
Lecture 15:
Automated Test Case Generation

Gregory Gay
DIT636/DAT560 - March 10, 2025

2

Automating Test Creation
• Testing is invaluable…
• … but expensive.

• We test for *many* purposes.
• Near-infinite number of

possible tests we could try.
• Hard to achieve volume.

3

Automating Test Creation
• Relieve cost by automating

test creation.
• Traditional Focus:

Generate test input.
• Just need to add assertions.
• (Or measure crashes,

performance, etc.)
• New approaches have

limited ability to generate
test oracles.

Automation!

Tests are generating!

4

Techniques for Generating Tests

Generate tests based on
analysis of the source
code and other text.

Generate tests based on
feedback from executing

the system.

Rationalists (Static) Empiricists (Dynamic)

5

Today’s Goals
• Search-Based Test Generation

• Test creation as an optimization problem, based on
feedback from executing the code.

• Generate -> Execute -> Evolve

• LLM-Based Test Generation
• Test creation based on textual analysis.

6

Search-Based Test Generation

7

Random Generation
● Randomly formulate test cases.

○ Unit testing: choose a class in the
system, choose random methods, call
with random parameter values.

○ System-level testing: choose an
interface, choose random functions
from interface, call with random values.

● Keep trying until goal attained or you
run out of time.

8

Example - BMI Calculation

Age BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

9

Example - BMI Calculation

BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

def test_bmi_value_valid():
 bmi_calc = BMICalc(150, 41, 18)
 bmi_value = bmi_calc.bmi_value()
 assert bmi_value == 18.2

def test_bmi_adult():
 bmi_calc = BMICalc(160, 65, 21)
 bmi_class = bmi_calc.classify_bmi_adults()
 assert bmi_class == "Overweight"

def test_bmi_children_4y():
 bmi_calc = BMICalc(100, 13, 4)
 bmi_class = bmi_calc.classify_bmi_teens_and_children()
 assert bmi_class == "Underweight"

10

Random Generation - BMI Example
BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

• Create an empty test case:
def test_1():

• Instantiate the class-under-test with
random values:
def test_1():
 cut = BMICalc(180, 50, 40)

• Insert 1+ method calls or assignments to
class variables.

• Number of calls is random
• Which method/variable is random
• Method parameters are random values

def test_1():
 cut = BMICalc(180, 50, 40)
 output = cut.bmi_value()
 cut.height = 15681

 output2 = cut.classify_bmi_adults()

11

Random Search
• Sometime viable:

• Extremely fast.
• Easy to implement, easy to understand.
• All inputs considered equal, so no designer bias.

• However…

12

Test Creation as a Search Problem
• Do you have a goal in mind when testing?

• Make the program crash, achieve code coverage, find
performance bottlenecks, …

• Searching for a test suite that achieves that goal.
• Based on guess-and-check process.

13

Test Creation as a Search Problem
• Many testing goals can be measured:

• How many exceptions were thrown?
• How fast was the code?
• What percentage of lines of code were covered?
• How diverse is our input?

• If goal can be measured, search can be automated.

14

Search-Based Test Generation
• Make one or more guesses.

• Generate one or more individual
test cases or full test suites.

• Check whether goal is met.
• Score each guess.

• Try until time runs out.
• Alter the solution based on

feedback and try again!

15

Search Strategy
• The order that solutions are tried is the key to

efficiently finding a solution.
• A search follows some defined strategy.

• Called a “metaheuristic”.

• Metaheuristics are used to choose solutions and to
ignore solutions known to be unviable.
• Smarter than pure random guessing!

16

Heuristics - Graph Search
● Arrange nodes into a hierarchy.

○ Breadth-first search looks at all nodes on
the same level.

○ Depth-first search drops down hierarchy
until backtracking must occur.

● Attempt to estimate shortest path.
○ A* search examines distance traveled and estimates

optimal next step.
○ Requires domain-specific scoring function.

17

Search-Based Test Generation

The Metaheuristic
(Sampling Strategy)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure,

Generate Covering Array,
(...)

18

Solution Representation
• Must decide what a solution “looks like”.
• For unit testing:

• A solution is a test suite.
• A test suite contains 1+ test cases.
• Each test case interacts with a class-under-test.
• Each test case initialized the class-under-test.
• Each test case contains one or more actions.

• An action is a method call or variable assignment.
• Each action has parameters (method parameters or values to

assign to variables).

19

External vs Internal Representation
External (Phenotype) Representation
Executable, human-readable

Internal (Genotype) Representation
Can be easily manipulated by metaheuristic

Test Suite
Test Case

Actions,
with ID
(method or
variable),
parameters

20

Fitness Functions
• Domain-based scoring functions that determine

how good a potential solution is.
• Should represent goals of tester.
• Must return a numeric score.

• % of a checklist
• raw number
• NOT Boolean (no feedback)

• Can be maximized or minimized.

21

Fitness Functions
• Should offer feedback:

• Small change in solution should not lead to
large change in score.

• Best functions calculate distance to optimality.

• Can optimize more than one at once.
• Independently optimize functions
• Combine into single score.

22

Example - Code Coverage
• Goal: Attain Branch Coverage over the code.

• Tests must reach all branching points (i.e., if-statement)
and execute all possible outcomes.

if(x < 10){

 // Do something.

}else if (x == 10){

 // Do something else.

}

In this code:
● Two Branches
● Each must evaluate

to true and false.

23

Example - Code Coverage
• Goal: Attain Branch Coverage over the code.
• Fitness function (Basic):

• Measure coverage and try to maximize % covered.
• Good: Measurable indicator of progress. Can use

standard tools (pytest-cov, Cobertura).
• Bad: No information on how to improve coverage.

24

Example - Code Coverage
• Advanced: Distance-Based Function
• fitness = branch distance + approach level

• Approach level
• Number of branching points we need to execute to get to the

target branching point.
• Branch distance

• If other outcome is taken, how “close” was the target outcome?
• How much do we need to change program values to get the

outcome we wanted?

25

Example - Branch Coverage
if(x < 10){ // Branch 1

 // Do something.

}else if (x == 10){ // Branch 2

 // Do something else.

}

Approach Level
● If Branch 1 is true, approach

level = 1
● If Branch 1 is false, approach

level = 0

Branch Distance
● If x==10 evaluates to false,

branch distance =
(abs(x-10)+k).

● Closer x is to 10, closer the
branch distance.

Goal: Branch 2, True Outcome

26

Other Common Fitness Functions
● Number of methods called by test suite
● Number of crashes or exceptions thrown
● Diversity of input or output
● Detection of planted faults
● Amount of energy consumed
● Amount of data downloaded/uploaded
● … (anything that reflects what a good test is)

27

Bloat Penalty
• Small penalty subtracted from fitness.
• Limits number of tests and number of actions.

• Important not to penalize too heavily.

ex. 10

ex. 30

28

The Metaheuristic
• Decides how to select and

revise solutions.
• Changes approach based on

past guesses.
• Fitness functions give feedback.
• Population mechanisms choose

new solutions and determine how
solutions evolve.

29

The Metaheuristic
• Decides how to select and revise solutions.

• Small changes to single solution (local search).
• Large changes to many solutions (global search).
• Often based on natural phenomena.

• (swarm behavior, evolution)
• Trade-off between speed, complexity, and

understandability.

30

How Long Do We Spend Searching?
• Exhaustive search not viable.
• Search can be bound by a search budget.

• Number of guesses.
• Time allotted to the search (number of minutes/seconds).

• Optimization problem:
• Best solution possible before running out of budget.

31

Local Search
• Generate and score a single potential solution.
• Attempt to improve by looking at its neighborhood.

• Make small, incremental improvements.

• Very fast, efficient if good initial guess.
• Get “stuck” if bad guess.
• Often include reset strategies.

32

Hill Climbing

● Generate a random initial solution.
● Each generation (while budget remains):

○ Attempt up to max_tries mutations to the solution.
■ If a mutation results in a better solution, set this as the new solution.
■ Keep track of the best mutation seen to date.

○ If we run out of tries, reset to a new random initial solution.

33

Mutation
• Small change to

current solution.
• Impose one of

these changes
at a time:

34

Hill Climber
• User-Controlled Parameters:

• Maximum mutations before a restart (ex: 200)
• Maximum number of restarts (ex: 5)

• Easy to implement, faster than many other
metaheuristics.
• Reliant on initial guesses and restarts.

35

Let’s take a break.

36

Global Search
● Generate multiple solutions.
● Evolve by examining whole

search space.
● Typically based on natural processes.

○ Swarm patterns, foraging behavior, evolution.
○ Models of how populations interact and change.

37

Genetic Algorithm
● Over multiple generations, evolve a population.

○ Good solutions persist and reproduce.
○ Bad solutions are filtered out.

● Diversity is introduced by:
○ Selecting the best solutions.
○ Creating “offspring” through

mutation and crossover.

38

Genetic Algorithm
• Create a random initial population.
• Start a new generation (while budget remains):

• Create new empty population.
• While space remains:

• Select two “good” members of current population.
• At a small probability, replace these members with “children” combining genes

of members (crossover).
• At a small probability, mutate each member.
• Add members to new population.

• If no better solution is found for N generations, terminate early
(stagnation).

39

Selection
• Rather than

searching for best
population
member:
• Select a random

subset.
• Calculate fitness

for each.
• Return best.

40

Crossover
• Creates two “child”

solutions by
combining tests
from each parent
solution.

41

Genetic Algorithm Parameters
• All parameters affect solution quality. Usually some

experimentation required.
• Population Size (default: 20)
• Tournament Size (# population members compared

during selection, default: 6)
• Crossover Probability (default: 0.7)
• Mutation Probability (default: 0.7)
• Stagnation Threshold (# generations without

improvement before ending, default: 30)

42

1000 Generations of Evolution
• Genetic Algorithm run

for 1000 generations
for BMICalc.

• Stagnation turned off.
• Highly variable until ~

200 generations, then
small changes
afterwards.

43

Examples of Generated Test Cases

44

What Do I Do With These Inputs?
• If looking for crashes, just run

generated input.
• If you need to judge correctness,

add assertions.
• Suggested: general properties, rather

than specific expected output.
• No: assertEquals(output, 2)
• Yes: assertTrue(output % 2 == 0)

45

I Want to Try This Out!
• Python:

• Tutorial for beginners:
https://greg4cr.github.io/pdf/21ai4se.pdf

• https://github.com/Greg4cr/PythonUnitTestGeneration

• EvoSuite for Java: http://www.evosuite.org/

https://greg4cr.github.io/pdf/21ai4se.pdf
https://github.com/Greg4cr/PythonUnitTestGeneration
http://www.evosuite.org/

46

I Want to Try This Out!
• Fuzzing often based on metaheuristic search.

• AFL (American Fuzzy Lop), Google OSS-Fuzz use
genetic algorithms, fitness = code coverage.

• http://lcamtuf.coredump.cx/afl/
• https://google.github.io/oss-fuz
• system-level tests

• The Fuzzing Book has tutorials and code for many
specialized approaches:

• https://www.fuzzingbook.org/

http://lcamtuf.coredump.cx/afl/
https://google.github.io/oss-fuz
https://www.fuzzingbook.org/

47

Large Language Models

48

Large Language Models

Prompt Model

Translation

Source
Code

Answer to
Question

49

Large Language Models

Model

“The server brought me the bill”

“We sent an HTTP request to
the server”

for my three-course dinner.

to update the database record.

Encoder Decoder

50

Important Considerations
• Prompt Design

• The structure and information provided in the prompt.

• Model Selection
• Type of model.
• Closed vs open source.
• Local vs remote execution.

51

Prompt Engineering
• General: More information, more specific results.

• “Generate pytest unit tests for a method that calculates the BMI of an
adult.”

• “Generate pytest unit tests for method bmi_value(self) in class
BMICalc. This class has three variables: height, weight, and age.”

• “Generate pytest unit tests for the following method in class BMICalc.
This class has three variables: height, weight, and age.
def bmi_value(self):
 # The height is stored as an integer in cm. Here we convert it to
 # meters (m)
 bmi_value = self.weight / ((self.height / 100.0) ** 2)
 return bmi_value”

52

Prompt Engineering
• General: More information, more specific results.

• “Generate pytest unit tests for the class BMICalc. This class has three
variables: height, weight, and age. It offers setter methods height(self,
height), age(self, age), and weight(self, weight). These methods check
for negative values. The class also offers the following methods:
bmi_value(self), classify_bmi_teens_and_children(self), and
classify_bmi_adults(self)”

• Generally a limit to the prompt length, but can potentially
provide a full class to test (or at least full code of some of the
methods).

• “Generate pytest unit tests for the following class: (code)”

53

Additional Prompting Concepts
• Can include examples of human-written tests:

• Zero-Shot: No examples provided.
• One-Shot: One example test provided.
• Few-Shot: Multiple examples provided.

• Chain of Thought: Include rationale with the
example(s).

• Role: Instruct the LLM to take on a role. This can
help bias towards particular training examples.

54

Additional Prompting Concepts
“You are an experienced software tester. Generate
pytest unit tests for the following code:
(code)
Here are two examples of test cases, with
explanation:
(test 1, explanation)
(test 2, explanation)”

55

Choosing an LLM
• Type of model:

• Instruction: Tuned for following directions and returning
results in a specified format.

• Chat: Tuned for conversations with a user (e.g., Q&A).

• Size (number of parameters)
• More generally yields better results, but much higher

computational cost.

56

Choosing an LLM
• Open Source: Creators disclose contents of the

training data and how the model was tuned.
• MapNEO, OLMo

• Open Weight: Creators disclose how model was
tuned, but not training data.
• DeepSeek, Llama, Mistral

• Closed Source: Neither data or weights disclosed.
• OpenAI models

57

Choosing an LLM
• Local execution: Model deployed locally.
• Remote execution: Model executed via API on

servers owned by model creator.
• Consider costs of both options.

• License/access vs hardware requirements

• Data privacy concerns with remote execution.
• OpenAI stores and uses your input data unless you pay

for a corporate license.

58

Comparing Approaches

59

Search-Based Test Generation
• Advantages:

• Does not require knowledge of the code.
• Do not need similar training data.

• Can be implemented for any system, language, platform.
• Can be parallelized and is computationally efficient.

60

Search-Based Test Generation
• Disadvantages:

• Lacks knowledge of the code.
• Random selection of input - “blind guessing”
• Improving coverage requires being guided to the right input.
• Tests are hard to understand.

• Input and method sequences that a human may not pick.
• Limited “rationale” for test case purpose.

61

LLM-Based Test Generation
• Advantages:

• Can infer how the code works.
• (as long as there is similar training data)
• Can be more coverage of program outcomes/behaviors.

• Tests closer to what a human would produce.
• Each test has a single purpose.
• Understandable input and method sequences.

• Can generate documentation and assertions.
• More complete test cases.

62

LLM-Based Test Generation
• Disadvantages:

• Inferences from code may be incorrect.
• Code may not compile.
• Code may contain hallucinated functionality/methods.
• Tests may not correspond to actual implementation, just similar

training examples.
• Tests may assume faulty code is correct.

• Tests may achieve limited coverage.
• Limited ability to generate tests that expose

performance/quality issues.

63

Summary
• Search-Based Test Generation

• Test creation as an optimization problem, based on
feedback from executing the code.

• Generate -> Execute -> Evolve

• LLM-Based Test Generation
• Test creation based on textual analysis.

Next Time
• Course summary and exam review

• Try the practice test!

• Assignment 4 - Due March 14

64

