
Lecture 8: Exploratory Testing

Gregory Gay
DIT636/DAT560 - February 12, 2025



2

Today’s Goals
• Introduce Exploratory Testing

• Human-driven testing of the project, to gain familiarity 
with the system and conduct high-level testing.

• Often focused on “tours” of the software features.



3

Exploratory Testing
• Testers check the system on-the-fly.

• Guided by scenarios.
• Often based on ideas noted before beginning. 

• Testing as a thinking idea.
• About discovery, investigation, and role-playing.
• Tests end-to-end journeys through app.
• Test design and execution done concurrently.



4

Exploratory Testing
• Tester write down ideas to give direction, then 

create tests “live”.
• Tester chooses next action based on results seen.

• Can find subtle faults missed by formal testing.
• Allows tester to better learn system functionality, and 

identify new ways of using features.



5

Example
• Start with functionality

you know well (Login)
• Examine possible 

options and list them.
• Use your findings to 

plan the next steps.
• As you learn and 

observe, more test 
cases will emerge.

Some slides derived from https://www.softwaretestinghelp.com/what-is-exploratory-testing/



6

Session-Based Exploratory Testing
• Time-based method to structure exploratory testing.

• No e-mail, phone, messaging.
• Short (60min), Normal (90m), Long (120m)

• Primary components:
• Mission

• The purpose of the session, provides focus.
• Charter

• Individual testing goals to be completed in this session.
• A list of features or scenarios.



7

Session Report Items
• Mission: Overall goal

• “Analyze Login Feature on Website”
• Charter: Features and scenarios to focus on.

• “Login as existing user with username and password”
• “Login as existing user with Google account”
• “Login as existing user with Facebook account”
• “Enter incorrect username and password to verify 

validation message” 
• “Block your username and verify the validation message”
• “Use Forgot Password link to reset password”

 



8

Session Report Items
• Start and end time of session
• Duration of session
• Notes on actions taken

• Opened login page
• Verified default screen.
• Verified that existing and new user account links exist.

• Opened existing user login
• Verified successful login with username, Google, and Facebook.
• Verified validation messages.



9

Session Report Items
• Failure Information: Describe each failure. File a 

bug report, include tracker ID.
• Issues Information: If an issue prevents or 

complicates testing, describe it.
• Include data files (screenshots, recordings, files).

• Set-up Time: % of time required to set-up.
• Test Design and Execution Time: % of time spent 

purely on testing



10

Session Debrief
• Short meeting between tester and manager to 

review the findings.
• Track time spent testing, number of faults reported, 

time spent on set-up, time spent on testing, time 
spent analyzing issues, features covered.

• Allows time management and process 
observability.



11

Tips for Exploratory Testing
• Divide the application into modules or features, 

then try to further divide. 
• Make a checklist of all the features and put a check 

mark when each is covered.
• Start with a basic scenario and then gradually 

enhance it to add more features to test it.



12

Tips for Exploratory Testing
• Test all input fields.
• Check for all possible error messages.
• Test all negative scenarios.

• Invalid input, mistakes in usage.

• Check the GUI against standards.
• Check integration with external applications.
• Check for complex business logic.
• Try to do the ethical hacking of the application.



13

Pair-Based Exploratory Testing
• Two people test together.

• One uses the computer, the other suggests actions and 
takes notes.

• Can train new developers/testers.

• Benefits
• Increases focus.
• Leads to more constructive ideas.
• Avoids biased input selection.



14

Automating Exploratory Testing
• Use tools to streamline bug reporting and 

reproduction, snapshots, preparation of executable 
test suites for future use.

• A tool captures and records the activities performed 
by the tester. 
• Called capture and replay tools. 



Capture and Replay Tools

15

• Record input during 
exploratory testing.
• The “Capture”

• Capture can be 
replayed to reproduce 
outcomes.

• Capture scripts can be 
extended and altered to 
form new test cases.



Automating Exploratory Testing
• Provides clear steps to reproduce failure.
• Can also judge performance.
• Often used in pair exploratory testing.

• Second tester watches replay and extends the tests.
• First tester watches that replay and extends.
• Exchange again to confirm results.

16



Example - Banking App 
• How would you perform exploratory 

testing?
• Scenarios you would try?
• Features you would focus on?

17



Example - Meeting Planner
Offers the following high-level features:
1. Booking a meeting
2. Booking vacation time
3. Checking availability for a room
4. Checking availability for a person
5. Printing the agenda for a room
6. Printing the agenda for a person

18



Example - Meeting Planner
Mission: Explore the booking features.

Charter:
• Book a meeting
• Book vacation time
• Check that bookings have been made.

19



20

Tours in Exploratory Testing



Using “Tours” in Exploratory Testing
• A tourist visits as many districts of a city as possible 

within the time budget.
• In software, the “city” is the system, and the “districts” are 

aspects of the system.

• A tour give guidelines for exploratory testing.
• Includes suggestions, based on visiting different 

“districts”, to focus exploration.

21



Business District
• Most important features.

• Functionality that will get 
users to buy software.

• Tours focus on features that are used most often.
• Guidebook Tour: Common user journeys, covered in 

user manuals and tutorials.
• Fed-Ex Tour: How data is passed and transformed 

between these features.

22



Guidebook Tour
• Cities advertise top attractions, and 

ensure they are clean and safe.
• Software offers user manuals and tutorials, 

illustrating step-by-step use of features.
• Follow tutorials and execute each step.
• Tests both functionality and accuracy of tutorials.
• If software and tutorial do not match, report an issue.

23



Guidebook Variants
• “Blogger’s Tour”

• Follow guides and scenarios from StackOverflow, blogs, 
books, other tutorials.

• “Pundit’s Tour”
• Create tests based on complaints.
• Try to reproduce their issues.

• “Competitor’s Tour”
• Perform tour on competing products and their guides.
• Identify potential improvements to your system.

24



Fed-Ex Tour
• When a package is sent, it is 

handled by many people and 
passes through many locations.
• In software, data is passed, 

transformed, and passed again before output appears.

• Examine how data is manipulated.
• Validate data after operations. 
• Look at serialization/deserialization.
• (ex: how does shopping site handle mailing addresses?)

25



Fed-Ex Tour Example
• Test Case Management System

• Client app pulls “work 
items” from a server 
and displays it in GUI.

• Test cases, bug reports
• Relies on server 

connection.
• Many clients can modify same work items concurrently.

26



Fed-Ex Tour Example
Test Case Management System
• Must keep data items in sync between clients.

• Failure 1: Modify name of test case, go back to view the 
plan. Must manually refresh to see the updated name.

• Failure 2: Modifying the name of a test plan while a 
second client had it open would crash the app.

• Failure 3: If a test plan is linked to a deleted CI build, the 
app will crash when the plan is opened.

27



28

Let’s take a break.



Historic District
• Historic districts contain 

important old buildings.
• In software: older features still in use.
• Tours verify that they still work and are fault-free.

• Bad Neighborhood Tour: Ensure that faulty code now 
works, and that fixes did not introduce new faults.

• Museum Tour: Ensure that unchanged code still works 
as intended.

29



Bad Neighborhood Tour
• Complex features may have had 

many faults fixed over time.
• Focus on those features and ensure that:

• Reported faults have actually been fixed.
• New faults have not been introduced or uncovered.

• Also check related features for introduced faults.

30



Museum Tour
• Older features may not have 

been modified or retested recently.
• Verify that old code still works in 

the current system.
• Check modification dates, and ensure oldest elements 

are retested.
• Such elements often lack tests, are hard to modify, not 

tested up to current standards.

31



Entertainment District
• Entertainment districts fill in the gaps in a vacation.

• In software: supporting features that aren’t critical.
• Word processor: Making document look nice.

• Tours visit supporting features and ensures they 
are properly intertwined with core features.
• Supporting Actor: Features on-screen with core features
• All-Nighter Tour: Run the software for a long time.

32



Supporting Actor Tour
• Many features linked to a core feature.

• When we search for a product 
(core feature), we see “reviews” and 
“similar items” (non-core features).

• Focus on linked features.
• Will be used often.
• Make sure they can be accessed from the core feature.

33



Tourist District
• Visit functions quickly and 

focus on making a good first
impression.

• Souvenir Tour: Run quick tests on functions, 
examine actions and identify gaps, plan round 2. 

• Supermodel Tour: Test the GUI thoroughly, look 
for GUI errors, inconsistencies, usability errors.

34



Supermodel Tour
• Focus on the GUI.
• As you try different functions:

• Does GUI render properly 
and quickly?

• Are transitions clean?
• Are colors and styles used 

consistently?
• Is GUI usable and accessible 

by those with dyslexia or colorblindness? 
35



Supermodel Tour Example
• Dynamics AX Client

• Resource planning system.
• Shift from APIs to GUI development.
• Led to take-up of exploratory testing.

• Found MANY bugs missed by API tests.
• Many new scenarios and interactions not considered before.
• Testers learned that they knew very little about their own app.
• Now: exploratory testing before new features merged.

36



Supermodel Tour Example
• Actions that exposed DynamicAX issues:

• Modify brightness/contrast/resolution.
• Look for flickering or bad rendering.
• Multiple monitors.

• Appearance faults often impact user perception.

37



Supermodel Tour Example
• Windows Phone

• Set to an uncommon screen resolution.
• Navigated to different calendar views. 
• When selecting a month, the month “view” was centered when it 

should have been top-justified.
• Missing flag for screen resolution in this view.

• Usability of Maps application.
• Device knows current location, but does not use it as default 

when “Location A” field left blank.
• Not a “fault”, but fixing would improve user experience.

38



Supermodel Tour Example
• Windows Media Player

• Many typographical mistakes 
found early in development.

• Look at text and read slowly.
• (count to two before going to the next word)
• Not *serious*, but can harm your reputation.

39



Hotel District
• Return to hotel to take a break.
• Focuses on doing very little and

stopping operations.
• Software “at rest” can be very busy.
• Rained Out Tour: Cancel running operations and see if 

problems are caused.
• Couch Potato Tour: Leave fields blank and use default 

values to assess ability to process partial information.

40



Rained-Out Tour
• Look for operations that can 

be cancelled.
• Cancel midway through, see if 

everything still works.

• Good for finding failures related to the program’s 
inability to clean up after itself.
• Open files, corrupted memory or state.

• Even if there is no cancel button, can click back 
button or close entirely.

41



Rained-Out Tour Example
DynamicsAX
• Change the state of the software before cancelling.

• Opened a pop-up within a form, then closed the form 
while pop-up was open. 

• App crashed because pop-up was still open.
• After opening “User Setup” form, they left it open and 

switched to a different module. 
• Crash when they clicked Setup form’s cancel button. 

42



Rained-Out Tour Example
DynamicsAX
• Reattempt scenario after cancelling.

• New feature ensures that creates/updates/deletes for 
joined data occur within a single operation.

• Cancel changes by clicking “Restore” button on toolbar.
• Changes discarded and replaced by values in database.
• Reattempted to update same record, leading to crash.

43



Rained-Out Tour Example
Test Case Management System
• Interrupted server requests and refresh actions can 

lead to issues.
• Failure 1: Canceled initial connection to project. No 

longer able to manually connect to it. 
• Failure 2: Switching test suites during loading does not 

stop loading of the original suite.
• Failure 3: Clicking refresh button several times causes 

slowdown, as each refresh is handled (not just the latest).

44



Couch Potato Tour
• Do least interaction possible.

• Leave default values in place
• Leave fields blank
• Move forward without offering data.

• Ensures software processes partial, default values.
• We often try complicated scenarios and miss defaults.

45



Seedy District
• Focused on attacking and breaking the system.

• Saboteur Tour: Directly attack 
software via malformed input 
or resource manipulation.

• Antisocial Tour: Try unlikely input 
or perform actions in the wrong order.

• (add 10000 songs, 
try to play empty playlist, 
order 10000000 pairs of shoes)

46



Saboteur Tour
• Force the software to act.
• Understand the resources it requires to successfully 

act.
• Remove of restrict those resources.

• Use corrupt input data, limit network connectivity, allow 
too little RAM, run many other apps at the same time.

• Think of ways to creatively disrupt operations and 
try them out.

47



Saboteur Tour Example
Test Case Management System
• Change or remove necessary resources.

• Failure 1: System crashes if connection to server is 
closed at different points.

• Failure 2: System crashes, restarts, crashes again, etc. if 
the config file is corrupted.

• Failure 3: System crashes if config file is too large.
• (also try making it read-only, changing file type, deleting)

48



Banking, Meeting Planner Examples
• Anything else you would try?

• Additional scenarios?
• Additional focus on certain features?
• Particular tours?

49



50

We Have Learned
• Exploratory Testing

• Tests are not created in advance.
• Testers check the system on-the-fly,

• Often based on ideas noted before beginning. 
• Testing as a thinking idea.

• About discovery, investigation, and role-playing.
• Test design and execution done concurrently.

• Often by directly using the software and its user interfaces.



We Have Learned
• Tours apply different focus areas to exploration

• Business District: Core features
• Historic District: Legacy code and old software versions
• Entertainment District: Supporting functionality, long 

execution sessions
• Tourist District: Looks for gaps in the experience, iterative 

fast rounds of exploration.
• Hotel District: Focuses on supporting functionality
• Seedy District: Attacks and misuse of software

51



Next Time
• Structural Testing
• Before Exercise Session: 

• Install an IDE (IntelliJ, Eclipse) and ensure that JUnit is 
installed and usable. 

• Assignment 2 due February 16
• Questions?

52




