%

o

‘

7

g @8}}

e/

2

'Pq‘ .6‘
1891

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Exercise Session 3: N/
Unit Testing \‘

Gregory Gay
DIT636/DAT560 - February 11, 2026

6 CHALMERS | (&) UNIVERSITY OF GOTHENBURG

* Everybody likes meetings.
 Not true - but we need to book them.

 We don’t want to double-book
rooms or employees for meetings.

« System to manage schedules and
meetings.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Planning System

Offers the following high-level features:
Booking a meeting

Booking vacation time

Checking avalilability for a room
Checking availability for a person
Printing the agenda for a room
Printing the agenda for a person

ok wwh =

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Develop a Test Plan

In groups, come up with an informal “test plan”.

 Given the features and the code documentation,

plan unit tests to ensure that these features can be
performed without error.

* Omit scheduling, etc. - just come up with a list of
test cases to create.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Food for Thought

* Try running the code!
« Perform exploratory testing to test it at the system level.

* Think about normal and erroneous inputs/actions.

 How many things can go wrong?

* You will probably be able to add a normal meeting, but
can you add a meeting for February 35th?

* Try it out - you have the code.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Develop Unit Tests

» |f a testis supposed to cause an exception to be
thrown, make sure you check for that exception.

 Make sure that expected output is detailed enough
to ensure that - if something is supposed to fail -
that it fails for the correct reasons.
« Use proper assertions.

3 CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example - Adding Midsommar

@Test
public void testAddMeeting holiday() {

- Calendar calendar = new Calendar();

try {
Meeting midsommar = new Meeting(6, 26, "Midsommar"); // Create holiday -

calendar.addMeeting(midsommar); // Add to calendar object.
Boolean added = calendar.isBusy(6, 26, 0, 23); // Verify that it was added.
assertTrue(added, "Midsommar should be marked as busy on the calendar"); -

} catch(TimeConflictException e) {
fail("Should not throw exception: " + e.getMessage()); -

{8%)) UNIVERSITY OF GOTHENBURG

Can you expose the faults?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Can you expose the faults?

1: getMeeting and removeMeeting perform no error
checking on dates.
public Meeting getMeeting(int month, int day, int index){

return occupied.get(month).get(day).get(index);
}

public void removeMeeting(int month, int day, int index){
occupied.get(month).get(day).remove(index);

¥
e

UNIVERSITY OF GOTHENBURG

Can you expose the faults?
2: Calendar has a 13th month.

public Calendar(){
occupied = new ArraylList<ArraylList<ArraylList<Meeting>>>();

for(int i=0;i<=13;i++){
// Initialize month
occupied.add(new ArrayList<ArraylList<Meeting>>());
for(int j=0;7j<32;j++){
// Initialize days
occupied.get(i).add(new ArraylList<Meeting>());

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Can you expose the faults?

3: November has 30 days.
Oh - and we just added a meeting to a day with a date that
does not match that date.

occupied.get(11l).get(30).add(new Meeting(11l,31,"Day does not
exist"));

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Can you expose the faults?

4: Used a >= in checking for illegal times. December
no longer exists.

if(mMonth < 1 || mMonth >= 12){
throw new TimeConflictException("Month does not

exist.");

}

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Can you expose the faults?

5. We should be able to start and end a meeting in the
same hour.

if(mStart >= mEnd){
throw new TimeConflictException("Meeting starts before it

ends.");

}

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

What Other Faults Can You Find?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

