

UNIVERSITY OF GOTHENBURG

Lecture 10: Structural Testing -Paths and Data Flow

Gregory Gay DIT636/DAT560 - February 19, 2025

Test Adequacy Criteria

Compromise between the impossible and the inadequate

- Can we measure "good testing"?
- Test adequacy criteria "score" tests by measuring completion of test obligations.
 - Checklists of properties that must be met by test cases.

Structural Coverage Criteria

- Criteria based on exercising:
 - Statements (nodes of CFG)
 - Branches (edges of CFG)
 - Decisions and Conditions
 - Paths
 - ... and many more
- Measurements used as adequacy criteria

Elements Vs. Paths

- Statement, Branch, Condition Coverage all focus on *one element* at a time.
- A test executes a *path*, not a single element.
- Each element on that path is dependent on the others.

Elements Vs. Paths

- There are different control paths through a program...
- ... And different ways that data passed along paths can influence execution.
- Important to examine not just elements, but paths.

boolean $A = \dots$ Fault in definition		
boo	olean expr = A B; Corrupts definition of expr if B = False	
if	(expr && C) {	
	<pre>System.out.println("Here I am!");</pre>	
}		
	expr can corrupt outcome if C = True	

Today's Goals

- Introduce Path Coverage
- Data Flow Coverage Criteria
 - Focus on how information spreads through a program.
 - Based on Definition-Use Pairs
 - (Where is X defined? Where is each definition of X used?)

• Path coverage requires that all paths through the CFG are covered.

• Coverage = Number of Paths Covered

Number of Total Paths

Path coverage is a powerful coverage metric, but is often impractical.

- How many paths does this have?
- Each loop cycle is a separate path!

Path coverage with (loop <= 20) requires: **3,656,158,440,062,976** test cases

If you run 1000 tests per second, this will take **116,000 years**.

However, there are ways to get some of the benefits of path coverage without the cost...

- Theoretically, a very strong coverage metric.
 - Many faults emerge through sequences of interactions.
- But... Generally impossible to achieve.
 - Loops result in an infinite number of path variations.
 - Even ignoring loops, many paths through code.

Boundary Interior Coverage

- Groups paths that differ only in the subpath they follow when repeating the body of a loop.
 - Executing loop 20 times is different than executing it twice, but same **subpaths** repeat over and over.
 - Unroll loop in CFG into distinct subpaths, and cover those instead of worrying about loop cycles.

Boundary Interior Coverage

A -> B -> C -> E -> L -> B

A -> B -> C -> D -> F -> L -> B

A -> B -> C -> D -> G -> H -> L -> B

A -> B -> C -> D -> G -> | -> L -> B

-0

UNIVERSITY OF GOTHENBURG

Boundary Interior Example

1. public int doSomething(int x, int y) 2. { 3. while(y > 0) { $if(x > 0) \{$ 4. 5. y = y - x;6. if (y > 0)System.out.println("Y: " + y); 7. 8. }else { 9. x = x + 1;10. if (x <= 0)System.out.println(X: " + x); 11. 12. 13. } 14. return x + y; 15. }

Boundary Interior Example

1. public int doSomething(int x, int y) 2. { 3. while(y > 0) { 4. $if(x > 0) \{$ 5. y = y - x;6. if (y > 0)System.out.println("Y: " + y); 7. 8. }else { 9. x = x + 1;10. if (x <= 0)11. System.out.println(X: " + x); 12. } 13. } 14. return x + y; 15. }

UNIVERSITY OF GOTHENBURG

Number of Paths

- Boundary Interior Coverage bounds number of paths.
 - However, still exponential.
 - N non-loop branches results in 2^N paths.
- Additional limitations may need to be imposed.

if	(a)	S1;
if	(b)	S2;
if	(C)	S3;
•••		
if	(X)	SN;

Data Flow

UNIVERSITY OF GOTHENBURG

Control Flow

- Capture how execution navigates between blocks of statements.
- We care about a statement's effect only when it affects the path.
 - Deemphasizes information being transmitted.

Data Flow

- Program statements compute and transform data...
- Reason about data dependence
 - A variable is used here.
 - Where does its value come from?
 - Is this value ever used?
 - Is this variable properly initialized?
 - If the expression assigned to a variable is changed what else would be affected?

Data Flow

- Basis of the optimization performed by compilers.
- Used to derive test cases.
 - Have we covered the dependencies?
- Used to detect faults and other anomalies.
 - When can we cache result of a calculation instead of recalculating it?
 - Can we eliminate a variable definition?

Definition-Use Pairs

- Data is defined.
 - ... and data is used.
- Pairs of definitions and uses capture data flow.
 - **Definitions** when variables are declared, initialized, assigned values, or received as parameters.
 - **Uses** when variables referenced in expressions, parameter passing, return statements.

Definitions and Uses

- 1. **def** min
- 2. def max, use N
- 3. **def** mid, **use** min, max
- 4. **use** A[mid], mid, x, min, max
- 5. **def** mid, **use** min, max
- 6. **use -** x, A[mid], mid
- 7. def min, use mid
- 8. -
- 9. def max, use mid

() UNIVERSITY OF GOTHENBURG

Definitions and Uses

CHALMERS

- 1. **def** min
- 2. def max, use N
- 3. **def** mid, **use** min, max
- 4. **use** A[mid], mid, x, min, max
- 5. **def** mid, **use** min, max
- **6. use -** x, A[mid], mid
- 7. def min, use mid
 - . .

8.

9.

def - max, use - mid

Definition-Use (DU) Pairs

- We can say there is a **DU pair** when:
 - There is a **definition** of variable X at location A.
 - Variable X is **used** at location B.
 - A control-flow **path** exists from A to B.
 - and the path is **definition-clear** for X from A to B.
- If X is redefined, original definition is **killed** and pair is now between new definition and use in B.

Example - Definition-Use Pairs

DU Pairs

min: (1, 3), (1, 4), (1, 5), (7, 4), (7, 5) max: (2, 3), (2, 4), (2, 5), (9, 4), (9, 5) N: (0, 2) mid: (3, 4), (5, 6), (5, 7), (5, 9), (5, 4) x: (0, 4), (0, 6) A: (0, 4), (0, 6)

-0

Example - GCD

public int gcd(int x, int y){ 1. 2. int tmp; 3. while(y!=0){ 4. tmp = x % y;5. X = Y;6. y = tmp;7. 8. return x; 9.

1. def: x, y 2. def: tmp 3. use: y 4. use: x, y def: tmp 5. use: y def: x 6. use: tmp def: y 7.

-0

8. use: x

Example - GCD

1. public int gcd(int x, int y){ 2. int tmp; 3. while(y!=0){ tmp = x % y;4. 5. x = y;6. y = tmp;7. } 8. return x; 9. **Def-Use Pairs** x: (1, 4), (5, 4), (5, 8), (1, 8) y: (1, 3), (1, 4), (1, 5), (6, 3), (6, 4), (6, 5) tmp: (4, 6)

Example - collapseNewlines

```
7. public static String collapseNewlines(String argStr)
```

```
8. {
```

```
9. char last = argStr.charAt(0);
```

```
10. StringBuffer argBuf = new StringBuffer();
```

```
11.
```

```
12. for(int cldx = 0; cldx < argStr.length(); cldx++)</pre>
```

```
13. {
```

23. }

```
14. char ch = argStr.charAt(cldx);
15. if(ch != `\n' || last != `\n')
```

```
16. {
```

```
17. argBuf.append(ch);
18. last = ch;
19. }
20. }
21.
```

```
22. return argBuf.toString();
```

Variable	D-U Pairs
argStr	(7, 9), (7,12), (7, 14)
last	(9, 15), (18, 15)
argBuf	(10,22), (17, 22)
cldx	(12, 12), (12, 14)
ch	(14, 15), (14, 17), (14, 18)

Let's Take a Break

Dealing With Arrays and Pointers

- Arrays and pointers (including object references and arguments) introduce issues.
 - It is not possible to determine whether two access refer to the same storage location.
 - a[x] = 13;
 - k = a[y];
 - Are these a def-use pair?
 - a[2] = 42;
 - i = b[2];
 - Are these a def-use pair?

Aliasing

• Two names refer to the same memory location.

• Worse in C:

.

Uncertainty

- Aliasing introduces uncertainty.
 - Instead of definition or use of one variable, may have a potential def or use of a set of variables.
- Safest: treat any use of a potential alias of V as a use of V.
 - Creates more def-use pairs (some may not be real), but avoids missed pairs.

Dealing With Uncertainty

• Treat all potential aliases as definitions and uses:

a[1] = 13; k = a[2];	Def of a[1] , use of a[2] .
a[x] = 13; k = a[y];	Def and use of array a .

- Can be very imprecise.
 - They are only the same if x and y are the same.

-0

Dealing With Uncertainty

• Option 2: Treat uncertainty about aliases like uncertainty about control flow.

- Rewrite code to make references explicit.
- In transformed code, all array references are distinct.

Situational Def-Use Pairs

- ++counter, counter++, counter+=1
 counter = counter + 1
 - Use of counter then a new definition.
- char *ptr = *otherPtr
 - Definition of string *ptr
 - Use of memory index ptr, string *otherPtr, and memory index otherPtr.
 - ptr++
 - Use of memory index ptr, definition of both memory index and string *ptr (change to index moves pointer to a new location).

Data Flow Coverage Criteria

Overcoming Limitations of Path Coverage

- We can potentially expose many faults by targeting particular paths of execution.
- What are the important paths to cover?
 - Some methods impose heuristic limitations.
 - Use data flow to select paths based on how one element can affect the computation of another.

Choosing the Paths

- Computing the wrong value leads to a failure only when that value is used.
 - Ensure that definitions are actually used by covering paths from definitions to uses.
 - All DU Pair Coverage, All DU Paths Coverage, All Definitions Coverage
 - Varying power and cost.

All DU Pair Coverage

- Requires each DU pair be exercised in at least one program execution.
 - Counts if we cover **any of the paths** between a definition and its use.
 - Can easily achieve structural coverage without covering all DU pairs.
- Coverage = number exercised DU pairs

number of DU pairs

All DU Pairs Coverage Example

1 nublic int doSomething(int x int v)	
i. public int dosomething(int x) int y)	
2. {	
3. while(y > 0) {	
4. $if(x > 0)$ {	
5. $y = y - x;$	
6. if $(y > 0)$	X:
<pre>7. System.out.println("Y: " + y);</pre>	(1, 4), (1, 5), (1, 9), (1, 14)
8. }else {	(9, 10), (9, 11), (9, 4), (9, 5), (9, 9), (9, 14)
9. $x = x + 1;$	N.
10. if (x <= 0)	Y: (4 5) (4 44)
<pre>11. System.out.println(X: " + x);</pre>	(1, 3), (1, 5), (1, 14) (5, 6), (5, 7), (5, 2), (5, 5), (5, 14)
12. }	(5, 0), (5, 7), (5, 3), (5, 5), (5, 14)
13. }	
14. return x + y;	
15. }	

X: (1, 4), (1, 5), (1, 9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14) Y: (1, 3), (1, 5), (1, 14), (5, 6), (5, 7), (5, 3), (5, 5), (5, 14)

```
1. public int doSomething(int x, int y)
2. {
3.
     while(y > 0) {
4.
           if(x > 0) \{
5.
                y = y - x;
6.
                if (y > 0)
7.
                    System.out.println("Y: " + y);
8.
          }else {
9.
                x = x + 1;
10.
                if (x <= 0)
                    System.out.println(X: " + x);
11.
12.
           }
13.
     }
14.
     return x + y;
15. }
```


All DU Paths Coverage

- A use may be reachable along several paths from the definition.
 - Cover all non-looping paths for each DU pair.
 - Can reveal faults where a path is exercised that should use a certain definition but doesn't.

Coverage = number of exercised DU paths

number of DU paths

All DU Paths Example

DU Pair (2, 8) for X can be reached along multiple paths.

- 2, 3T, 4T, 5, 8
- 2, 3T, 4F, 8 •
- 2, 3F, 8

8

Test	Input:
•	y = 10, z = 6
•	y = 10, z = 3
•	y = 2, z = (anything)

Path Explosion Problem

- Even without looping paths, number of DU paths can be exponential.
 - Code between definition and use can be irrelevant to that variable, but contains many paths.

```
public void countBits(char ch){
    int count = 0;
    if (ch & 1)
                  ++count;
    if (ch & 2)
                  ++count;
    if (ch & 4)
                  ++count;
    if (ch & 8)
                  ++count;
    if (ch & 16)
                  ++count;
    if (ch & 32)
                  ++count;
    if (ch & 64)
                  ++count;
    if (ch & 128) ++count;
    System.out.println(ch + " has " +
count + "bits set to 1");
```


All Definitions Coverage

- All DU Pairs/All DU Paths may be too expensive in some situations.
 - Pair each definition with at least one use.
 - Skips many DU pairs, but ensures each definition tried.
 Coverage = number of covered definitions

number of definitions

X: (1, 4), (1, 5), (1, 9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14) Y: (1, 3), (1, 5), (1, 14), (5, 6), (5, 7), (5, 3), (5, 5), (5, 14)

1. public int doSometh	ing(int x, int y)
2. {	
3. while(y > 0) {	
4. $if(x > 0)$ {	
5. y = y	- x;
6. if (y	> 0)
7. Sy	<pre>vstem.out.println("Y: " + y);</pre>
8. }else {	
9. x = x	+ 1;
10. if (x	<= 0)
11. Sy	<pre>vstem.out.println(X: " + x);</pre>
12. }	
13. }	
14. return x + y;	• Any input covers (1, -) pairs.
15. }	• Reaching lines 5, 9 covers
	(0, 14) and (9, 14) pairs.

X: Definitions on lines 1, 9 Y: Definitions on lines 1, 5

Infeasibility Problem

- Metrics may ask for impossible test cases.
- Path-based metrics may require infeasible combinations of feasible elements.
 - Alias analysis may add additional infeasible paths.
- All Definitions, All DU-Pairs Coverage reasonable.
 - All DU-Paths is much harder!

Activity - DU Pair Coverage

- Identify all DU pair
- Write your own test input to achieve All DU Pair Coverage.
 - e.g., Input (1, 1)
 For x, covers pairs: (1,4), ...

1. int doSomething(int x, int y)
2. {

4.
$$if(x > 0)$$
 {

$$y = y - x;$$

$$x = x + 1;$$

10. return x + y;

11. }

5.

6

7.

8.

CHALMERS

Activity - DU Pairs

1. int doSomething(int x, int y) 2. { while(y > 0) { 3. $if(x > 0) \{$ 4. 5. y = y - x;6. }else { 7. x = x + 1;8. } 9. 10. return x + y; 11. }

Variable	Defs	Uses
x	1, 7	4, 5, 7, 10
у	1, 5	3, 5, 10

Variable	D-U Pairs
x	(1, 4), (1, 5), (1, 7), (1, 10), (7, 4), (7, 5), (7, 7), (7, 10)
У	(1, 3), (1, 5), (1, 10), (5, 3), (5, 5), (5, 10)

1. int doSomething(int x, int y)
2. {

 Variable
 Defs
 Uses

 x
 1, 7
 4, 5, 7, 10

 y
 1, 5
 3, 5, 10

Variable	D-U Pairs
x	(1, 4), (1, 5), (1, 7), (1, 10), (7, 4), (7, 5), (7, 7), (7, 10)
у	(1, 3), (1, 5), (1, 10), (5, 3), (5, 5), (5, 10)

Test Input 1: (x = 1, y = 2)Covers lines 1, 3, 4, 5, 3, 4, 5, 3, 10 Test Input 2: (x = -1, y = 1)Covers lines 1, 3, 4, 6, 7, 3, 4, 6, 7, 3, 4, 5, 3, 10 Test Input 3: (x = 1, y = 0)Covers lines 1, 3, 8

11. }

We Have Learned

- Control-flow and data-flow capture important paths in program execution.
- Analysis of how variables are defined and then used and the dependencies between definitions and usages can help us reveal important faults.
- Many forms of analysis can be performed using data flow information.

We Have Learned

- If there is a fault in a computation, we can observe it by looking at where the computation is used.
- By identifying DU pairs and paths, we can create tests that trigger faults along those paths.
 - All DU Pairs coverage
 - All DU Paths coverage
 - All Definitions coverage

Next Time

- Exercise Session Structural Testing
- Next lecture Mutation Testing

- Assignment 3
 - Due March 2! We have covered everything on it.

UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY