
Lecture 13: Model-Based Testing

Gregory Gay
DIT636/DAT560 - March 3, 2025

Models and Software Analysis
• Before and while building products, engineers

analyze models to address design questions.
• Software is no different.
• Software models capture different ways that the

software behaves during execution.

2

Behavior Modeling
• Abstraction - simplify problem by identifying and

focusing only on important aspects.
• Solve a simpler problem, then apply to the big problem.

• A model is a simplified representation of the
software-under-development.
• Ignores all aspects irrelevant to the current task.

3

Software Models
• Abstractions of system being developed.

• Only contain details relevant to a particular analysis.

• Can be extracted from specifications, design, code.
• Control and Data Flow

• Model of how control/data move during execution.
• Finite State Machines

• Events cause the system to react, changing its internal state.

4

5

Control Flow Diagrams

• Model of how control flows
between basic blocks.

• Enables analyses and test
creation centered around
control flow.

• Omits all other
information about the
program.

…
…

1<x

T F

6

Data Flow Diagrams
• Model of how

definitions and
usages of
variables are
connected.

• Omits all other
information
about the
program.

min = 1; max =
N;

A[mid] !=
x or min
<= max

mid = ((min + (max
- min))/2); min = mid

+ 1;

mid = ((min + (max - min))/2);

7

Model-Driven Development
• State machine models often created during

requirements analysis.
• Allows refinement of requirements.
• Can prove that requirements hold over model

• (Finite State Verification)

• Can generate code from state machine models.
• Used heavily in automotive, embedded.

• Can create tests using models.

Model-Based Testing
• State machine models describe (abstractly) what

happens when input is applied to functionality.
• State machine model structure can be exploited:

• Coverage criteria used to identify important paths.
• Steps taken to perform functionality in different ways or to

get different outcomes.

8

9

Finite State Machines

Finite State Machines
• “State” of software = values assigned to variables.

• Set of all possible real behaviors is often infinite.
• Called the “state space” of the program.

• Models simplify a “functionality”/component
into finite states.
• State = simple description or small set of variables
• Execution modeled as transitions between states,

caused by actions.

10

Finite State Machines
• Nodes represent states

• Abstract description of the current
value of an entity’s attributes.

• Edges represent transitions
• Events cause state to change.
• Labeled event [guard] / activity

• event: The event that triggered the transition.
• guard: Conditions that must be true to transition.
• activity: Output behavior when this transition is taken.

11

Terminology
• Event - An input that occurs at a defined time.

• The user presses a button.
• The alarm goes off.

• Condition - Internal or external property describing
a change over time.
• The fuel level has risen over a threshold.
• The alarm has been on for ten seconds.

12

Terminology
• State - Abstract description of the current value of

the entity’s attributes.
• (e.g.: “Normal Operating Mode”, “Emergency Mode”)
• Can also be current value of a set of variables.

• However, keep that set small!
• Limit possible variable values (e.g., “<0, 0, >0”, not “any integer”)

13

States, Transitions, and Guards
• States change in response to events (transition).
• When multiple transitions are possible, the choice is

guided by the current conditions.
• Also called the guards on a transition.
• We take the transition that satisfies all guards.

14

State Transitions
Transitions labeled as:

event [guard] / activity
• event: The event that triggered the transition.
• guard: Conditions required to take this transition.
• activity: Output when this transition is taken.

15

State Transitions

event [guard] / activity
• All three are optional.

• Missing Activity: No output from this transition.
• Missing Guard: Always take transition following event.
• Missing Event: Take this transition immediately after

entering preceding state (if guards met).

16

State Transition Examples

event [guard] / activity

• Controller enters “self-test” mode after test button is
pressed, leaves when reset button is pressed.
• User pressing self-test, reset buttons are events.

• The tank enters “too-low” state when fuel level <
threshold for N seconds.
• Fuel level < threshold for N seconds is a guard.

17

Example: Candy Machine

Waiting

Money
Inserted

user inserts moneyuser ejects quarter

Candy Sold

user presses button

Out of
Candy

[candy > 0]

[candy -1 > 0] /
dispense candy

[candy -1 = 0] / dispense candy

18

More on Transitions
Guards must be mutually exclusive

If event occurs and no
transition is valid, then
event is ignored.

Missing transition for:
money [balance > 0 &&
balance >= needed]

Able to
Purchase

money ejected
[balance = 0]

Waiting for
Money

More Money
Needed

money ejected
[balance > 0 &&
balance < needed]

19

Internal Activities
Can react to events and
conditions without
transitioning using internal
activities.

● Special events: entry
and exit.

● Other activities occur
each “time step”, until a
transition occurs.
○ Entry and exit not

re-triggered.

Typing
entry / highlight all
exit / update field
character entered / add to field
help requested [verbose] / open help page
help requested [minimal] / update status bar

20

21

Example: Maintenance Tracking
• Customers send products for

maintenance.
• Maintenance tracking notes current

stage of process.
• Model only what software tracks

and controls!

MaintenanceTracker

- status
- warranty

request()
estimateResponse(Bool)
transfer()
orderParts()
return()

Example: Maintenance Tracking
If the product is covered by warranty or maintenance contract,
maintenance can be requested through the software.

If the product is not covered by warranty, the software informs the
customer of the estimated cost. Maintenance starts when the customer
accepts the estimate. If the customer does not accept, the item is
returned.

Waiting

No Warranty

Returning

22

Example: Maintenance Tracking
All repairs start at a local station. If the station cannot solve
the problem, the product is sent to the main headquarters.

Maintenance is suspended if some components are not
available.
Once repaired, the product is returned to the customer.

Under Local Repair

Repair at Main HQ

Waiting for Component

Returning

23

Example: Maintenance Tracking

24

MaintenanceTracker

- status
- warranty

request()
estimateResponse(Bool)
transfer()
orderParts()
return()

Waiting

No Warranty

Under Local
Repair

request()
[warranty==false] /
estimate sent

request()
[warranty==true]

estimateResponse(True)

Returning to
Customer

estimateResponse(False)

[status==delivered]

Repair at
Main HQ

transfer()
Waiting for
Component

orderParts()

[status==repair_local]

return()

return()
orderParts()

[status==repair_main]

Example - Computer Model
• Many classes have stateful behavior.

• States = class variables
• Transitions = method calls
• Derive model from class and create tests.

• We sell computers on our website.
Model class represents a model of
computer.
• Models have slots for components (e.g.,

CPU, memory, video card).
25

Model

ModelID
Slots

selectModel(modelID)
deselectModel
addComponent(slot,
component)
removeComponent(slot)
isLegalConfiguration()

Slot

Model
Component
Required

incorporate(model)
bind(component)
unbind()
isBound()

Slot Specification
Slot represents a configuration choice in all instances of a particular model of
computer. A given model may have zero or more slots, each of which is marked
as required or optional. If a slot is marked as required, it must be bound to a
suitable component in all legal configurations. Slot offers the following methods:

• Incorporate: Make a slot part of a model, and mark it as either required or
optional. All instances of a model incorporate the same slots.

• Bind: Associate a compatible component with a slot.
• Unbind: The unbind operation breaks the binding of a component to a slot,

reversing the effect of a previous bind operation.
• IsBound: Returns true if a component is currently bound to a slot, or false

if the slot is currently empty.

26

Slot State Machine

• Do not derive too many states.
• Map variables to abstract values, not a state for each

possible combination of values.
• Model how a method affects a class.

• States only need to capture interactions between
methods and the class state.

No Model No Component
Bound

Component
Bound

incorporate
(model) bind

(component)

unbind()

unbind()

isBound()

isBound()

27

Example - Model
Model represents the current configuration of a model of computer.
• A given model may have zero or more slots, each of which is

marked as required or optional.
• Each slot may contain a single component.
• To be a legal model, the model ID must exist in the ModelDB, each

slot marked as required must be filled, the configuration must
match that of the ModelDB entry for the model ID, and the optional
components must match those allowed for that model in the
ModelDB.

28

Example - Model
● selectModel(modelID): Sets the model ID to the value passed in, as long as the

model ID is set to “no model selected”. A model ID must be set before any other
services are requested.

● deselectModel(): Sets the model ID to “no model selected”. If the configuration was
previously judged to be legal, it is no longer legal.

● addComponent(slot, component): Adds the selected component to the selected
slot. If the configuration was previously judged to be legal, it is no longer legal.

● removeComponent(slot): Removes the selected component to the selected slot. If
the configuration was previously judged to be legal, it is no longer legal.

● isLegalConfiguration(): Compares the current configuration to the entry in
ModelDB. If the configuration is valid, the Model’s isLegal field is set to “true”.

29

Choosing States

• What does the class represent?
• e.g., a computer model.

• What causes method results to differ?
• e.g., whether the model is legal or illegal.

• Can the class be in any other states?
• e.g., we may not have set the model yet, we could still be

making decisions and have not determined legality.

30

No Model
Selected Configuring Legal

Configuration

Choosing Transitions and Initial State
No Model
Selected

Configuring

Legal
Configuration

selectModel(model)

deselectModel()

deselectModel()

addComponent
(slot,component)

addComponent
(slot,component)

remove
Component(slot)

remove
Component(slot)

isLegalConfiguration()
[legalConfig=true]

isLegalConfiguration()
[legalConfig=false]

31

32

Let’s Take a Break

Activity - Safe Lock Controller
You must design a state machine for a class that
controls the lock on a safe.

• To unlock the safe, a user must first insert a physical key. The software will
then issue a command to open a panel, where a user will then enter a
password.

• If the password is correct, the lock will be released and the safe will open.
• If the password is incorrect, an alarm will be raised. To stop the alarm, the user

must enter the correct password.
• To relock the safe, the user must close the door and press the “lock” button

on the keypad. The panel will close. The user may then remove their key.
This will complete the locking process.

33

Activity - Safe Lock Controller
You must design a state machine for a class that
controls the lock on a safe.

34

Method Description

openPanel() Checks that the key is inserted and opens the panel if it is.

validatePassword
(password)

Checks whether the password is correct.

closePanel() Closes the panel, as long as the door is closed and the lock button has been pressed.

lockSafe() Locks the safe, as long as the panel has been closed.

Activity Solution

Locked Open

Panel
Revealed

openPanel() [key
inserted] / open panel

35

Alarm
validatePasswordl(...)
[incorrect] / raise alarm

validatePasswordl(...)
[correct] / open door

validatePasswordl(...)
[correct] / open door

Panel
Closed

closePanel() [door
closed and lock button
pressed] / close panel

lockSafe() [key removed]
/ lock safe

36

Model Coverage Criteria

Test Creation
• Tests from models can be applied to the program.

• Events translated into method/API calls.
• Program output (abstracted) should match model output.

• Model coverage maps to requirements coverage.
• Tests should be effective for verification.
• Exercises stateful behavior thoroughly.
• Coverage criteria based on states, transitions, paths.

37

State Coverage
• Each state must be reached by test cases.

• Num. of Covered States / Number of States
• Easy to understand and obtain, but low

fault-revealing power.
• Software takes action during transitions
• Most states can be reached through multiple transitions.

38

Transition Coverage
• A transition specifies a pre/post-condition.

• “If system is in state S and sees event I, then after
reacting to it, the system will be in state T.”

• Faulty system could violate (pre, post-condition) pairs.
• Every transition must be covered by test cases.

• Num. Covered Transitions / Number of Transitions

39

● If no “final” states, we
could achieve transition
coverage with one large
test case.
○ Smarter to target

sections in different
test cases.

● Map input to method
calls or variable
assignments.

40

Waiting

No Warranty

Under Local
Repair

request()
[warranty==false] /
estimate sent

request()
[warranty==true]

estimateResponse(True)

Returning to
Customer

estimateResponse(False)

[status==delivered]

Repair at
Main HQ

transfer()
Waiting for
Component

orderParts()

[status==repair_local]

return()

return()
orderParts()

[status==repair_main]

41

Waiting

No Warranty

Under Local
Repair

request()
[warranty==false] /
estimate sent

request()
[warranty==true]

estimateResponse(True)

Returning to
Customer

estimateResponse(False)

[status==delivered]

Repair at
Main HQ

transfer()
Waiting for
Component

orderParts()

[status==repair_local]

return()

return()
orderParts()

[status==repair_main]

● Test 1 (“no warranty”, accept)
warranty = False;
request();
estimateResponse(True);
return();
status = “delivered”;

● Test 2 (“no warranty”, reject)
warranty = False;
request();
estimateResponse(False);
status = “delivered”;

● Test 3 (Local Repair)
warranty = True;
request();
orderParts();
status = “repair_local”;
return();
status=”delivered”;

● Test 4 (Main HQ Repair)
warranty = True;
request();
transfer();
orderParts();
status = “repair_main;
return();
status=”delivered”;

Example - Slot

• incorporate(model), isBound(), unbind()
• incorporate(model), bind(component), isBound()
• incorporate(model), bind(component), unbind(), isBound()

No Model No Component
Bound

Component
Bound

incorporate
(model) bind

(component)

unbind()

unbind()

isBound()

isBound()

42

Example - Model
No Model
Selected

Configuring

Valid
Configuration

selectModel(model)

deselectModel()

deselectModel()

addComponent
(slot,component)

addComponent
(slot,component)

remove
Component(slot)

remove
Component(slot)

isLegalConfi
guration()
[legalConfig
=true]

isLegalConfi
guration()
[legalConfig
=false]

TC1:
selectModel(M1) [M1, 1 slots = C1]
deselectModel()
selectModel(M1)
addComponent(S1,C1)
isLegalConfiguration() //true
deselectModel()

TC2:
selectModel(M1) [M1, 1 slot = C1]
addComponent(S1,C1)
isLegalConfiguration() //true
addComponent(S2,C2)
isLegalConfiguration() // false
removeComponent(S2)
isLegalConfiguration() // true
removeComponent(S1)

43

Path Coverage Criteria
• Transition coverage based on assumption that

transitions are independent.
• Many machines exhibit “history sensitivity”.

• Transitions available depend on path taken.
• “wait for component” in Maintenance Tracking example.

• Path-based metrics can cope with sensitivity.

44

Path Coverage Metrics
• Single State Path Coverage

• Requires that each subpath that traverses states at most
once to be included in a path that is exercised.

• Single Transition Path Coverage
• Requires that each subpath that traverses a transition at

most once to be included in a path that is exercised.
• Boundary Interior Loop Coverage

• Each distinct loop must be exercised minimum, an
intermediate, and a large number of times.

45

Single State/Transition
Path Coverage
● Each subpath

that traverses
a state (or
transition) at
most once
must be
exercised.

46

No
Maintenance

No Warranty

Under Local
Repair

request()
[warranty==false] /
estimate sent

request()
[warranty==true]

estimateResponse(True)

Returning to
Customer

estimateResponse(False)

[status==delivered]

Repair at
Main HQ

transfer()
Waiting for
Component

orderParts()

[status==repair_local]

return()

return()
orderParts()

[status==repair_main]

Boundary Interior
Loop Coverage

● Each loop
must be
exercised 1,
2, N times.

● (N = some
higher
number)

47

No
Maintenance

No Warranty

Under Local
Repair

request()
[warranty==false] /
estimate sent

request()
[warranty==true]

estimateResponse(True)

Returning to
Customer

estimateResponse(False)

[status==delivered]

Repair at
Main HQ

transfer()
Waiting for
Component

orderParts()

[status==repair_local]

return()

return()
orderParts()

[status==repair_main]

Activity For the safe lock model, derive test suites
that achieve state and transition coverage.

48

Locked Open

Panel
Revealed

openPanel() [key
inserted] / open panel

Alarm
validatePasswordl(...)
[incorrect] / raise alarm

validatePasswordl(...)
[correct] / open door

validatePasswordl(...)
[correct] / open door

Panel
Closed

closePanel() [door
closed and lock button
pressed] / close panel

lockSafe() [key removed]
/ lock safe

Activity Solution

49

Locked Open

Panel
Revealed

openPanel() [key
inserted] / open panel

Alarm
validatePasswordl(...)
[incorrect] / raise alarm

validatePasswordl(...)
[correct] / open door

validatePasswordl(...)
[correct] / open door

Panel
Closed

closePanel() [door
closed and lock button
pressed] / close panel

lockSafe() [key
removed] / lock safe

Test 1: “Standard Path”
(insert key), openPanel(),

validatePassword(correct), (close
door, press lock button),

closePanel(), (remove key),
lockSafe()

Activity Solution

50

Locked Open

Panel
Revealed

openPanel() [key
inserted] / open panel

Alarm
validatePasswordl(...)
[incorrect] / raise alarm

validatePasswordl(...)
[correct] / open door

validatePasswordl(...)
[correct] / open door

Panel
Closed

closePanel() [door
closed and lock button
pressed] / close panel

lockSafe() [key
removed] / lock safe

Test 2: “Trigger Alarm”
(insert key), openPanel(),

validatePassword(incorrect),
validatePassword(correct)

51

Activity Solution - Additional Tests
• These two tests achieve state and transition

coverage, but do not verify all outcomes.
• Also test alternate outcomes where guards are not met.

• Key not inserted.
• Door not closed.
• Lock button not pressed.

We Have Learned
• Models can be used to systematically create tests.

• Exercises stateful behavior of a class or functionality.
• Maps well to requirements.

• State machines model expected behavior.
• Cover states, transitions, non-looping paths, loops.
• Can also verify properties over models as part of

verification (next class).

52

2018-08-27 Chalmers University of Technology 53

Next Time
• Finite State Verification

• Assignment 4
• Due Friday, March 14
• Questions?

