
DIT636 / DAT560 - Unit Testing Exercise

You have been hired to test our new calendar app! Congratulations!(?)
This program allows users to book meetings, adding those meetings to calendars maintained for
rooms and employees. It will actively prevent multiple bookings, and will manage the busy and
open status for employees and rooms.

The system enables the following high-level functions:

●​ Booking a meeting
●​ Booking vacation time
●​ Checking availability for a room
●​ Checking availability for a person
●​ Printing the agenda for a room
●​ Printing the agenda for a person

The main interface (user input through the command line) is provided by the Main method in the
PlannerInterface class. Your goal in this exercise is to perform unit testing of the low-level
classes that are integrated by this interface.

As a tester, you have full access to the source code, available at:
https://github.com/Greg4cr/dit636_examples/tree/main/src/ex3-meeting-planner ​

IDE Configuration Instructions:
https://junit.org/junit5/docs/current/user-guide/#running-tests ​
https://www.jetbrains.com/help/idea/junit.html (IntelliJ IDEA)

1.​ Formulate test case ideas.
○​ Given the above features and the code documentation, plan out a series of unit

tests to ensure that these features can be performed without error by the classes.
■​ Make sure you think about both the normal execution and illegal inputs

and actions that could be performed. Think of as many things that could
go wrong as you can! For instance, you will probably be able to add a
normal meeting, but can you add a meeting for February 35th? Try it out.

■​ We recommend performing “exploratory testing” through the interface (run
PlannerInterface.java).

2.​ Write tests in the jUnit framework.
○​ If a test is supposed to cause an exception to be thrown. Make sure you check

for that exception.
○​ Make sure that your expected output is detailed enough to ensure that - if

something is supposed to fail - that it fails for the correct reasons. Use
appropriate assertions.

https://github.com/Greg4cr/dit636_examples/tree/main/src/ex3-meeting-planner
https://junit.org/junit5/docs/current/user-guide/#running-tests
https://www.jetbrains.com/help/idea/junit.html

jUnit Basics

JUnit is a Java-based toolkit for writing executable tests.

Choose a target from the code base:

public class Calculator {​

 public int evaluate (String expression) {​

 int sum = 0;​

 for (String summand: expression.split("\\+"))​

 sum += Integer.valueOf(summand);​

 return sum;​

 }​

}

Write a “testing class” containing a series of unit tests centered around testing that target.

●​ Tests and code classes are generally kept in separate folders with parallel class
structure.

○​ For example, if Calculator is in package cse.dit636.calculator, the code would
generally found in the folder
src/main/java/cse/dit636/calculator/Calculator.java

○​ Your tests would then be in the folder
src/test/java/cse/dit636/calculator/CalculatorTest.java. This test class is also
in package cse.dit635.calculator.

●​ Each test is denoted @test​

import static org.junit.Assert.assertEquals;​

import org.junit.Test;​

public class CalculatorTest {​

 @Test​

 public void testEvaluate_normal() {​

 Calculator calculator = new Calculator();​

 int sum = calculator.evaluate("1+2+3");​

 assertEquals(6, sum);​

 }​

}

●​ @BeforeEach annotation defines a common test initialization method:
@BeforeEach

public void setUp() throws Exception

{

this.registration = new Registration();

this.registration.setUser(“ggay”);

}

●​ @AfterEach annotation defines a common test tear down method:

@AfterEach

public void tearDown() throws Exception

{

this.registration.logout();

this.registration = null;

}

●​ @BeforeClass defines initialization to take place before any tests are run.
@BeforeClass​

 public static void setUpClass() {

myManagedResource = new ​

​ ​ ManagedResource();​

 }

●​ @AfterClass defines tear down after all tests are done.
 @AfterClass​

 public static void tearDownClass() throws IOException {​

 myManagedResource.close();​

 myManagedResource = null;​

 }

●​ Assertions are a "language" of testing constraints that you place on the output of
methods and on class variables.

○​ assertEquals, assertArrayEquals
■​ Compares two items for equality.
■​ For user-defined classes, relies on .equals method.

●​ Compare field-by-field
●​ assertEquals(studentA.getName(), studentB.getName()) ​

rather than assertEquals(studentA, studentB) ​
​
@Test​
public void testAssertEquals() {​
 assertEquals("text", "text", "failure - strings are not equal");
}

○​ assertArrayEquals compares arrays of items.​
​ @Test​
​ public void testAssertArrayEquals() {​
 ​ ​ byte[] expected = "trial".getBytes();​
 ​ ​ byte[] actual = "trial".getBytes();​
 ​ ​ assertArrayEquals(expected, actual,"failure - byte arrays ​
​ ​ ​ not same”);​
​ }

○​ assertFalse, assertTrue
■​ Take in a string and a boolean expression.
■​ Evaluates the expression and issues pass/fail based on outcome.
■​ Used to check conformance of solution to expected properties.​

@Test​
public void testAssertFalse() {​

 assertFalse((getGrade(studentA, “CSCE747”).equals(“A”), "failure - should be
false");​
}​
@Test
public void testAssertTrue() {

assertTrue((getOwed(studentA) > 0), "failure - should be true");​

}

○​ assertNull, assertNotNull
■​ Take in an object and checks whether it is null/not null.
■​ Can be used to help diagnose and void null pointer exceptions. ​

@Test​
public void testAssertNotNull() {​
 assertNotNull(new Object(), "should not be null");​
}​
​
@Test
public void testAssertNull() {​

 assertNull(null, "should be null");​

}

○​ assertSame,assertNotSame
■​ Checks whether two objects are clones.
■​ Are these variables aliases for the same object?

●​ assertEquals uses .equals().
●​ assertSame uses ==​

@Test​
public void testAssertNotSame() {​
 assertNotSame(studentA, new Object(), "should not be same Object");​
}​
@Test​
public void testAssertSame() {​
 Student studentB = studentA;​
 assertSame(studentA, studentB, "should be the same");​
}

○​ We can use assertions to verify that expected exceptions are thrown:
@Test​
void exceptionTesting() {​
 Throwable exception = assertThrows(​
 IndexOutOfBoundsException.class, ​
 () -> { ​
 new ArrayList<Object>().get(0);​
 });​
 assertEquals("Index:0, Size:0", ​
 exception.getMessage());​
}

■​ assertThrows checks whether the code block throws the expected
exception.

■​ assertEquals can be used to check the contents of the stack trace.

