
Lecture 2: Quality Attributes and
Measurement

Gregory Gay
DIT636/DAT560 - January 22, 2025

When is Software Ready for Release?
Software is ready for release when you can argue that
it shows sufficient quality.
• Requires choosing quality attributes.

• Requires specifying measurements and thresholds.
• May require different measurements and thresholds for

different functionality and execution scenarios.

• Assessed through Verification and Validation.

2

3

Today’s Goals
• Discuss quality attributes

• Dependability, availability, performance, scalability.

• Discuss measurement of these attributes
• How we build evidence that the system is “good enough”.
• How to assess whether each attribute is met.

4

Software Quality
• We all want high-quality software.

• We don’t all agree on the definition of quality.

• Quality encompasses what and how.
• How dependable it is.
• But also…

• How quickly it runs.
• How available its services are.
• How easily it scales to more users.

• Hard to measure and assess objectively.

5

Quality Attributes
• Describe desired properties of the system.
• Developers prioritize attributes and design system

that meets chosen thresholds.
• Most relevant for this course: dependability

• Ability to consistently offer correct functionality, even
under unforeseen or unsafe conditions.

Quality Attributes
• Availability

• Ability to carry out a task when needed, to minimize
“downtime”, and to recover from failures.

• Performance
• Ability to meet timing requirements. When events occur,

the system must respond quickly.
• Scalability

• Ability to maintain dependability and performance as the
number of concurrent requests grows.

6

7

Quality Measurement
• Quality is always measured situationally.

• Never quality of the whole system, but of a component
of the system.

• Quality of a method, class, sub-system, API endpoint, user-facing
function, …

• Measured relative to usage profile.
• Expected interaction pattern.

Improving Quality
• Improved when faults in the

most frequently-used parts of
the software are removed.
• Removing X% of faults != X%

improvement in quality.
• “Removing 60% of faults led to

3% reliability improvement.”
• Removing faults with serious

consequences is the top priority.

8

User 2

User
1

User 3

Input
Causing
Failure

Quality Economics
• May be cheaper to accept a certain leave of quality

and pay for failure costs.
• Depends on social/political factors and system.

• Reputation versus cost of improvement.
• Cost depends on risks of failure.

• Health risks or equipment failure risk requires high quality.
• Minor annoyances can be tolerated.

9

10

Quality Attribute:
Dependability

Dimensions of Dependability

• The goal of dependability is to establish four things
about the system:
• That it is correct.
• That it is reliable.
• That it is safe.
• That is is robust.

11

Reliable Correct Safe Robust

Correctness
• A program is correct if it is always consistent with

its specification.
• Depends on completeness of requirements.

• Easy to show with a weak specification.

• Often impossible with a detailed specification.

• Rarely provably achieved.

12

Reliability
• Statistical approximation of correctness.

• The likelihood of correct behavior from some period of
observed behavior.

• Time period or number of system executions
• Even if we cannot prove correctness, we can show that

the system almost always works.
• Testing can demonstrate reliability, but not correctness.

13

Dependence on Specifications
• Correctness and reliability:

• Success relative to complexity of the specification.
• Hard to meaningfully prove anything for full spec.

• Severity of a failure is not considered.
• Some failures are worse than others.

• Safety focuses on a hazard specification.
• Robustness focuses on everything not specified.

14

Safety
• Safety is the ability to correctly handle hazards.

• Known undesirable situations.
• Generally serious problems.

• Relies on a specification of hazards.
• Defines each hazard, how it will be avoided or handled.
• Prove that the hazard is avoided.

• Only concerned with hazards, so proofs often possible.

15

Robustness
• Software that is “correct” may fail when the

assumptions of its design are violated.
• How it fails matters.

• Software that “gracefully” fails is robust.
• Design the software to counteract unforeseen issues or

perform graceful degradation of services.
• Look at how a program could fail and handle those situations.

• Cannot be proved, but is a goal to aspire to.

16

Dependability Property Relations

17

Reliable Correct Safe Robust

Correct, but not safe.
Specification is inadequate

Safe, but not correct.
Annoying failures can occur.

Robust, but not safe. Catastrophic
failures can occur.

Reliable, but not correct.
Catastrophic failures can occur.

Assessing Dependability
• When is the system dependable enough?

• Correctness hard to prove.
• Robustness/Safety important, but do not demonstrate

normal dependability.

• Reliability is the basis for arguing
dependability.
• Can be measured.
• Can be demonstrated through testing.
• Can reflect normal and abnormal usage.

18

19

Quality Attribute: Availability

Availability
• The ability to carry out a task when needed, and

to recover or work around faults when it fails.
• When a failure occurs, ensures system can recover.
• System is seen as more reliable if failures can be

corrected or masked before they affect the user.

20

Availability
• Failures can be prevented, tolerated, or repaired.

• How are failures detected?
• How frequently do failures occur?
• What happens when a failure occurs?
• How long can the system be out of operation?
• When can failures occur safely?
• Can failures be prevented?
• What notifications are required when failure occurs?

21

Availability Considerations
• Time to repair is the time until the failure is no

longer observable.
• Hard to define.

• Stuxnet caused problems for months.
• How does that impact availability?

• Software can remain partially available more easily
than hardware.
• If code containing fault is executed, but system is able to

recover, there was no failure.

22

23

Measuring Reliability and Availability

How to Measure Reliability
• Hardware metrics often aren’t suitable for software.

• Based on component failures and the need to repair or
replace a component once it has failed.

• Design is assumed to be correct.

• Software failures are generally design failures.
• System often available despite failure.
• Metrics consider failure rates, uptime, and time

between failures.

24

Measurement 1: Availability
• (uptime) / (total time observed)

• Takes repair and restart time into account.
• Does not consider incorrect computations.
• Only considers crashes/freezing.
• 0.9 = down for 144 minutes a day.

• 0.99 =14.4 minutes
• 0.999 = 84 seconds
• 0.9999 = 8.4 seconds

25

Availability as a Measurement
• As part of reliability:

• Measurement shows that system generally runs under
normal circumstances.

• As a standalone quality attribute:
• Measurement shows that, when a failure occurs, system

can recover quickly.

26

Metric 2: Probability of Failure on Demand (POFOD)

• Likelihood that a request will result in a failure
• (failures/requests over observed period)

• POFOD = 0.001 means that 1 out of 1000 requests fail.

• Used in situations where a failure is serious.
• Independent of frequency of requests.
• 1/1000 failure rate sounds risky, but if one failure per

lifetime, may be good.

27

Metric 3: Rate of Occurrence of Fault (ROCOF)

• Frequency of occurrence of unexpected behavior.
• (number of failures / time elapsed)

• ROCOF of 0.02 means 2 failures per 100 time units.
• Often given as “N failures per M seconds/minutes/hours”

• Most appropriate metric when requests are made
on a regular basis (such as a shop).

28

Metric 4: Mean Time Between Failures (MTBF)

• Average time between observed failures.
• Only considers time where system operating.
• Requires time of each failure and time when system

resumed service.

• Used for systems with long user sessions, where
crashes can cause major issues.
• E.g., saving requires resource consumption.

29

30

Let’s take a break!

31

Reliability Metrics
• Availability: (uptime) / (total time observed)
• POFOD: (failures/ requests over period)
• ROCOF: (failures / time elapsed in target unit)
• MTBF: Average time between observed failures

Reliability Examples
• Provide software with 10000 requests.

• Wrong result on 35 requests, crash on 5 requests.
• What is the POFOD?

• 40 / 10000 = 0.0004
• Run the software for 24 hours

• (6 million requests). Software failed on 6 requests.
• What is the ROCOF in failure/hour? The POFOD?

• ROCOF = 6/24 = 0.25 failures per hour
• POFOD = 6/6000000 = (10-6)

32

Additional Examples
• Target: ROCOF < 0.3 per hour, POFOD < 0.1.

• After 7 days, 972 requests were made.
• Product failed 64 times (37 crashes, 27 incorrect output).
• Average of 2 minutes to restart after each failure.

33

• ROCOF: 64/168 hours
• = 0.38/hour

• POFOD: 64/972 = 0.066

Additional Examples
• Target: Availability >= 99%.

• After 7 days, 972 requests were made.
• Product failed 64 times (37 crashes, 27 incorrect output).
• Average of 2 minutes to restart after each failure.

34

• Availability: Down for (37*2) = 74 minutes / 10089
minutes = 0.7% of the time = 99.3%

• Is the product ready to ship?
• No. Availability/POFOD are good, but ROCOF is too high.

35

Quality Attributes:
Performance and
Scalability

Performance
• Ability to meet timing requirements.

• When events occur, how fast does the system respond?
• Captures performance-per-user and across-users.
• Captures variance in performance.

• Driving factor in software design.
• Often at expense of other quality attributes.
• All systems have performance requirements.

36

Scalability
• Ability to maintain performance despite increasing

number of requests.
• Horizontal scalability (“scaling out”)

• Adding more resources to logical units.
• Adding another server to a cluster.
• “elasticity” (add or remove VMs from a pool)

• Vertical scalability (“scaling up”)
• Adding more resources to a physical unit.

• Adding memory to a single computer.

37

Scalability
• How can we effectively utilize additional resources?
• Requires that additional resources:

• Result in performance improvement.
• Did not require undue effort to add.
• Did not disrupt operations.

• The system must be designed to scale
• (i.e., designed for concurrency).

38

39

Measuring Performance and Scalability

Performance Measurements
• Latency: The time between the arrival of the stimulus and

the system’s response to it.
• Response Jitter: The allowable variation in latency.
• Throughput: Usually number of transactions the system

can process in a unit of time.
• Processing Deadlines: Points where processing must

have reached a particular stage.
• Number of events not processed because the system

was too busy to respond.
40

Measurements - Latency
• Time it takes to complete an interaction.
• Responsiveness - how quickly system responds to

routine tasks.
• How responsive is the user’s device? The system?
• Measured probabilistically (“... 95% of the time”)
• “Under load of 350 updates per minute, 90% of ‘open

account’ requests should complete within 10 seconds.
99% should complete within 12 seconds”

41

Measurements - Latency
• Turnaround time = time to complete larger tasks.

• Can task be completed in available time?
• Impact on system while running?
• Can partial results be produced?

• Ex: “With daily throughput of 850,000 requests, process
must take a maximum of 4 hours, including writing to a
database.”

• Ex: “In 99% of cases, it must be possible to
resynchronize monitoring stations and reset database
within 5 minutes.”

42

43

Measurements - Response Jitter
• Response time is non-deterministic.

• If controlled, this is OK.
• 10s +- 1s, great!
• 10s +- 10 minutes, bad!

• Jitter defines how much variation is allowed.
• Ex: “All writes to the database must be completed within

an interval of 120 to 150 ms.”

Measurements - Throughput
• The workload a system can handle in a time period.

• Measures performance across all users.
• Shorter the processing time, higher the throughput.
• As load increases (and throughput rises), response time

for individual transactions tends to increase.
• With 10 concurrent users, request takes 2s.
• With 100 users, request takes 4s.

44

Measurements - Throughput
• Throughput goals can conflict with latency goals.

• For example:
• With 10 users, each user can perform 20 requests per minute

(throughput: 200/m).
• With 100 users, each can perform 12 per minute

(throughput is 1200/m but at a cost for individual user).

45

46

Measurements - Event Deadlines
• Some tasks must take place as scheduled.
• If times are missed, the system will fail.
• Deadlines place boundaries on event completion.
• Can also track how many input events are ignored

because the system is too slow to respond.
• Set limit on how many events can be missed over time.

47

Which response measure should we use?

• The pacemaker must shock the heart no more than
8ms after the last heartbeat.
• Event deadline - there is an absolute limit in performance

• We want to make sure our web shop can handle
Black Friday traffic.
• Throughput - make sure all requests are handled in a

short period of time.
• May prioritize completing the batch over individual users.

48

Which response measure should we use?

• We want every user’s transaction on the web shop
to complete in a satisfying timeframe.
• Latency

• May choose to prioritize low latency over high throughput.

• We want to ensure that database updates are
properly synchronized.
• Response jitter.

• Imposes minimum and maximum timeframe on updates.

Assessing Scalability
• Ability to address more requests is often part of

performance or reliability assessment.
• Assessing scalability directly measures impact of

adding or removing resources.
• Response measures reflect:

• Changes to performance.
• Changes to reliability or availability.
• Load assigned to existing and new resources.

49

Key Points
• Dependability is one of the most important software

characteristics.
• Aim for correctness, reliability, safety, robustness.
• Often assessed using reliability.

• Reliability depends on the pattern of usage of the
software. Different users will interact differently.

• Reliability measured using ROCOF, POFOD,
Availability, MTBF

50

Key Points
• Availability is the ability of the system to recover

from a failure.
• Performance is about management of resources in

the face of demand to achieve acceptable timing.
• Usually measured in terms of throughput and latency.

• Scalability is the ability to “grow” the system to
process an increasing number of requests.
• While still meeting performance requirements.

51

52

Next Time
• Quality Scenarios
• No exercise session this week.

• Form your teams!
• Deadline: January 26
• Assignment 0 on Canvas

