
Lecture 1: Software Quality,
Verification, and Validation

Gregory Gay
DIT636/DAT560 - January 20, 2025

2

When is software ready for release?

menti.com, code 61 86 45 5

Our Society Depends on Software
This is software: So is this:

 Also, this:

 3

Flawed Software Will Hurt Profits
• 2002: “Bugs cost the U.S. economy $60 billion

annually… and testing would relieve one-third of
the cost.” (NIST)
• “In 2016, that number jumped to $1.1 trillion” (Cohane)

“Finding and fixing a software problem after delivery is
often 100 times more expensive than finding and fixing
it before.” - Barry Boehm (Emeritus Prof., USC)

4

Flawed Software Will Be Exploited

5

Flawed Software Will Hurt People
In 2010, software faults were responsible for
26% of medical device recalls.

• 2011-2015: 627 devices (1.4 million units) recalled,
12 devices (191K units) in “highest-risk” category.

“There is a reasonable probability that use of
these products will cause serious adverse
health consequences or death.”
- US Food and Drug Administration

6

This Course
• What is “good” software?

• Determined through quality attributes (dependability,
performance, scalability, availability, ...)

• How do we show it is “good”?
• Verification and Validation

• We will explore testing and analysis activities
within the V&V process.

7

2018-08-27 Chalmers University of Technology 8

Today’s Goals
Introduce The Class
● AKA: What the heck is going on?
● Go over course PM
● Clarify expectations
● Assignments/grading
● Answer any questions
● Introduce the idea of “quality”
● Cover the basics of verification and validation

Contact Details
• Instructor: Greg Gay (Dr., Professor, $#*%)

• E-mail: ggay@chalmers.se

• Website:
• https://chalmers.instructure.com/courses/33229

• Pay attention to the schedule/announcements
• https://greg4cr.github.io/courses/spring25dit636

• Backup of Canvas page/course materials.
• May be out of date, but good if Canvas isn’t working.

9

mailto:ggay@chalmers.se
https://chalmers.instructure.com/courses/33229
https://greg4cr.github.io/courses/spring25dit636

10

Teaching Team
• Teaching Assistants

• Kaisa Arumeel (gusarumka@student.gu.se)
• Faiza Amjad (gusamjfa@student.gu.se)
• Vasilena Karaivanova (gusvasika@student.gu.se)
• Manely Abbasi (gusmaneab@student.gu.se)
• Andrii Demchenko (gusdemcan@student.gu.se)
• Adrian Hassa (adrianhassa@gmail.com)
• Edvin Danielsson (edvin.33d@gmail.com)

• Student Representatives
• Seeking GU and Chalmers students - email ggay@chalmer.se

mailto:gusarumka@student.gu.se
mailto:gusamjfa@student.gu.se
mailto:gusvasika@student.gu.se
mailto:gusmaneab@student.gu.se
mailto:gusdemcan@student.gu.se
mailto:adrianhassa@gmail.com
mailto:edvin.33d@gmail.com
mailto:ggay@chalmer.se

Communication and Feedback
• Post questions to Canvas discussion forum

(preferred) or e-mail to myself/TAs.
• Send me private or sensitive questions!
• Send feedback to course reps or me.
• Contact studentoffice@cse.gu.se for questions

related to registration, sign-up, LADOK.

11

mailto:studentoffice@cse.gu.se

Desired Course Outcomes
Knowledge and understanding
● Explain quality assurance models in software engineering and the contents of

quality assurance plans

● Describe the distinction between verification and validation

● Name and describe the basic concepts on testing, as well as different testing
techniques and approaches

● Describe connection between development phases and kinds of testing

● Exemplify and describe a number of different test methods, and be able to use them
in practical situations

● Exemplify and describe tools used for testing software, and be able to use them and
interpret their output

12

13

Desired Course Outcomes
Competence and skills
● Define metrics required for monitoring the quality of projects, products and

processes in software engineering
● Construct appropriate and meaningful test cases, and interpret and explain

(to stakeholders) the results of the application of such test cases (using
appropriate tools) to practical examples

● Develop effective tests for systems at differing levels of granularity (e.g.,
unit and system level)

● Plan and produce appropriate documentation for testing
● Apply different testing techniques on realistic examples

14

Desired Course Outcomes
Judgement and approach
● Identify emerging techniques and methods for

quality management using relevant sources
● Identify and hypothesize about sources of program

failures, and reflect on how to better verify the
correctness of such programs

Lecture Plan (approximate)

15

Lectures 2-3

Lectures 4 - 8, 15

Lectures 9 - 11 Lectures 13 - 14

16

Changes from Last Time
• Slides have been updated and some examples

have been added or reworked.
• Assignments have been updated and reworked.

• Assignment 1 split in two (earlier feedback).

(Optional) Course Literature
• Software Testing and Analysis, Mauro

Pezze and Michal Young.
• Free:

https://ix.cs.uoregon.edu/~michal/book/free.php

• Effective Software Testing: A Developer's
Guide, Maurício Aniche.

• $25.99 (eBook), $32.49 (physical).
• https://www.effective-software-testing.com/

17

https://ix.cs.uoregon.edu/~michal/book/free.php
https://www.effective-software-testing.com/

Prerequisite Knowledge
• You need to be proficient in Java.

• Some code examples also in Python, C/C++.

• Good to know:
• Basic understanding of REST APIs.
• Basic understanding of formal logic.

18

Course Design
 Lectures

Exercise Sessions Group Assignments

19

20

Examination Form
Sub-Courses
• Written examination (Skriftlig tentamen), 4.5 higher

education credits
• Assignments (Inlämningsuppgifter), 3 higher

education credits
• Grading scale: Fail (U), 3-5

21

Assessment
• Individual hall exam at end of course
• Written assignments in teams of three.

• You may choose your own team.
• See Assignment 0 on Canvas. Due Sunday.

• Four written assignments.
• Equally weighted.
• Module grade is average of assignment grades.

22

Assessment
• Self and peer-evaluation due with each assignment

• May be used to adjust individual assignment grades.
• AKA: don’t slack off!

• Late assignments, -20% per day, 0% after two days
• If final assignment average is failing, all three

assignments must be redone/resubmitted.

23

Grading Scale
• Score of 1-100, converted to Fail, 3-5:
• Final course grade:

Expected Workload
• This class can be time consuming.

• Understanding the material takes time.
• Project work requires team coordination.

• Do not underestimate the project work.
• Good engineering is hard.
• Planning and scheduling your time is essential.
• Do NOT delay getting started.
• Appoint a team leader (and rotate the role)

24

Other Policies
Integrity and Ethics:
• Work you submit must be your own.

• Generative AI: Can be used to brainstorm, summarize
concepts, fix grammar, generate plots (i.e., to support
learning), but all text and code must be written by YOU.

• If you want to use GenAI, ask me first, disclose in
submission.

• Collaboration is not permitted on assignments.
• Violation = failing grade and reporting.

25

Other Policies
Classroom Climate:
Arrive on time, don’t talk during lecture unless part of class discussion.
Disruptive students will be warned and dismissed.

Diversity
Students in this class are expected to work with all other students, regardless
of gender, race, sexuality, religion, etc. Zero-tolerance policy for discrimination.

Special Needs
We will provide reasonable accommodations to students that have special
needs. Contact teaching team early to discuss individual needs.

26

27

Let’s take a break!

28

When is software ready for release?

29

The short (and not so simple) answers...

• We release when we can’t find any bugs…
• We release when we have finished testing…
• We release when quality is high...

30

“When Quality is High?”
• What does quality mean?
• How do we measure quality?
• What is “enough” quality?
• How do we assess quality at a single point in time

and over the project lifespan?

31

Software Quality
• We all want high-quality software.

• We don’t all agree on the definition of quality.

• Quality encompasses what and how.
• How dependable it is.
• But also…

• How quickly it runs.
• How available its services are.
• How easily it scales to more users.

• Hard to measure and assess objectively.

32

Quality Attributes
• Describe desired properties of the system.
• Developers prioritize attributes and design system

that meets chosen thresholds.
• Most relevant for this course: dependability

• Ability to consistently offer correct functionality, even
under unforeseen or unsafe conditions.

Quality Attributes
• Performance

• Ability to meet timing requirements. When events occur,
the system must respond quickly.

• Security
• Ability to protect information from unauthorized access

while providing service to authorized users.
• Scalability

• Ability to “grow” the system to process more concurrent
requests.

33

Quality Attributes
• Availability

• Ability to carry out a task when needed, to minimize
“downtime”, and to recover from failures.

• Modifiability
• Ability to enhance software by fixing issues, adding

features, and adapting to new environments.
• Testability

• Ability to easily identify faults in a system.
• Probability that a fault will result in a visible failure.

34

Quality Attributes
• Interoperability

• Ability to exchange information with and provide
functionality to other systems.

• Usability
• Ability to enable users to perform tasks and provide

support to users.
• How easy it is to use the system, learn features, adapt to

meet user needs, and increase confidence and
satisfaction in usage.

35

36

Other Quality Attributes
● Environmental Sustainability

○ Ability to operate with a minimal carbon footprint.
○ Minimal energy consumption.
○ Ability to execute operations in locations with high

renewable energy resources.

● Portability
○ Ability to translate the system to new hardware and

software platforms.

37

Quality Attributes
• These qualities often conflict.

• Architecture with few components: improved
performance, but lower maintainability.

• Redundant data helps availability, but lessens security.
• Encryption increases security, but lowers performance.

• Important to decide what is important, and set a
threshold on when it is “good enough”.

When is Software Ready for Release?
Software is ready for release when you can argue that
it shows sufficient quality.
• Requires choosing quality attributes.

• Requires specifying measurements and thresholds.
• May require different measurements and thresholds for

different functionality and execution scenarios.

• Assessed through Verification and Validation.

38

Verification and Validation
Activities that must be performed to consider the
software “done.”
• Verification: Proving that software conforms to its

functional and non-functional requirements.
• Validation: Proving that software meets

customer’s true requirements, needs, and
expectations.

39

Verification and Validation
Barry Boehm:
• Verification:

• “Are we building the product right?”
• Validation:

• “Are we building the right product?”

40

Verification
• Is the implementation correct?

• Judged by asking: “Is the implementation consistent with
its specification?”

• Verification is an experiment.
• Perform trials, evaluate results, gather evidence.

41

Verification
• Is an implementation consistent with a

specification?
• “Specification” and “implementation” are roles.
• Usually source code and requirement specification.
• But also…

• Source code and architectural design.
• Architectural design and requirements.
• Test cases and requirements.
• Source code and user manuals.

42

43

How do we know an implementation is correct?

“It is correct because I
proved that certain errors
do not exist in the system.”

“It is correct because I
never observed incorrect

behaviors.”

Rationalists Empiricists

Adapted from Shin Yoo (KAIST)

Static Verification
• Analysis of code and other

development artifacts.
• Proofs: Posing hypotheses and

making arguments using
specifications, models, etc.

• Inspections: Manual “sanity check”
on artifacts (e.g., source code),
searching for issues.

44

“It is correct because I
proved that certain errors do

not exist in the system.”

Advantages of Static Verification
• Proofs offer conclusive evidence of problems.
• One error can hide other errors. Inspections not

impacted by program interactions.
• Incomplete systems can be inspected.
• Code inspections can assess subjective quality

attributes (maintainability, portability, usability).

45

Dynamic Verification
• Exercising and observing the system.

• Testing: Executing input and checking
whether the resulting output meets
expectations.

• Fuzzing: Generating semi-random input
to detect crashes, memory leaks, buffer
overflows, etc.

• Taint Analysis: Monitoring how
corrupted data spreads through system.

46

“It is correct because I
never observed

incorrect behaviors.”

Advantages of Dynamic Verification
• Discovers problems from runtime interaction, timing

problems, or performance issues.
• Cheaper, more scalable than static verification.

• Much easier to achieve volume.
• Works on much more complex systems.
• However, cannot prove that properties are met

• Cannot try all possible executions.

47

48

The Trade-Off
Static Analysis:

• Overapproximation

• Naive analysis:
• There is a division-by-zero

error here.

• Not being naive is
expensive.

def foo(n):
 if n > 0:
 print(bar(n))
 else:
 return

def bar(a):
 return 42 / a

Adapted from Shin Yoo (KAIST)

Dynamic Analysis:

• Underapproximation

• Only detect faults if we
select the right input.

def test_bar():
 assert bar(42) == 1

Validation
• Does the product work in the real world?

• Does the software fulfill the users’ actual needs?

• Not the same as conforming to a specification.
• If we specify two buttons and implement all behaviors

related to those buttons, we can achieve verification.
• If the user expected a third button, we failed validation.

49

Verification and Validation
• Verification

• Does the software work as intended?
• Shows that software is “high quality”.

• Validation
• Does the software meet the needs of your users?
• Shows that software is actually useful.
• This is much harder.

50

Verification and Validation
• Both are important.

• A well-verified system might not meet the user’s needs.
• A system can’t meet the user’s needs unless it is

well-constructed.

• This class largely focuses on verification.
• Testing is the primary activity of verification.

51

Basic Questions
1. When do verification and validation start and end?
2. How do we obtain acceptable quality at an

acceptable cost?
3. How can we assess readiness for release?
4. How can we control quality of successive releases?
5. How can the development process be improved to

make verification more effective?

52

When Does V&V Start?
• V&V can start as soon as the project starts.

• Feasibility studies must consider quality assessment.
• Requirements can be used to derive test cases.
• Design can be verified against requirements.
• Code can be verified against design and requirements.
• Feedback can be sought from stakeholders at any time.

53

How Can We Assess Readiness?
• Finding all faults is nearly impossible.
• Instead, decide when to stop V&V.
• Need to establish criteria for acceptance.

• How good is “good enough”?

• Measure quality and set threshold to meet.
• Measurements for each chosen attribute.

54

Product Readiness
• Put it in the hands of human users.
• Alpha/Beta Testing

• Small group of users using the product, reporting
feedback and failures.

• Use this to judge product readiness.
• Make use of dependability metrics for quantitative

judgement (metric > threshold).
• Make use of surveys as a qualitative judgement.

55

Required Level of V&V
• Depends on:

• Software Purpose: The more critical, the more important
that it is reliable.

• User Expectations: Users may tolerate bugs because
benefits outweigh cost of failure recovery.

• Marketing Environment: Competing products - features
and cost - and speed to market.

56

Ensuring Quality of Successive Releases
• V&V do not end with release.

• New features, environmental adaptations, bug fixes.
• Test new code, retest old code, track changes.

• When code changes, rerun tests to ensure old code works.
• Retain tests that exposed faults to ensure they do not return.

57

Improving the Development Process
• Try to learn from your mistakes in the next project.

• Collect data during development.
• Fault information, bug reports, project metrics (complexity, #

classes, # lines of code, test coverage, etc.).
• Classify faults into categories.
• Look for common mistakes.
• Learn how to avoid such mistakes.
• Share information within your organization.

58

59

We Have Learned
• Determining “ready to release” requires software to

meet quality goals.
• Quality attributes describe desired properties.

• Dependability, scalability, performance, availability,
security, maintainability, testability, ...

• Must prioritize quality attributes and design a
system that meets chosen thresholds for each.

We Have Learned
• Software should be “high quality” and useful before

it is released into the world.
• Verification demonstrates that an implementation

meets its specification.
• This is the primary means of demonstrating that software

is “high quality” .
• Testing is most common form of verification.

60

Next Time
• Measuring and assessing quality.
• No exercise session this week.

• Plan your team selection.
• The earlier, the better! Due January 26, 23:59.
• See Assignment 0 on Canvas

61

