
Lecture 6: System Testing -
Test Selection Techniques

Gregory Gay
DIT636/DAT560 - January 31, 2024

Creating Test Cases
Identify an Independently

Testable Function

Identify Choices

Identify Representative
Input Values

Generate Test Case
Specifications

Generate Test
Cases

Identify a function that can be tested in (relative) isolation.

Identify controllable aspects of the input parameters and
environment that determine the outcome of the function.

Identify options for each choice that lead
to different function outcomes.

Choose a value for each choice to
form abstract test case “recipe”.

Replace
representative

values with
concrete values.

2

3

Test Specifications
• May end up with thousands of

test specifications.
• Which do you turn into

concrete test cases?
• Identify the important

interactions between
choices.

4

Today’s Goals
• Examine how interactions between choices can

lead to failures.
• Examine how to select a reasonable subset of

test specifications that are likely to detect
integration faults.
• Category-Partition Method
• Combinatorial Interaction Testing

5

Component Interactions
• System components are

expected to interact.
• Usually this is planned!
• Sometimes unplanned

interactions break the system.
• We should select tests that

thoroughly test component
integrations.

6

Component Interactions
• Interactions result from

representative values of
choices.
• Inadvertent interactions cause

unexpected behavior
• (ex. incorrect output, timing)

• Want to detect, manage,
resolve inadvertent
interactions.

7

Fire and Flood Control
• FireControl activates

sprinklers when fire
detected.

• FloodControl cuts water
supply when water
detected on floor.

• Interaction means
building burns down.

8

WordPress Plug-Ins
• Weather and

emoji plug-ins
tested
independently.

• Their interaction
results in
unexpected
behavior.

9

Component Interactions

10

Selecting Test Specifications
• We want to select specifications likely to expose

interaction faults.
• Category-Partition Method

• Apply constraints to reduce the number of
specifications.

• Combinatorial Interaction Testing
• Identify a subset that covers all interactions between

pairs of choices.

11

Category-Partition Method

Category-Partition Method
Creates a set of test specifications.
• Choices, representative values, and constraints.

• Choices: What you can control when testing.
• Representative Values: Logical options for each choice.
• Constraints: Limit certain combinations of values.

• Apply more constraints to further limit set.

12

Identify Choices

• Examine parameters of function.
• Direct input, environmental parameters (i.e., databases),

and configuration options.
• Identify characteristics of each parameter.

• What aspects influence outcome? (choices)

13

Example - Set Functions
● Small function library related to Sets:

○ POST /insert/SETID {“object”: VALUE}
■ Returns { “result”: VALUE (“OK” if success or error)}

○ GET /find/SETID {“object”: VALUE}
■ Returns { “result”: VALUE (TRUE or FALSE)}

○ GET /delete/SETID {“object”: VALUE}
■ Returns { “result”: VALUE (“OK” if success or error)}

● We want to write tests for these three functions.

14

15

Example - Set Functions
POST /insert/SETID {“object”: VALUE}

• What are our choices?

Identify an Independently
Testable Function

Identify Choices

● Parameter: Set ID
○ Choice 1: How many items are in

the set? (performance may degrade
with larger sets)

● Parameter: Object
○ Choice 2: Is obj already in the set?
○ Choice 3: Is the object valid? (e.g.,

not null)?

// Set up the existing set, either empty or
with items.
POST /insert/ {“set”: […]}

// Insert an object
POST /insert/SETID {“object”: VALUE}

// Check the result
pm.test(“Insertion”, function() {
 var jsonData = pm.response.json();
 pm.expect(jsonData.result).to.eql(VALUE);});

Identify Representative Values
• Many values can be selected for each choice.
• Partition values into equivalence classes.

• Sets of interchangeable values.
• Consider all outcomes of function.
• Consider logical ranges or groupings.

• A test specification is a selection of values for
all choices.

• Concrete test case replaces equivalence class with
a concrete value.

16

17

Example - Set Functions
POST /insert/SETID {“object”: VALUE}

Parameter: Set ID

• Choice: How many items are in the set?
• Representative Values:

• Empty Set
• Set with 1 item
• Set with 10 items
• Set with 10000 items

Identify Representative
Input Values

Parameter: object

• Choice: Is the object already in the set?

• Representative Values:

• obj already in set

• obj not in set

• Choice: Is the object valid?

• Representative Values:

• Valid obj

• Null obj

Generate Test Case Specifications
• Test specification = selection a

values for each choice.
• Constraints limit number of

specifications.
• Eliminate impossible pairings.
• Remove unnecessary options.
• Choose a subset to turn into

concrete tests.

18

7776 tests (all
combinations)

40 tests (after
constraints)

19

Example - Set Functions
POST /insert/SETID
{“object”: VALUE}

• (4 * 2 * 2) = 16 specifications
• Each can become 1+ tests.
• Use constraints to remove

impossible combinations.

Generate Test Case
Specifications

Set Size Obj in Set Obj Status Outcome

Empty Yes Valid No change

Empty Yes Null Error

Empty No Valid Obj added to Set

Empty No Null Error

1 item Yes Valid No change

1 item Yes Null Error

1 item No Valid Obj added to Set

1 item No Null Error

10 items Yes Valid No change

10 items Yes Null Error

10 items No Valid Obj added to Set

10 items No Null Error

Set Size Obj in Set Obj Status Outcome

10000 Yes Valid No change (may be slowdown)

10000 Yes Null Error

10000 No Valid Obj added to Set(may be slowdown)

10000 No Null Error (may be slowdown)

Constraints Between Choices
• IF-CONSTRAINT

• This representative value can only used if a certain value is used
for a second choice (if Choice 1 == X, Choice 2 can be Y)

• ERROR
• Selected representative value causes error regardless of values

selected for other choices.

• SINGLE
• Only a single test with this representative value is needed.
• Corner cases that should give “good” outcome.

20

Example - Substring
substr(string str, int index)
Choice: Str length Choice: index
length = 0 value < 0
length = 1 value = 0
length >= 2 value = 1
Choice: Str contents value > 1
contains letters and numbers
contains special characters
empty

property zeroLen

if !zeroLen

ERROR

if !zeroLen

21

if zeroLen

SINGLE

22

Example - Set Functions
POST /insert/SETID {“object”: VALUE}

Parameter: set

• Choice: How many items are in the set?
• Representative Values:

• Empty Set
• Set with 1 item
• Set with 10 items
• Set with 10000 items

Identify Constraints

Parameter: obj

• Choice: Is the object already in the set?

• Representative Values:

• obj already in set

• obj not in set

• Choice: Is the object valid?

• Representative Values:

• Valid obj

• Null obj

property empty if !empty

error

single
single

23

Example - Set Functions
POST /insert/SETID
{“object”: VALUE}

Apply Constraints
Set Size Obj in Set Obj Status Outcome

Empty Yes Valid No change

Empty Yes Null Error

Empty No Valid Obj added to Set

Empty No Null Error

1 item Yes Valid No change

1 item Yes Null Error

1 item No Valid Obj added to Set

1 item No Null Error

10 items Yes Valid No change

10 items Yes Null Error

10 items No Valid Obj added to Set

10 items No Null Error

Set Size Obj in Set Obj Status Outcome

10000 Yes Valid No change (may be slowdown)

10000 Yes Null Error (may be slowdown)

10000 No Valid Obj added to Set(may be slowdown)

10000 No Null Error (may be slowdown)

(4 * 2 * 2) = 16 specifications
Can’t already be in empty set, - 2
error (null), - 6 single (10, 10000), - 2

24

Example - Set Functions

POST /insert/SETID
{“object”: VALUE}

• From 16 -> 6 specifications
• Each can become 1+ tests.
• Can further constrain if

needed.

Apply Constraints

Set Size Obj in Set Obj Status Outcome

Empty No Valid Obj added to Set

Empty No Null Error

1 item Yes Valid No change

1 item No Valid Obj added to Set

10 items No Valid Obj added to Set

10000 No Valid Obj added to Set(may be slowdown)

25

Example - Set Functions
POST /insert/SETID {“object”: VALUE}

Create Test Cases

// Set up empty set.
POST /insert/ {“set”: []}
// Insert a valid object
POST /insert/SETID {“object”: “Test”}
// Check the result
pm.test(“Valid Insert”, function() {
 var jsonData = pm.response.json();
pm.expect(jsonData.result).to.eql(“OK”);
});

Set Size Obj in Set Obj Status Outcome

Empty No Valid Obj added to Set

Set Size Obj in Set Obj Status Outcome

Empty No Null Error

// Set up empty set.
POST /insert/ {“set”: []}
// Insert a null object
POST /insert/SETID {“object”: null}
// Check the result
pm.test(“Null Insert”, function() {
 var jsonData = pm.response.json();
pm.expect(jsonData.result).to.eql(“Null object
cannot be inserted into set”);});

Activity - find service
find(pattern,file)

• Finds instances of a pattern in a file
• find(“john”,myFile)

• Finds all instances of john in the file
• find(“john smith”,myFile)

• Finds all instances of john smith in the file
• find(““john” smith”,myFile)

• Finds all instances of “john” smith in the file

26

Activity - find Service
• Parameters: pattern, file
• What can we vary for each?

• What can we control about the pattern? Or the file?
• What values can we choose for each choice?

• File name:
• File exists with that name
• File does not exist with that name

• What constraints can we apply between choice
values? (if, single, error)

27

28

Let’s take a break.

Example - find Service
Pattern:

• Pattern size:
• Empty
• single character
• many characters
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

29

File:
● File name:

○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on any single line line:
○ One
○ more than one

(22*33*41) = 108 test specifications

ERROR and SINGLE Constraints

30

• Pattern size:
• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

30

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[error]

[error]

[error]

[single]

[single]

4 (error) + 2 (single) + (12*23*31) = 30
[error]

IF Constraints

31

• Pattern size:
• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

31

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[error]

[error]

[error]

[single]

[single]

4 (error) + 2 (single) + (13*23) (quoted = true) +
(14*22) (quoted = false) = 18[error]

[property quoted]

[if quoted]
[if quoted]

32

Combinatorial Interaction Testing

33

Limiting Num. of Test Specifications
• Full set = 432 specifications
• Few natural IF, SINGLE,

ERROR constraints for
these features.

• What is important to cover?

Choice: Bandwidth
Mode

Choice: Language Choice: Fonts

Desktop Site English Standard

Mobile Site French Open-Source

Text Only German Minimal

Swedish

Choice: Advertising Choice: Screen Size

No Advertising Phone

Targeted Advertising Tablet

General Advertising Full Size

Minimal Advertising

34

Combinatorial Interaction Testing
• Cover all 2-way (pairwise) interactions.

• Can cover multiple pairs of representative values for
choices with one test case.

• Set of all combinations grows exponentially.
• Set of pairwise combinations grows logarithmically.

• (last slide) 432 combinations.
• Possible to cover all pairs of representative values in

16 tests.

35

Example - Paragraph Effects

2 * 2 * 3 = 12
combinations

36

Example - Paragraph Effects
• Look at how any two

of the three choices
interact.
• Paragraph spacing and line spacing
• Paragraph spacing and indentation
• Indentation and line spacing

• Many faults due to interaction of two features,
not all three at once.

37

Example - Paragraph Effects

38

Example - Paragraph Effects
• Goal of CIT is to produce

covering array.
• Subset of configurations that

covers all 2-way
combinations.

• Cover in 6 test cases.

39

Example - Website Display
Choice: Bandwidth Mode

Desktop Site

Mobile Site

Text Only

Choice: Fonts

Standard

Open-Source

Minimal

Choice: Screen Size

Phone

Tablet

Full Size

Bandwidth Mode Fonts

Desktop Site Standard

Desktop Site Open-Source

Desktop Site Minimal

Mobile Site Standard

Mobile Site Open-Source

Mobile Site Minimal

Text Only Standard

Text Only Open-Source

Text Only Minimal

• Cover all combinations
for two variables.

• Add a third, account for
all combinations of
pairs of values.

• Each test specification
can cover up to three
pairs.

Screen Size

Phone

Tablet

Full Size

Tablet

Full Size

Phone

Full Size

Phone

Tablet

40

Example - Website Display
Choice: Bandwidth
Mode

Choice:
Language

Choice: Fonts

Desktop Site English Standard

Mobile Site French Open-Source

Text Only German Minimal

Swedish

Choice: Advertising Choice: Screen
Size

No Advertising Phone

Targeted Advertising Tablet

General Advertising Full Size

Minimal Advertising

Language Advertising

English No Advertising

English Targeted Advertising

English General Advertising

English Minimal Advertising

French No Advertising

French Targeted Advertising

French General Advertising

French Minimal Advertising

German No Advertising

German Targeted Advertising

German General Advertising

German Minimal Advertising

Swedish No Advertising

Swedish Targeted Advertising

Swedish General Advertising

Swedish Minimal Advertising

Bandwidth Mode

Desktop Site

Mobile Site

Text Only

-

-

Desktop Site

Mobile Site

Text Only

Text Only

-

Desktop Site

Mobile Site

Mobile Site

Text Only

-

Desktop Site

Fonts

Standard

Open-Source

Minimal

Minimal

-

Minimal

Standard

Open-Source

Minimal

-

Open-Source

Standard

Open-Source

Standard

-

Minimal

Mobile Site

Screen Size

Phone

Tablet

Full Size

Phone

-

Full Size

Tablet

Phone

Tablet

-

Phone

Full Size

Full Size

Phone

-

Tablet

41

Activity - Browser Configuration

• Full set of test specifications = 144
• Create set covering all pairwise value

combinations.
• Hint: Start with two variables with most values. Add one

variable at a time.

Choices and
Representative
Values

Choice: Allow
Content to
Load

Choice: Notify
About Pop-Ups

Choice: Allow
Cookies

Choice: Warn
About Add-Ons

Choice: Warn
About Attack
Sites

Choice: Warn
About
Forgeries

● Allow ● Yes ● Allow ● Yes ● Yes ● Yes

● Restrict ● No ● Restrict ● No ● No ● No

● Block ● Block

42

Activity Solution
Allow Content Allow Cookies

Allow Allow

Allow Restrict

Allow Block

Restrict Allow

Restrict Restrict

Restrict Block

Block Allow

Block Restrict

Block Block

Pop-Ups

Yes

No

-

-

Yes

No

No

-

Yes

Add-Ons

Yes

No

-

No

-

Yes

-

Yes

No

Attacks

Yes

Yes

No

No

-

Yes

-

No

Yes

Forgeries

Yes

No

Yes

No

Yes

No

Yes

-

No

No No

Yes

43

CIT Tools
• Pairwise Independent Combinatorial Testing

(Microsoft): https://github.com/microsoft/pict
• Automated Combinatorial Testing for Software

(NIST):
https://csrc.nist.gov/projects/automated-combinatori
al-testing-for-software

• .. Many more: http://www.pairwise.org/tools.asp

https://github.com/microsoft/pict
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
http://www.pairwise.org/tools.asp

We Have Learned
• Two methods that identify important

representative value interactions:
• Category-Partition Method: Use constraints to eliminate

unnecessary tests.
• Combinatorial Interaction Testing: Identify important

pairs of input values.

44

Next Time
• Exercise Session:

• Practice in system-level test design.

• Next Tuesday:
• Exploratory Testing

• Assignment 1 - Feb 11
• All topics now covered.
• Any questions?

45

