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Automating Test Creation
• Testing is invaluable…
• … but expensive.

• We test for *many* purposes.
• Near-infinite number of 

possible tests we could try. 
• Hard to achieve volume.
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Automating Test Creation
• Relieve cost by automating 

test creation.
• Traditional Focus: 

Generate test input.
• Just need to add assertions.
• (Or measure crashes, 

performance, etc.)
• New approaches have 

limited ability to generate 
test oracles. 

Automation!

Tests are generating!
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Techniques for Generating Tests

Generate tests based on 
analysis of the source 
code and other text.

Generate tests based on 
feedback from executing 

the system.

Rationalists (Static) Empiricists (Dynamic)
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Today’s Goals
• Search-Based Test Generation 

• Test creation as an optimization problem, based on 
feedback from executing the code.

• Generate -> Execute -> Evolve 

• LLM-Based Test Generation
• Test creation based on textual analysis.
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Search-Based Test Generation



7

Random Generation
● Randomly formulate test cases. 

○ Unit testing: choose a class in the 
system, choose random methods, call 
with random parameter values.

○ System-level testing: choose an 
interface, choose random functions 
from interface, call with random values.

● Keep trying until goal attained or you 
run out of time.
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Example - BMI Calculation

Age BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()
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Example - BMI Calculation

BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

def test_bmi_value_valid(): 
    bmi_calc = BMICalc(150, 41, 18) 
    bmi_value = bmi_calc.bmi_value() 
    assert  bmi_value == 18.2 

def test_bmi_adult(): 
    bmi_calc = BMICalc(160, 65, 21) 
    bmi_class = bmi_calc.classify_bmi_adults() 
    assert bmi_class == "Overweight" 

def test_bmi_children_4y(): 
    bmi_calc = BMICalc(100, 13, 4) 
    bmi_class = bmi_calc.classify_bmi_teens_and_children()    
    assert bmi_class == "Underweight"
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Random Generation - BMI Example
BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

• Create an empty test case:
def test_1():

• Instantiate the class-under-test with 
random values:
def test_1():
    cut = BMICalc(180, 50, 40) 

• Insert 1+ method calls or assignments to 
class variables.

• Number of calls is random
• Which method/variable is random
• Method parameters are random values

def test_1():
  cut = BMICalc(180, 50, 40)
  output = cut.bmi_value()
  cut.height = 15681

  output2 = cut.classify_bmi_adults() 



11

Random Search
• Sometime viable:

• Extremely fast.
• Easy to implement, easy to understand.
• All inputs considered equal, so no designer bias.

• However…
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Test Creation as a Search Problem
• Do you have a goal in mind when testing?

• Make the program crash, achieve code coverage, find 
performance bottlenecks, … 

• Searching for a test suite that achieves that goal.
• Based on guess-and-check process.
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Test Creation as a Search Problem
• Many testing goals can be measured:

• How many exceptions were thrown?
• How fast was the code?
• What percentage of lines of code were covered?
• How diverse is our input?

• If goal can be measured, search can be automated.
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Search-Based Test Generation
• Make one or more guesses.

• Generate one or more individual 
test cases or full test suites.

• Check whether goal is met.
• Score each guess.

• Try until time runs out.
• Alter the solution based on 

feedback and try again!
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Search Strategy
• The order that solutions are tried is the key to 

efficiently finding a solution.
• A search follows some defined strategy. 

• Called a “metaheuristic”.

• Metaheuristics are used to choose solutions and to 
ignore solutions known to be unviable.
• Smarter than pure random guessing!
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Heuristics - Graph Search
● Arrange nodes into a hierarchy.

○ Breadth-first search looks at all nodes on 
the same level.

○ Depth-first search drops down hierarchy 
until backtracking must occur.

● Attempt to estimate shortest path.
○ A* search examines distance traveled and estimates 

optimal next step.
○ Requires domain-specific scoring function.
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Search-Based Test Generation

The Metaheuristic
(Sampling Strategy)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals 
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure, 

Generate Covering Array,
(...)
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Solution Representation
• Must decide what a solution “looks like”. 
• For unit testing:

• A solution is a test suite.
• A test suite contains 1+ test cases.
• Each test case interacts with a class-under-test.
• Each test case initialized the class-under-test.
• Each test case contains one or more actions.

• An action is a method call or variable assignment. 
• Each action has parameters (method parameters or values to 

assign to variables).
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External vs Internal Representation
External (Phenotype) Representation
Executable, human-readable

Internal (Genotype) Representation
Can be easily manipulated by metaheuristic

Test Suite
Test Case

Actions, 
with ID 
(method or 
variable), 
parameters
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Fitness Functions
• Domain-based scoring functions that determine 

how good a potential solution is.
• Should represent goals of tester.
• Must return a numeric score.

• % of a checklist
• raw number
• NOT Boolean (no feedback)

• Can be maximized or minimized.
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Fitness Functions
• Should offer feedback:

• Small change in solution should not lead to 
large change in score.

• Best functions calculate distance to optimality. 

• Can optimize more than one at once.
• Independently optimize functions
• Combine into single score.
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Example - Code Coverage
• Goal: Attain Branch Coverage over the code.

• Tests must reach all branching points (i.e., if-statement) 
and execute all possible outcomes.

if(x < 10){ 

    // Do something.

}else if (x == 10){ 

    // Do something else.

}

In this code:
● Two Branches
● Each must evaluate 

to true and false.
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Example - Code Coverage
• Goal: Attain Branch Coverage over the code.
• Fitness function (Basic): 

• Measure coverage and try to maximize % covered.
• Good: Measurable indicator of progress. Can use 

standard tools (pytest-cov, Cobertura).
• Bad: No information on how to improve coverage.
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Example - Code Coverage
• Advanced: Distance-Based Function
• fitness = branch distance + approach level

• Approach level 
• Number of branching points we need to execute to get to the 

target branching point.
• Branch distance 

• If other outcome is taken, how “close” was the target outcome? 
• How much do we need to change program values to get the 

outcome we wanted?
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Example - Branch Coverage
if(x < 10){ // Branch 1

    // Do something.

}else if (x == 10){ // Branch 2

    // Do something else.

}

Approach Level
● If Branch 1 is true, approach 

level = 1
● If Branch 1 is false, approach 

level = 0

Branch Distance
● If x==10 evaluates to false, 

branch distance = 
(abs(x-10)+k).

● Closer x is to 10, closer the 
branch distance.

Goal: Branch 2, True Outcome
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Other Common Fitness Functions
● Number of methods called by test suite
● Number of crashes or exceptions thrown
● Diversity of input or output
● Detection of planted faults
● Amount of energy consumed
● Amount of data downloaded/uploaded
● … (anything that reflects what a good test is)



27

Bloat Penalty
• Small penalty subtracted from fitness.
• Limits number of tests and number of actions.

• Important not to penalize too heavily. 

ex. 10

ex. 30
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The Metaheuristic
• Decides how to select and 

revise solutions.
• Changes approach based on 

past guesses.
• Fitness functions give feedback.
• Population mechanisms choose 

new solutions and determine how 
solutions evolve.
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The Metaheuristic
• Decides how to select and revise solutions.

• Small changes to single solution (local search).
• Large changes to many solutions (global search).
• Often based on natural phenomena. 

• (swarm behavior, evolution)
• Trade-off between speed, complexity, and 

understandability.
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How Long Do We Spend Searching?
• Exhaustive search not viable.
• Search can be bound by a search budget.

• Number of guesses.
• Time allotted to the search (number of minutes/seconds).

• Optimization problem:
• Best solution possible before running out of budget.
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Local Search
• Generate and score a single potential solution.
• Attempt to improve by looking at its neighborhood. 

• Make small, incremental improvements.

• Very fast, efficient if good initial guess. 
• Get “stuck” if bad guess.
• Often include reset strategies.
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Hill Climbing

● Generate a random initial solution.
● Each generation (while budget remains):

○ Attempt up to max_tries mutations to the solution.
■ If a mutation results in a better solution, set this as the new solution.
■ Keep track of the best mutation seen to date.

○ If we run out of tries, reset to a new random initial solution.
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Mutation
• Small change to 

current solution.
• Impose one of 

these changes 
at a time: 
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Hill Climber
• User-Controlled Parameters:

• Maximum mutations before a restart (ex: 200)
• Maximum number of restarts (ex: 5)

• Easy to implement, faster than many other 
metaheuristics. 
• Reliant on initial guesses and restarts.
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Let’s take a break.
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Global Search
● Generate multiple solutions. 
● Evolve by examining whole 

search space.
● Typically based on natural processes.

○ Swarm patterns, foraging behavior, evolution.
○ Models of how populations interact and change.



37

Genetic Algorithm
● Over multiple generations, evolve a population.

○ Good solutions persist and reproduce.
○ Bad solutions are filtered out.

● Diversity is introduced by:
○ Selecting the best solutions.
○ Creating “offspring” through 

mutation and crossover.
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Genetic Algorithm
• Create a random initial population.
• Start a new generation (while budget remains):

• Create new empty population.
• While space remains:

• Select two “good” members of current population.
• At a small probability, replace these members with “children” combining genes 

of members (crossover).
• At a small probability, mutate each member.
• Add members to new population.

• If no better solution is found for N generations, terminate early 
(stagnation).
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Selection
• Rather than 

searching for best 
population 
member:
• Select a random 

subset. 
• Calculate fitness 

for each.
• Return best.
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Crossover
• Creates two “child” 

solutions by 
combining tests
from each parent 
solution. 
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Genetic Algorithm Parameters
• All parameters affect solution quality. Usually some 

experimentation required.
• Population Size (default: 20)
• Tournament Size (# population members compared 

during selection, default: 6)
• Crossover Probability (default: 0.7)
• Mutation Probability (default: 0.7)
• Stagnation Threshold (# generations without 

improvement before ending, default: 30)
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1000 Generations of Evolution
• Genetic Algorithm run 

for 1000 generations 
for BMICalc.

• Stagnation turned off.
• Highly variable until ~ 

200 generations, then 
small changes 
afterwards. 
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Examples of Generated Test Cases
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What Do I Do With These Inputs?
• If looking for crashes, just run 

generated input.
• If you need to judge correctness, 

add assertions.
• Suggested: general properties, rather 

than specific expected output.
• No: assertEquals(output, 2)
• Yes: assertTrue(output % 2 == 0)
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I Want to Try This Out!
• Python: 

• Tutorial for beginners: 
https://greg4cr.github.io/pdf/21ai4se.pdf

• https://github.com/Greg4cr/PythonUnitTestGeneration 

• EvoSuite for Java: http://www.evosuite.org/ 

https://greg4cr.github.io/pdf/21ai4se.pdf
https://github.com/Greg4cr/PythonUnitTestGeneration
http://www.evosuite.org/
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I Want to Try This Out!
• Fuzzing often based on metaheuristic search.

• AFL (American Fuzzy Lop), Google OSS-Fuzz use 
genetic algorithms, fitness = code coverage.

• http://lcamtuf.coredump.cx/afl/
• https://google.github.io/oss-fuz 
• system-level tests

• The Fuzzing Book has tutorials and code for many 
specialized approaches:

• https://www.fuzzingbook.org/ 

http://lcamtuf.coredump.cx/afl/
https://google.github.io/oss-fuz
https://www.fuzzingbook.org/
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Large Language Models
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Large Language Models

Prompt Model

Translation

Source 
Code

Answer to 
Question
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Large Language Models

Model

“The server brought me the bill”

“We sent an HTTP request to 
the server”

for my three-course dinner.

to update the database record.

Encoder Decoder
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Important Considerations
• Prompt Design

• The structure and information provided in the prompt.

• Model Selection
• Type of model.
• Closed vs open source.
• Local vs remote execution.
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Prompt Engineering
• General: More information, more specific results.

• “Generate pytest unit tests for a method that calculates the BMI of an 
adult.”

• “Generate pytest unit tests for method bmi_value(self) in class 
BMICalc. This class has three variables: height, weight, and age.”

• “Generate pytest unit tests for the following method in class BMICalc. 
This class has three variables: height, weight, and age.
def bmi_value(self):
    # The height is stored as an integer in cm. Here we convert it to
    # meters (m)
    bmi_value = self.weight / ((self.height / 100.0) ** 2)
    return bmi_value”
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Prompt Engineering
• General: More information, more specific results.

• “Generate pytest unit tests for the class BMICalc. This class has three 
variables: height, weight, and age. It offers setter methods height(self, 
height), age(self, age), and weight(self, weight). These methods check 
for negative values. The class also offers the following methods: 
bmi_value(self), classify_bmi_teens_and_children(self), and 
classify_bmi_adults(self)”

• Generally a limit to the prompt length, but can potentially 
provide a full class to test (or at least full code of some of the 
methods).

• “Generate pytest unit tests for the following class: (code)”
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Additional Prompting Concepts
• Can include examples of human-written tests:

• Zero-Shot: No examples provided.
• One-Shot: One example test provided.
• Few-Shot: Multiple examples provided.

• Chain of Thought: Include rationale with the 
example(s). 

• Role: Instruct the LLM to take on a role. This can 
help bias towards particular training examples.
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Additional Prompting Concepts
“You are an experienced software tester. Generate 
pytest unit tests for the following code: 
(code)
Here are two examples of test cases, with 
explanation:
(test 1, explanation)
(test 2, explanation)”
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Choosing an LLM
• Type of model:

• Instruction: Tuned for following directions and returning 
results in a specified format.

• Chat: Tuned for conversations with a user (e.g., Q&A).

• Size (number of parameters)
• More generally yields better results, but much higher 

computational cost.
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Choosing an LLM
• Open Source: Creators disclose contents of the 

training data and how the model was tuned.
• MapNEO, OLMo

• Open Weight: Creators disclose how model was 
tuned, but not training data. 
• DeepSeek, Llama, Mistral

• Closed Source: Neither data or weights disclosed.
• OpenAI models
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Choosing an LLM
• Local execution: Model deployed locally.
• Remote execution: Model executed via API on 

servers owned by model creator.
• Consider costs of both options.

• License/access vs hardware requirements

• Data privacy concerns with remote execution.
• OpenAI stores and uses your input data unless you pay 

for a corporate license.
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Comparing Approaches
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Search-Based Test Generation
• Advantages:

• Does not require knowledge of the code.
• Do not need similar training data.

• Can be implemented for any system, language, platform.
• Can be parallelized and is computationally efficient.
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Search-Based Test Generation
• Disadvantages:

• Lacks knowledge of the code.
• Random selection of input - “blind guessing”
• Improving coverage requires being guided to the right input. 
• Tests are hard to understand.

• Input and method sequences that a human may not pick.
• Limited “rationale” for test case purpose.
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LLM-Based Test Generation
• Advantages:

• Can infer how the code works.
• (as long as there is similar training data)
• Can be more coverage of program outcomes/behaviors.

• Tests closer to what a human would produce.
• Each test has a single purpose.
• Understandable input and method sequences.

• Can generate documentation and assertions.
• More complete test cases.
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LLM-Based Test Generation
• Disadvantages:

• Inferences from code may be incorrect.
• Code may not compile.
• Code may contain hallucinated functionality/methods.
• Tests may not correspond to actual implementation, just similar 

training examples.
• Tests may assume faulty code is correct.

• Tests may achieve limited coverage. 
• Limited ability to generate tests that expose 

performance/quality issues.



63

Summary
• Search-Based Test Generation 

• Test creation as an optimization problem, based on 
feedback from executing the code.

• Generate -> Execute -> Evolve 

• LLM-Based Test Generation
• Test creation based on textual analysis.



Next Time
• Course summary and exam review

• Try the practice test!

• Assignment 4 - Due March 14
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