CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Lecture 16: — '
Course Summary and Revigw e ol

Gregory Gay L\
DIT636/DAT560 - March 12, 2025 N .

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Impending Exam

 Wednesday, March 19, 8:30 - 12:30
* Practice exam on Canvas.

e Somewhat longer than the real exam!
* Try solving first without using the sample solutions.
Compare your answers.

* Ask questions about any course content!

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Topics

Quality Attributes
Scenarios

Test Design

Unit Testing

System Testing
Exploratory Testing

Structural Testing
e Control-Flow
 Data-Flow

Mutation Testing
Model-Based Testing
Finite State Verification

Automated Test
Generation

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Practice Exam

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Question 1

1. A program may be reliable, yet not robust.
a. True
b. False

2. If a system is on an average down for a total 30 minutes
during any 24-hour period:
a. Its availability is about 98% (approximated to the nearest
integer)
b. Its reliability is about 98% (approximated to the nearest integer)
c. Its mean time between failures is 23.5 hours
d. Its maintenance window is 30 minutes

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 1

3. Atypical distribution of test types is 40% unit tests,
40% system tests, and 20% GUI/exploratory tests.
a. True
b. False

4. If a temporal property holds for a finite-state model
of a system, it holds for any implementation that
conforms to the model.

a. True
b. False

CHALMERS | UNIVERSITY OF GOTHENBURG

Question 1

5. Atest suite that meets a stronger coverage criterion will find any

defects that are detected by any test suite that meets only a weaker
coverage criterion

e True
e False

6. A test suite that is known to achieve Modified Condition/Decision

Coverage (MC/DC) for a given program, when executed, will exercise,
at least once:

 Every statement in the program.

 Every branch in the program.

« Every combination of condition values in every decision.
« Every path in the program.

CHALMERS |) UNIVERSITY OF GOTHENBURG

Question 1

7. Functional test design requires identification of:
e Choices
* Representative values
* Def-Use pairs
« Pairwise combinations

8. Validation activities can only be performed once the complete system
has been built.

* True or False

9. Statement coverage criterion never requires as many test cases to
satisfy as branch coverage criterion.
* True or False

{8%)) UNIVERSITY OF GOTHENBURG

Question 1

10. Requirement specifications are not needed for selecting
inputs to satisfy structural coverage of program code.

* True or False

11. Any program that has passed all test cases and has been
released to the public is considered which of the following:
« Correct with respect to its specification.
« Safe to operate.
* Robust in the presence of exceptional conditions.
« Considered to have passed verification.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 2

Consider the software for air-traffic control at an
airport.

|dentify one performance and one availability
requirement that you think would be necessary for this
software and develop a quality scenario for each.

2 CHALMERS |) UNIVERSITY OF GOTHENBURG

Question 2

Performance Requirement: Under normal load (< 500 aircraft), displayed aircraft positions
shall be updated on a user’s display in under 55 ms.

Performance Scenario:
« Overview: Check system responsiveness for displaying aircraft positions

+ System state: Deployment environment working correctly with less than 500 tracked
aircraft.

« Environment state: All aircraft tracking hardware is functional.
« External stimulus: 50 Hz update of ATC system.

+ System response: radar/sensor values are computed, new position is displayed to the
air traffic controller with maximum error of 5 meters.

 Response measure: Fusion and display process completes in less than 45 ms 95% of
the time, and in less than 50 ms 99% of the time. There is an absolute deadline of 55 ms.

2 CHALMERS |) UNIVERSITY OF GOTHENBURG

Question 2

Availability Requirement: The system shall be able to tolerate the failure of any single server
host, graphics card, display or network link.

Availability Scenario:
* Overview: One of the monitor display cards fails during transmission of a screen refresh.
« System State: System is working correctly under normal load with no failures.
« Environment state: No relevant environment factors.
« External stimulus: A display card fails.

* Required system response: failure detected within 10 ms and display information routed
through redundant graphics card with no user-discernable change to display. Graphics
card failure will be displayed as error message at bottom right hand of ATC display.

* Response measure: no loss in continuity of visual display and failover with visual warning
completes within 1 s.

{8%)) UNIVERSITY OF GOTHENBURG

Question 3

You are building a web store that you feel will unseat Amazon as the king of
online shops. Your marketing department has come back with figures stating
that - to accomplish your goal - your shop will need an availability of at least
99%, a probability of failure on demand of less than 0.1, and a rate of fault
occurrence of less than 2 failures per 8-hour work period.

You have recently finished a testing period of one week (seven full 24-hour
days). During this time, 972 requests were served to the page. The product
failed a total of 64 times. 37 of those resulted in a system crash, while the
remaining 27 resulted in incorrect shopping cart totals. When the system
crashes, it takes 2 minutes to restart it.

{8%)) UNIVERSITY OF GOTHENBURG

Question 3

Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per

8-hour work period. e \What is the rate of fault

Currently: 972 requests. The product occurrence?
failed a total of 64 times (37 crashes,

27 incorrect computations). It takes 2

minutes to restart.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Question 3

Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per

e \What is the rate of fault

8-hour work period. occurrence?
e 64/168 hours =
Cl.JrrentIy: 972 requ_ests. The product 0.38/hour =
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2 3.04/8 hour work day

minutes to restart.

{8%)) UNIVERSITY OF GOTHENBURG

Question 3

Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per

8-hour work period. e What is the probability of

Currently: 972 requests. The product failure on demand?
failed a total of 64 times (37 crashes,

27 incorrect computations). It takes 2

minutes to restart.

{8%)) UNIVERSITY OF GOTHENBURG

Question 3

Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per _ N
8-hour work period. e \What is the probability of
failure on demand?

Currently: 972 requests. The product e 64/972 = 0.066

failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

{8%)) UNIVERSITY OF GOTHENBURG

Question 3

Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.
e What is the availability?
Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Question 3

Want: availability of at least 99%, a
probability of failure on demand of e \What is the availability?

less than 0.1, and a rate of f.ault e It was down for (37*2)
occurrence of less than 2 failures per

8-hour work period. = 74 minutes out of
168 hours

Currently: 972 requests. The product = 74/10089 minutes

failed a total of 64 times (37 crashes, _ o]

27 incorrect computations). It takes 2 = 0.7% of the time.

minutes to restart. Availability = 99.3%

{8%)) UNIVERSITY OF GOTHENBURG

Question 3

Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per

8-hour work period. e |[s the product ready to

Currently: 972 requests. The product ship? If not, why not?

failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Question 3

Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

e |[s the product ready to
ship? If not, why not?

e No. Availability,

Currently: 972 requests. The product POFOD are good

failed a total of 64 times (37 crashes,]
27 incorrect computations). It takes 2 ROCOF is too low.

minutes to restart.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 4

public boolean applyForVacation (String userID,
String startingDate, String endingDate)

« Auser ID is a string in the format “firsthame.lasthame”,
e.g., ‘gregory.gay’.

* The two dates are strings in the format “YYYY-DD-MM”.

« The function returns TRUE if the user was able to
successfully apply for the vacation time. It returns FALSE
if not. An exception can also be thrown if there is an error.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 4

User database with following items for each user:
e UserlD
e Quantity of remaining vacation days for the user

e An array containing already-scheduled vacation
dates (as starting and ending date pairs)

e An array containing dates where vacation cannot
be applied for (e.g., important meetings).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 4

Perform functional test design for this function.

1. ldentify choices (controllable aspects that can be
varied when testing)

2. For each choice, identify representative values.

3. For each value, apply constraints (IF, ERROR,
SINGLE) if they make sense.

CHALMERS

UNIVERSITY OF TECHNOLOGY

%)) UNIVERSITY OF GOTHENBURG

e Choice: Value of userlD

Existing user

Non-existing user [error]

Null [error]

Malformed user ID (not in format
“firstname.lasthname”) [error]

e Choice: Value of starting date

Valid date

Date before the current date [error]

Current date [single]

Null [error]

Malformed date (not in format “YYYY-MM-DD”)
[error]

e Choice: Value of ending date

Valid date

Date before the current date [error]

Current date [single]

Date before the starting date [error]

Date same as the starting date [single]

Null [error]

Malformed date (not in format “YYYY-MM-DD”)
[error]

Choice: Remaining vacation time for the userIiD
(Note: We are assuming the database schema prevents
storing malformed/invalid values)

o

o O O O O

0 days remaining

1 day remaining, 1 day applied for [single]

Number of days remaining < number applied for
Number of days remaining = number applied for [single]
Number of days remaining > number applied for

User does not exist [if user ID does not exist]

Choice: Conflicts with vacation time
(Note: We are assuming the database schema prevents
storing malformed/invalid date ranges)

o O O O

No conflicts with scheduled vacation or banned dates
Banned date(s) fall within the starting and ending dates
Starting date falls within already-scheduled vacation time
Ending date falls within already-scheduled vacation time
Already-scheduled vacation time falls within starting and
ending dates applied for

The starting and ending dates fall within
already-scheduled vacation time

User does not exist [if user ID does not exist]

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Question 5

Exploratory testing typically is guided by “tours”.
1. Describe one of the tours that we discussed in class.

2. Consider a banking website, where a user can do things like
check their account balance, transfer funds between
accounts, open new accounts, and edit their personal
information. Describe three actions you might take during
exploratory testing of this system, based on the tour you
described above.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 5

e Supermodel Tour

Tests the GUI, not focused on functional correctness.

Visual appearance - are graphical elements in correct
locations, correct size, free of rendering errors?

Are graphical elements/colors/fonts consistent?
How long does it take elements to appear?

Are there typos?

Usability issues (could this be easier to use?)
Accessibility issues?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 5

Describe three actions you might take during
exploratory testing of banking system

1. Click on drop down menu - is it displayed quickly? all items
present? does menu cause issues when appearing over
other elements?

2. Select account - is all information displayed? is location of
info correct? is info easy to find? is information readable?

3. Edit personal info - is existing info displayed? are edited
segments updated and displayed correctly?

_ CHALMERS |) UNIVERSITY OF GOTHENBURG

Question 6

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

You are testing the Account class.

Write JUnit-format test cases to do the following:

1. Create a test case that checks a normal
usage of the methods of this class.

2. Create two test cases reflecting either
error-handling scenarios or quality attributes
(e.g., performance or reliability).

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Question 6

« Withdraw money, verify balance.

Account
_name @Test
i g:{asro]ggummer public void testWithdraw_normal() {

// Setup

Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
// Test Steps

double toWithdraw = 16.0; //Input

Account (name,
personnummer, Balance)

withdraw (double amount) account.withdraw(toWithdraw);

deposit (double amount) double actual = account.getBalance();
changeName(String name) double expectedBalance = 32.5; // Oracle
getName() assertEquals(expected, actual); // Oracle
getPersonnummer() }

getBalance()

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Question 6

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

 Withdraw more than is in balance.

* (should throw an exception with
appropriate error message)

@Test
public void testWithdraw_moreThanBalance() {
// Setup
Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
// Test Steps
double toWithdraw = 100.0; //Input
Throwable exception = assertThrows(
() -> { account.withdraw(toWithdraw); });
assertEquals(“Amount 100.00 is greater than balance 48.50”,
exception.getMessage()); // Oracle

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Question 6

« Withdraw a negative amount.

Account
* (should throw an exception with
- name appropriate error message)
- personnummer @Test
- balance public void testWithdraw_negative() {
// Setup
Account (name’ Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
personnummer, Balance) // Test Steps

) double toWithdraw = -2.5; //Input
withdraw (double amount)

deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Throwable exception = assertThrows(
() -> { account.withdraw(toWithdraw); });
assertEquals(“Cannot withdraw a negative amount: -2.50”,

exception.getMessage()); // Oracle

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s Take a Break

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 7

After carefully and thoroughly developing a collection of
requirements-based tests and running your test suite, you
determine that you have achieved only 60% statement
coverage. You are surprised (and saddened), since you
had done a very thorough job developing the
requirements-based tests and you expected the result to be
closer to 100%.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 7

Briefly describe two (2) things that might have happened to
account for the fact that 40% of the code was not exercised
during the requirements-based tests.

Few tests or poor job choosing test cases.
Missing requirements.

Dead or inactive code.

Error-handling code.

Support/interfacing code.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 7

Should you, in general, be able to expect 100% statement
coverage through thorough requirements-based testing
alone (why or why not)?

e No.
e There are almost always special cases not covered by
requirements.
o Code optimizations, support code, debug code,
exception handling.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 7

Some structural criteria, such as MC/DC, prescribe
obligations that are impossible to satisfy. What are two
reasons why a test obligation may be impossible to satisfy?

e Impossible combination of conditions

e Defensive programming (situations that may not
happen in practice are planned for).

e Other situations that result in unused code (i.e., code
implemented for future that is currently unreachable).

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Question 8

« Draw the control-flow graph

for this method. int findMax(int a, int b, int c) {
. . int temp;
* Develop test input that will if (a > b)
. temp=a;
provide statement coverage. else
. . temp=b;
. Develop test input that will LF (C > tem)
provide branch coverage. return tomps
. Develop test input that will }

provide path coverage.

3 CHALMERS \ UNIVERSITY OF GOTHENBURG

Question 8

2]

int findMax(int a, int b, int c) {
int temp;
if (a>b)
temp=a;
else
temp=b;
if (c>temp)
temp = c;
return temp;
0. }

O 00 J o U W N

Statement: Path:

(3,2,4), (2,3,4) (4,2,5), (4,2,1), (2,3,4),
Branch: 2,3,1)

(3,2,4), (3,4,1)

{8%)) UNIVERSITY OF GOTHENBURG

Question 8
* Modify the program to

int findMax(int a, int b, int c)

. {
introduce a fault such that int temp;
even path coverage could if (a>b)
: temp=a;
miss the fault. else
temp=b;
Use (a > b+1) instead of (a>b) and if (c>temp)
the test input from the last slide: temp = c;
(4,2,5), (4,2,1), (2,3,4), (2,3,1) return temp;
will not reveal the fault. }

#%) CHALMERS |

) UNIVERSITY OF GOTHENBURG

Question 9

* |dentify all DU pairs
and write test cases
to achieve All DU Pair

Coverage.
* Hint - remember that
there is a loop.

A W N R

W 00 N O un

l1o.
11.
12.
13.
14.
15.

public static boolean canPartition(int[] arr) {
Arrays.sort(arr);
int product = 1;
if ((Math.abs(arr[@]) >= arr[arr.length-1])
|l arr[@] == @) {
for (int i = 1; i < arr.length; i++){
product *= arr[i];
}
return arr[@] == product;
} else{
for (int i = @; i < arr.length-1; i++){
product *= arr[i];
}

return arr[arr.length-1] == product;

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Question 9

1 public static boolean canPartition(int[] arr) {

2 Arrays.sort(arr);

3. int product = 1;

4 if ((Math.abs(arr[@]) >= arr[arr.length-1])

|| arr[e] == @) { arr (1, 2), (2, 4), (2, 5), (2, 6), (2, 8), (2, 10),

5. for (int i = 1; i < arr.length; i++){ (2,11),(2,13)

6. product *= arr[il]; product (3, 6), (6, 6), (3, 8), (6, 8), (3, 1), (11, 11),
7. } (11, 13)

8. return arr[@] == product;

9. } else{ [(5, 5), (5, 6), (10, 10), (10, 11)
10. for (int i = @; i < arr.length-1; i++){
11. product *= arr[i];
12. }
13. return arr[arr.length-1] == product;
14. }
15. }

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

- (1, 2), (2, 4), (2, 5), (2, 6), (2, 8), (2, 10),
QueStlcn 9 " 2 1), 2, 13)

product (3, 6), (6, 6), (3, 8), (6, 8), (3, 11), (11, 11),

1. public static boolean canPartition(int[] arr) { (11, 13)

2. Arrays.sort(arr); _

10, 1 10, 11
3. int product = 1; I (%), (5,6). (10, 10), (10, 11)
4, if ((Math.abs(arr[@]) »>= arr[arr.length-1])
[l arr[e] == @) { Input Additional DU Pairs Covered
5. for (int i = 1; i < arr.length; i++){
6. product *= arr[i]; [2, 8, 4, 1] arr: (1, 2), (2, 4), (2, 10), (2, 11), (2, 13)
product: (3, 11), (11, 11), (11, 13)
7. } i (10, 10), (10, 11)
8. return arr[@] == product;
[-1, -10, @, 10] |am(2,5),(2 6), (2, 8)

3. } else{ S product: (3, 6), (6, 6), (6, 8)
10. for (int i = @; i < arr.length-1; i++){ i: (5, 5), (5, 6)
11. product *= arr[i]; _

12. } [0] arr: (3, 8)
13. return arr[arr.length-1] == product;
14. }

5. }

UNIVERSITY OF GOTHENBURG

Question 10

Consider the following function:
void bSearch(int[] A, int value, int start, int end) {
if (end <= start)
return -1;
mid = (start + end) / 2;
if (A[mid] > value) {
return bSearch(A, value, start, mid); 1. Create an eCIUivalent
} else if (value > A[mid]) { mUtant

return bSearch(A, value, mid + 1, end);

} else {
return mid;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 10 1. Create an equivalent

Consider the following function: mUtant'
void bSearch(int[] A, int value, int start, int end) {
f <e"0r'e<t::‘ff':t_) } else if (value > A[mid]) {
mid = (start + ;nd)lz; return bSearch(A, value,
if (A[mid] > value) { mid+1, end);
return bSearch(A, value, start, mid); } else {
} else if (value > A[mid]) {
return bSearch(A, value, mid + 1, end); }]
else { return mid;
return mid; }
}
} SES - End Block Shift

UNIVERSITY OF GOTHENBURG

Question 10

Consider the following function:
void bSearch(int[] A, int value, int start, int end) {
if (end <= start)
return -1;
mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid); 2. Create an invalid
} else if (value > A[mid]) {

return bSearch(A, value, mid + 1, end); mutant.
} else {

return mid;

UNIVERSITY OF GOTHENBURG

Question 10

Create an invalid mutant.

Consider the following function: ' mid = (start + end) / 2;
void bSearch(int[] A, int value, int start, int end) { H-(Afmid}>vatue){
if (end <= start) return bSearch(A, value, start, mid);
return -1; } else if (value > A[mid]) {
mid = (start + end) / 2; return bSearch(A, value, mid + 1,
if (A[mid] > value) { end);
return bSearch(A, value, start, mid); }else {
} else if (value > A[mid]) { return mid:
return bSearch(A, value, mid + 1, end); }
} else { }
return mid;
} } SDL - Statement Deletion

CHALMERS |) UNIVERSITY OF GOTHENBURG

Question 10

Consider the following function:
void bSearch(int[] A, int value, int start, int end) {
if (end <= start)

return -1;
mid = (start + end) / 2;
if (A[mid] > value) { 3 Create)
return bSearch(A, value, start, mid); .
} else if (value > A[mid]) { valid-but-not-useful
return bSearch(A, value, mid + 1, end); mutant.
} else {
return mid;

{8%)) UNIVERSITY OF GOTHENBURG

Question 10

Consider the following function: 3. Create d

void bSearch(int[] A, int value, int start, int end) { .
i (end <= start valid-but-not-useful

return -1; mutant.
mid = (start + end) / 2; bSearch(A, value, start, end) {
if (A[mid] > value) { .
return bSearch(A, value, start, mid); if (end > Start)
} else if (value > A[mid]) { return -1;
return bSearch(A, value, mid + 1, end); mid = (start + end) / 2;
} else {
) retum mid; ROR - Relational Operator
} Replacement

_ CHALMERS |) UNIVERSITY OF GOTHENBURG

Question 10 3. Create a useful mutant.
Consider the following function:
void bSearch(int[] A, int value, int start, int end) { } else if (value > A[mid]) {
if (end <= start) return bSearch(A, value,
return -4; mid + 2, end);
mid = (start + end) / 2;
if (A[mid] > value) { } else {
return bSearch(A, value, start, mid); return mid;
} else if (value > A[mid]) { }
return bSearch(A, value, mid + 1, end);
} else {
return mid; }
}
} CRP - Constant for Constant

Replacement

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 11

Suppose that finite state verification of an abstract
model of some software exposes a counter-example to
a property that is expected to hold true for the system.

Briefly describe the follow-up actions you would
take and why you would take them.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Question 11

Tells us one of the following is an issue:

e The model

« Fault in the model, bad assumptions, incorrect
interpretation of requirements

* The property
* Property not formulated correctly.

* The requirements
« Contradictory or incorrect requirements.

,‘ CHALMERS | @}; UNIVERSITY OF GOTHENBURG

Question 12

Temporal Operators:

o G p: p holds globally at every state on the path from now until the end

o F p: p holds at some future state on the path (but not all future states)

o« X p: p holds at the next state on the path

« p U q: qholds at some state on the path and p holds at every state
before the first state at which g holds.

« A: for all paths reaching out from a state, used in CTL as a modifier for
the above properties (i.e., AG p)

« E: for one or more paths reaching out from a state (but not all), used in
CTL as a modifier for the above properties (i.e., EG p)

UNIVERSITY OF GOTHENBURG

State variables:
e traffic_light: {RED, YELLOW, GREEN}
e pedestrian_light: {WAIT, WALK,
FLASH}
e button: {RESET, SET}

Initially: traffic_light = RED,
pedestrian_light = WAIT, button = RESET

Transitions:
pedestrian_light:
o WAIT —» WALK if traffic_light = RED
e WAIT — WAIT otherwise
e WALK — {WALK, FLASH}
e FLASH — {FLASH, WAIT}
traffic_light:
e RED — GREEN if button = RESET
e RED — RED otherwise
GREEN — {GREEN, YELLOW} if button = SET
e GREEN — GREEN otherwise
e YELLOW-— {YELLOW, RED}

button:
e SET — RESET if pedestrian_light = WALK
e SET — SET otherwise
e RESET — {RESET, SET} if traffic_light = GREEN
e RESET — RESET otherwise

UNIVERSITY OF GOTHENBURG

State variables:
e traffic_light: {RED, YELLOW, GREEN}
e pedestrian_light: {WAIT, WALK,
FLASH}
e button: {RESET, SET}

Initially: traffic_light = RED,
pedestrian_light = WAIT, button = RESET

Transitions:
pedestrian_light:
o WAIT —» WALK if traffic_light = RED
e WAIT — WAIT otherwise
e WALK — {WALK, FLASH}
e FLASH — {FLASH, WAIT}
traffic_light:
e RED — GREEN if button = RESET
e RED — RED otherwise
GREEN — {GREEN, YELLOW} if button = SET
e GREEN — GREEN otherwise
e YELLOW-— {YELLOW, RED}

button:
e SET — RESET if pedestrian_light = WALK
e SET — SET otherwise
e RESET — {RESET, SET} if traffic_light = GREEN
e RESET — RESET otherwise

UNIVERSITY OF GOTHENBURG

State variables:
e traffic_light: {RED, YELLOW, GREEN}
e pedestrian_light: {WAIT, WALK,
FLASH}
e button: {RESET, SET}

Initially: traffic_light = RED,
pedestrian_light = WAIT, button = RESET

Transitions:
pedestrian_light:
o WAIT —» WALK if traffic_light = RED
e WAIT — WAIT otherwise
e WALK — {WALK, FLASH}
e FLASH — {FLASH, WAIT}
traffic_light:
e RED — GREEN if button = RESET
e RED — RED otherwise
GREEN — {GREEN, YELLOW} if button = SET
e GREEN — GREEN otherwise
e YELLOW-— {YELLOW, RED}

button:
e SET — RESET if pedestrian_light = WALK
e SET — SET otherwise
e RESET — {RESET, SET} if traffic_light = GREEN
e RESET — RESET otherwise

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Question 13

Microwave controller

e Door: {Open, Closed} -- sensor In CTL. .
input indicating state of the door e The microwave shall

e Button: {None, Start, Stop} -- never cook when the
button press door is open.
e Timer: 0...999 -- (remaining) o AG (DOOI' - Open -S>

seconds to cook
e Cooking: Boolean -- state of the
heating element

ICooking)

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Question 13

Microwave controller In CTL:

e Door: {Open, Closed} -- sensor ® [he microwave shall
input indicating state of the door cook onIy as |ong as

e Button: {None, Start, Stop} -- there is remaining cook
button press 7

e Timer: 0...999 -- (remaining) time.
seconds to cook e AG (Cooking ->
e Cooking: Boolean -- state of the Timer > 0)

heating element

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Question 13 In CTL.:
e |[f the stop button is

Microwave controller
pressed when the

e Door: {Open, Closed} -- sensor

input indicating state of the door micr(_)wave Is not o

e Button: {None, Start, Stop} - cooking, the remaining
button press cook time shall be

e Timer: 0...999 -- (remaining) cleared.
seconds to cook e AG (Button = Stop &

e Cooking: Boolean -- state of the

heating element ICooking ->

AX (Timer = 0))

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Question 13

Microwave controller In LTL:

e Door: {Open, Closed} -- sensor e |t shall never be the
input indicating state of the door case that the microwave

e Button: {None, Start, Stop} -- e »
button press can contunue COOoKing

e Timer: 0...999 -- (remaining) mdeflmte_IY-
seconds to cook e G (Cooking ->
e Cooking: Boolean -- state of the F (!Cooking))

heating element

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

- In LTL:
Question 13 e The only way to initiate
Microwave controller cooking shall be
e Door: {Open, Closed} -- sensor pressing the start button
input indicating state of the door when the door is closed

e Button: {None, Start, Stop} --
button press
e Timer: 0...999 -- (remaining)

and the remaining cook
time is not zero.

seconds to cook e G (!Cooking U
e Cooking: Boolean -- state of the ((Button = Start &
heating element Door = Closed)
& (Timer > 0)))

_ CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Question 13

In LTL.:
Microwave controller e The microwave shall continue

e Door: {Open, Closed} -- sensor cooking when there is
input indicating state of the door remaining cook time unless

e Button: {None, Start, Stop} -- the stop button is pressed or
button press the door is opened.

e Timer: 0...999 -- (remaining) e G ((Cooking & Timer > 0) ->
seconds to cook X (((Cooking |

e Cooking: Boolean -- state of the (!Cooking & Button = Stop)) |
heating element (!Cooking & Door = Open)))

{36) CHALMERS | (g¥)
-” UNIVERSITY OF TECHNOLOGY R %

Any other questions?

Thank you for being a
great class!

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

