
Lecture 9: Test Adequacy and
Structural Testing

Gregory Gay
DIT636/DAT560 - February 17, 2025

We Will Cover
• Test Adequacy Criteria
• Structural Testing:

• Use structural coverage to judge tests, create new tests.
• Statement, Branch, Condition, Path Coverage

2

Every developer must answer:
 Are our tests are any good?

More importantly… Are they good
enough to stop writing new tests?

3

Have We Done a Good Job?
What we want:
• We’ve found all the faults.

What we (usually) get:
• We compiled and it worked.
• We run out of time or budget.

• (Inadequate testing).

4

Test Adequacy Criteria
Can we compromise between
the impossible and the inadequate?

• Measure “good testing”
• Test adequacy criteria “score” tests by measuring

completion of test obligations.
• Checklists of properties that must be met by test cases.

5

(In)Adequacy Criteria
• Criteria identify inadequacies in the tests.

• If no test reaches a statement, test suite is inadequate for
finding faults in that statement.

• If we plant a fake fault and no test exposes it, our tests
are inadequate at detecting that fault.

• Tests may still miss faults, but maximizing criteria
shows that tests at least meet certain goals.

6

Adequacy Criteria
• Adequacy Criteria based on coverage of factors

correlated to finding faults (hopefully).
• Exercising elements of source code (structural testing).
• Detection of planted faults (mutation testing)

• Widely used in industry - easy to understand, cheap
to calculate, offer a checklist.
• Enable tracking of “testing completion”
• Can be measured in IDEs.

7

Use of Criteria
• Measure adequacy of existing tests

• Create additional tests to cover missed
obligations.

• Create tests directly
• Choose specific obligations, create

tests to cover those.
• Targets for automated test generation.

Test Inputs

Uncovered
Goals

8

New Test
Inputs

9

Structural Testing

Structural Testing
• The structure of software is

valuable information.
• Prescribe how code elements

should be executed, and measure
coverage of execution.

• If-statements, Boolean expressions,
loops, switches, paths between
statements...

10

int[] flipSome(int[] A, int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i] < 0)
A[i] = - A[i];

i++;
}
return A;

}

11

The basic idea:
You can’t find all of the
faults without exercising all
of the code.

Structural Testing - Motivation
• Requirements-based tests should execute most

code, but will rarely execute all of it.
• Helper functions.
• Error-handling code.
• Requirements missing outcomes.

• Covers gaps left by functional testing.

12

Structural Does Not Replace Functional
• Should not be the basis for all test cases!!!!!
• Harder to make verification argument.

• May not map directly to requirements.

• Does not expose missing functionality.
• Useful for supplementing functional tests.

• Functional tests good at exposing conceptual faults.
• Structural tests good at exposing coding mistakes.

13

Control and Data Flow
• We need to understand how system executes.

• Conditional statements result in branches in execution,
jumping between blocks of code.

• Control flow: how control passes through code.
• Which code is executed, and when.

• Data flow: how data passes through code.
• How variables are used in different expressions.

14

Control-Flow Graphs
• Directed graph representing

flow of control.
• Nodes represent blocks of

sequential statements.
• Edges connect nodes in the

sequence they are executed.
• Multiple edges indicate

conditional statements.
i++

 i<N

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0

15

1 if (x==1) {
2 y=45;
3 } else {
4 y=23456;
5 }
6 /* continue */

Control Flow: If-then-else

y=45; y=23456;

/* continue */

x==1

T F

16

1 while (1<x) {
2 x--;
3 }
4 /* continue */

Loop

x--;
/* continue */

1<x

T F

17

Case

1 switch (test) {
2 case 1 : ...
3 case 2 : ...
4 case 3 : ...
5 }
6 /* continue */

case 1... case 3...

/* continue */

test

case 2...

18

Basic Blocks
• Nodes are basic blocks.

• Sequential instructions
with one entry and exit.

• Typically adjacent
statements
• One line might be broken

up (e.g., loop setup is
really three statements).

for(int i=0; i < 10; i++){
sum += i;

}

int i = 0;

i < 10
F

sum += i;
i++;

T

19

Control Flow Graph Example
1. public static String collapseNewlines(String argSt){

2. char last = argStr.charAt(0);

3. StringBuffer argBuf = new StringBuffer();

4.

5. for(int cldx = 0; cldx < argStr.length(); cldx++){

6. char ch = argStr.charAt(cldx);

7. if (ch != ‘\n’ || last != ‘\n’){

8. argBuf.append(ch);

9. last = ch;

10. {

11. }

12.

13. return argBuf.toString();

14. }

1 - 3

int cldx = 0;

cldx <
argStr.length();

6
T

13
F

7

8-9
T

cldx++;

F

20

Structural Coverage Criteria
• Criteria based on exercising:

• Statements (nodes of CFG)
• Branches (edges of CFG)
• Conditions
• Paths
• … and many more

• Measurements used as adequacy criteria

21

Statement Coverage
• Most intuitive criteria. Did we execute every

statement at least once?
• Cover each node of the CFG.

• The idea: a fault in a statement cannot be revealed
unless we execute the statement.

• Coverage = Number of Statements Covered
Number of Total Statements

22

Statement Coverage
int[] flipSome(int[] A, int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i] < 0)
A[i] = - A[i];

i++;
}
return A;

} i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return A

True
False

True
False

i=0

23

Can cover in one test: [-1], 1, 10

A Note on Test Suite Size
• Coverage not correlated to test suite size.

• Some tests might not cover new code.

• However, larger suites often find more faults.
• They exercise the code more thoroughly.
• How code is executed often more important than

whether it was executed.

24

Test Suite Size
• Design small targeted tests, not long tests.

• If test targets few obligations, it is easier to debug.
• If a test covers many obligations, harder to understand

the purpose, harder to locate and fix faults.
• Exception - if cost to execute each test is high.

25

Branch Coverage
• Do tests execute all outcomes of control-diverging

statements (loop, if, switch)?
• Cover each edge of the CFG.

• Helps identify faults in decision statements.
• Coverage = Number of Branches Covered

Number of Total Branches

26

Subsumption
• Criterion A subsumes Criterion B if, for every

program P, every test suite satisfying A also
satisfies B on P.
• If we satisfy A, we have satisfied B.

• Branch coverage subsumes statement coverage.
• Covering all edges in CFG requires covering all nodes.

27

Subsumption
• Shouldn’t we always choose the stronger metric?
• Not always…

• Typically requires more obligations.
• (so, you have to come up with more tests)

• Or tougher obligations.
• (making it harder to come up with the tests).

• May end up with unsatisfiable obligations.
• (no test can cover these obligations)

28

Branch Coverage
int[] flipSome(int[] A, int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i] < 0)
A[i] = - A[i];

i++;
}
return A;

} i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return A

True
False

True
False

i=0

29

● ([-1], 1, 10) leaves one edge uncovered.
● ([-1, 1], 2, 10) achieves Branch Coverage.

30

Let’s take a break.

Decisions and Conditions
• A decision is a Boolean expression.

• Often part of control-flow branching:
• if ((a && b) || !c) { ...

• But not always:
• Boolean x = ((a && b) || !c);

31

Decisions and Conditions
• A decision is a Boolean expression.

• Made up of conditions
• Connected with Boolean operators (and, or, xor, not):
• Boolean variables: Boolean b = false;
• Subexpressions that evaluate to true/false involving (<, >, <=, >=,

==, and !=): Boolean x = (y < 12);

32

Decision Coverage
• Branch Coverage covers a subset of decisions.

• Branching decisions that decide how control is routed
through the program.

• Decision coverage requires that all decisions
evaluate to all outcomes.

• Coverage = Number of Decisions Covered
Number of Total Decisions

33

Basic Condition Coverage
• Several coverage metrics examine the individual

conditions that make up a decision.
• Identify faults in decision statements.

(a == 1 || b == -1) instead of (a == -1 || b == -1)

• Most basic form: make each condition T/F.
• Coverage = Number of Truth Values for All Conditions

2x Number of Conditions

34

Basic Condition Coverage
• Make each condition both True and False

• Does not require covering both outcomes.
• Does not subsume branch or decision coverage.
• (In this case, false outcome for both tests)

Test Case A B
1 True False
2 False True

(A and B)

35

Basic Condition Coverage
int[] flipSome(int[] A, int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i] < 0)
A[i] = - A[i];

i++;
}
return A;

} i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return A

True
False

True
False

i=0

36

● ([-1, 1], 2, 10)
○ Negative value in array
○ Positive value (but < X)

● ([11], 1, 10)
○ Positive, but > X

● Both eventually cause i < N to be false.

Compound Condition Coverage
• Evaluate every combination of the conditions

• Subsumes branch and decision coverage.
• All outcomes are now tried.

• Can be expensive in practice.

Test Case A B

1 True True

2 True False

3 False True

4 False False

(A and B)

37

Compound Condition Coverage
• Requires many test cases.

(A and
(B and
(C and
D))))

Test Case A B C D

1 True True True True

2 True True True False

3 True True False True

4 True True False False

5 True False True True

6 True False True False

7 True False False True

8 True False False False

9 False True True True

10 False True True False

11 False True False True

12 False True False False

13 False False True True

14 False False True False

15 False False False True

16 False False False False

38

Short-Circuit Evaluation
• In many languages, if the first condition determines

the result of the entire decision, then fewer tests are
required.
• If A is false, B is never evaluated.

Test Case A B

1 True True

2 True False

3 False -

(A and B)

39

Modified Condition/Decision Coverage(MC/DC)
• Requires:

• Each condition evaluates to true/false
• Each decision evaluates to true/false
• Each condition shown to independently affect outcome

of each decision it appears in.
Test Case A B (A and B)

1 True True True
2 True False False
3 False True False
4 False False False

40

● Tests 1, 3 show independent impact of A.
● Tests 1, 2 show independent impact of B.
● Test 4 adds nothing and can be skipped.

Activity
Draw the CFG and write tests that provide statement, branch,
and basic condition coverage over the following code:
public int search(String[] A, String what){
 int index = 0;

if ((A.length == 1) && (A[0] == what)){
return 0;

} else if (A.length == 0){
return -1;

} else if (A.length > 1){
while(index < A.length){

if (A[index] == what){
return index;

} else
index++;

}
}

}
 return -1;
}

41

[] (empty array), “Bob”

Executes lines:
1, 2, 3,
(Branch 3-F),
5,
(Branch 5-T),
6

Activity - Control Flow Graph
index=0

(A.length ==1)
&& (A[0] = what)

return 0;

A.length
==0

False

True

return -1;

True

A.length
>1

False
return -1;

False

index <
A.lengthTrue

A[index]
== what

True

return index;True

index++;
False

False

42

Activity - Possible Solution
index=0

(N==1) &&
(A[0] = what)

return 0;

N==0
False

True

return -1;

True

N>1
False

return -1;
False

index
< N

True

A[index]
== what

True

return index;
True

index++;
False

False

1: [“Bob”, “Jane”], “Jane”
2: [“Bob”, “Jane”], “Spot”
3: [], “Bob”
4. [“Bob”], “Bob”
5. [“Bob”], “Spot”

43

Loop Boundary Coverage
• Focus on problems related to loops.
• For each loop, write tests that:

• Skip the loop entirely.
• Take exactly one pass through the loop.
• Take two or more passes through the loop.

44

Nested Loops
• Often, loops are nested within other loops.

• For each level, execute 0, 1, 2+ times

• In addition:
• Test innermost loop first with outer loops executed

minimum number of times.
• Move one loops out, keep the inner loop at “typical”

iteration numbers, and test this layer as you did the
previous layer.

• Continue until the outermost loop tested.

45

Concatenated Loops
• One loop executes. Next line of code starts a new

loop. These are generally independent.
• If not, follow a similar strategy to nested loops.

• Start with bottom loop, hold higher loops at minimal iterations.
• Work up towards the top, holding lower loops at “typical”

iteration numbers.

46

Why These Loop Strategies?
• If proving correctness, we establish preconditions,

postconditions, and invariants that are true on each
execution of loop.
• The loop executes zero times when the postconditions

are true in advance.
• The loop invariant is true on loop entry (one), then each

loop iteration maintains the invariant (many).
• (invariant and !(loop condition) implies postconditions are met)

• Loop testing strategies echo these cases.
47

Activity: Binary Search
For the binary-search code:
1. Draw the control-flow graph for the method.
2. Develop a test suite that achieves loop boundary

coverage (executes while loop 0, 1, 2+ times).

48

Activity: Binary Search
1-5

7

98

FT

25
F

14

T

15

16
T

18
F 19

21

T

F

13

Tests that execute the loop:
● 0 times
● 1 time
● 2+ times

key = 1, T = [1]
key = 2, T = [1, 2]
key = 3, T = [1, 2, 3]

49

The Infeasibility Problem
Sometimes, no test can satisfy an obligation.
• Impossible combinations of conditions.
• Error-handling for problems that can’t really occur.
• Dead code.

50

The Infeasibility Problem
• Stronger criteria call for potentially infeasible

combinations of elements.

(a > 0 && a < 10)

• It is not possible for both conditions to be false.
• A would negative and greater than 10

• Loop boundary coverage
• Maybe a loop can’t be skipped.

51

The Infeasibility Problem
• Adequacy “scores” based on coverage.

• 95% branch coverage, 80% MC/DC coverage, etc.
• Stop once a threshold is reached.
• Unsatisfactory - obligations are not equally important.

• Manual justification for omitting each impossible
test obligation.
• Helps refine code and testing efforts.
• … but very time-consuming.

52

Which Coverage Criterion Should I Use?

Statement Coverage

Branch Coverage Basic Condition
Coverage

Branch and Condition
Coverage

MC/DC Coverage

Power,
Cost

Loop Boundary Testing

53

Compound Condition
Coverage

We Have Learned
• Test adequacy “measures” how good our tests are.

• Covering obligations removes inadequacies from suites.
• Code structure is used in many adequacy criteria.

• Based on statements, branches, conditions, loops, etc.

54

55

Next Time
• Next class: Path-based coverage and data-flow
• Exercise Session: Structural Coverage

• Homework - Assignment 3 due March 2nd.

