean binarySearch(String[] array, String toFind)

● Choice: How many items are in the array?
● Choice: Is the array sorted?

○ Yes
○ No

● Choice: Is the string in
the array?

○ Yes
○ No

Identify Choices

● Choice: How many items are in the array?
○ Null pointer
○ 0
○ 1
○ 2
○ 3
○ 4
○ 5
○ …
○ 1000000000000

Ex: Register for Website
• “Value of X” are choices.

• X = first name, username, etc.

• What are the representative
values for each choice?
• First name could be any string!

38

Identify Choices

Exhaustive Testing
Take the arithmetic
function for the calculator:
add(int a, int b)

• How long would it take
to exhaustively test this
function?

Test Input Data

Test Output Results

Program

232 possible integer values
for each parameter.
= 232 x 232 = 264
combinations = 1013 tests.

1 test per nanosecond
= 105 tests per second
= 1010 seconds
or… about 600 years!

39

Identify Representative
Input Values

Not all Inputs are Created Equal
• Many inputs lead to

same outcome.
• Some inputs better at

revealing faults.
• We can’t know which in

advance.
• Tests with different input

better than tests with
similar input.

Test Input Data

Test Output Results

Program

I

O

40

Identify Representative
Input Values

Input Partitioning

41

Identify Representative
Input Values

• Consider possible values
for a variable.

• Faults sparse in space of
all inputs, but dense in
parts where they appear.

• Similar input to failing
input also likely to fail.

• Try input from partitions,
hit dense fault space.

Equivalence Class
• Divide the input domain into equivalence classes.

• Inputs from a group interchangeable (trigger same
outcome, result in the same behavior, etc.).

• If one input reveals a fault, others in this class (probably)
will too. In one input does not reveal a fault, the other
ones (probably) will not either.

• Partitioning based on intuition, experience, and
common sense.

42

Identify Representative
Input Values

Choosing Input Partitions
• Equivalent output events.
• Ranges of numbers or values.
• Membership in a logical group.
• Time-dependent equivalence classes.
• Equivalent operating environments.
• Data structures.
• Partition boundary conditions.

43

Identify Representative
Input Values

Equivalent Outcomes
• Look at the outcomes and group input by the

outcomes they trigger.
Boolean binarySearch(String[] array, String toFind)

44

Identify Representative
Input Values

● Choice: How many items are in the array?
○ Null pointer
○ 0
○ 1
○ 2
○ 3
○ 4
○ 5
○ …
○ 1000000000000

● Choice: How many items are in the array?
○ Null pointer (could lead to exception)
○ 0 (could lead to exception/warning)
○ 1+ (normal outcomes)

Data Type
• Try values commonly misused, based on data type.

• Ex: Integer
• Basic Split: < 0, 0, >0
• If conversions take place from String -> Integer, use a

non-numeric string.

• Also split based on how variable is used.
• Integer intended to be 5-digit:

• < 10000, 10000-99999, >= 100000

45

Identify Representative
Input Values

Data Type
• Data structures prone to

certain types of errors.
• For arrays or lists:

• Only a single value.
• Different sizes and number filled.
• Order of elements: access first,

middle, and last elements.

46

Identify Representative
Input Values

Data Type
Boolean binarySearch(String[] array, String toFind)

47

Identify Representative
Input Values

● Choice: How many items are in the array?
○ Null pointer (could lead to exception)
○ 0 (could lead to exception/warning)
○ 1 (single item collections often misused)
○ 2+, # items == array size (normal outcomes)
○ 2+, # items < array size (could be issues if array is not full)

Operating Environments
• Environment may affect behavior of the program.
• Environmental factors can be partitioned.

• Memory may affect the program.
• Processor speed and architecture.
• Client-Server Environment

• No clients, some clients, many clients
• Network latency
• Communication protocols (SSH vs HTTPS)

48

Identify Representative
Input Values

Timing Partitions
• Timing and duration of an

input may be as important as
the value.
• Timing often implicit input.

• Trigger an electrical pulse 5ms
before a deadline, 1ms before the
deadline, exactly at the deadline,
and 1ms after the deadline.

• Close program before, during, and
after the program is writing to (or
reading from) a disc.

49

Identify Representative
Input Values

50

Quality Considerations
• Can add input partitions that help show that quality

goals are met.
• Performance: Input likely to lead to performance issues.

• Ex: Remove resources, large input that will take awhile to process
• Security: Input that attacker could apply.

• Ex: Code injection in XML input.

Data Type
Boolean binarySearch(String[] array, String toFind)

51

Identify Representative
Input Values

● Choice: How many items are in the array?
○ Null pointer (could lead to exception)
○ 0 (could lead to exception/warning)
○ 1 (single item collections often misused)
○ 2+, # items == array size (normal outcomes)
○ 2+, # items < array size (could be issues if array is not full)
○ 10000 (could lead to performance issues)

Input Partition Example
What are the input partitions for:
max(int a, int b) returns (int c)

We could consider a or b in isolation:
a < 0, a = 0, a > 0

Consider combinations of a and b that change outcome:
a > b, a < b, a = b

52

Identify Representative
Input Values

53

Example - Register for a Class
Parameter: studentID
• Validity of Student ID

• Active Student
• Inactive Student
• Non-Existent Student

• Courses Student Has
Taken Previously
• Matches Prerequisites
• Does Not Match

Prerequisites

Identify Representative
Input Values

Parameter: courseID
• Validity of Course ID

• Existing Course
• Non-Existent Course

• Prerequisites of Course ID
• Only Courses Taken By Student
• Only Courses Not Taken By

Student
• Some Courses Taken by Student

Revisit the Roadmap

Identify Representative
Values

Generate Test Case
Specifications

Generate Test
Cases

For each choice for a function,
we want to:
1. Partition options for each

choice into representative
values.

2. Choose a value for each
choice to form a test
specification.

3. Assigning concrete values
from each partition.

54

Basic Test Specification
// Set Up

 PUT /studentRecords/VALUE, { … “status”: VALUE, “coursesTaken”: [VALUES]}

 PUT /courses/VALUE, { … “prerequisites”: [VALUES] }

// Attempt to register for a course

 POST /registrations/, { “studentID”: VALUE, “courseID”: VALUE }

// Check the result of registration

 pm.test(“Normal Case”, function() {

 pm.response.to.have.status(VALUE);

 var jsonData = pm.response.json();

 pm.expect(jsonData.result).to.eql(VALUE);

 });

55

Generate Test Case
Specifications

56

Forming Specification
Test Specifications:

• Active, Matches, Existing, Only Taken
• Active, Does Not Match, Existing, Only Not Taken
• Active, Does Not Match, Existing, Some Taken
• Active, - , Non-Existing, -
• Inactive, Matches, Existing, Only Taken
• Inactive, Does Not Match, Existing, Only Not Taken
• Inactive, Does Not Match, Existing Some Taken
• Inactive, - , Non-Existing, -
• Non-Existing, -, Existing, -
• Non-Existing, -, Non-Existing, -
• …

Generate Test Case
Specifications

Parameter: courseID
• Validity of Course ID

• Existing Course
• Non-Existent Course

• Prerequisites of Course ID
• Only Courses Taken By Student
• Only Courses Not Taken By Student
• Some Courses Taken by Student

Parameter: studentID
• Validity of Student ID

• Active Student
• Inactive Student
• Non-Existent Student

• Courses Student Has Taken
Previously

• Matches Prerequisites
• Does Not Match Prerequisites

Specifications: 3 * 2 * 2 * 3 = 36 - Illegal Combinations

Generate Test Cases
// Set Up

 PUT /studentRecords/ggay, {“status”: active, “coursesTaken”: [“DIT050”, “DIT360”]}

 PUT /courses/DIT636, { … “prerequisites”: [“DIT360”] }

// Attempt to register for a course

 POST /registrations/, { “studentID”: ggay, “courseID”: DIT636}

// Check the result of registration

 pm.test(“Normal Case”, function() {

 pm.response.to.have.status(201);

 var jsonData = pm.response.json();

 pm.expect(jsonData.result).to.eql(“OK”);

 });

 // Attempt to register for a course

 Boolean outcome = registerForCourse(ggay, TDA594);

57

Generate Test
Cases

Specification:
Active, Matches, Existing, Only Taken

● Fill in concrete values that
match the representative
values classes.

● Can create MANY concrete
tests for each specification.

Boundary Values

• Errors tend to occur at
the boundary of a
partition.

• Remember to select
inputs from those
boundaries.

58

Generate Test
Cases

Boundary Values
Choose test case values at the boundary (and typical)
values for each partition.
• If an input is intended to be a 5-digit integer between

10000 and 99999, you want partitions:
<10000, 10000-99999, >100000

0 5000 9999

10000 50000 99999

100000 150000 max int

59

Generate Test
Cases

We Have Learned
• System tests focus on high-level functionality,

integrating low-level components through a UI/API.
• Identify an independently testable function.
• Identify choices that influence function outcome.
• Partition choices into representative values.
• Form specifications by choosing a value for each choice.
• Turn specifications into concrete test cases.

60

Next Time
• Test Case Selection

• Handling infeasible combinations.
• Selecting an interesting subset of specifications.

• Assignment 1 - Due Feb 11
• Based on Lectures 1-6

61

