
Exercise 4: Structural Testing

Gregory Gay
DIT636/DAT560 - February 16, 2026

The Planning System Returns

• Everybody likes meetings.
• Not true - but we need to book them.

• We don’t want to double-book
rooms or employees for meetings.

• System to manage schedules and
meetings.

2

2018-08-27 Chalmers University of Technology 3

Structural Testing
• You already tested this system based on the

functionality. Now we want to fill in the gaps.
• Goal: 100% Statement Coverage (Line Coverage)

of all classes except Main and the exceptions.
• First, measure coverage of your existing tests
• Then, fill in any gaps with additional tests targeting the

missed code.

4

Measuring Coverage
• The easiest way: use an IDE plug-in.

• IntelliJ: IntelliJ IDEA code coverage runner:
https://www.jetbrains.com/help/idea/code-coverage.html

• VSCode:
https://code.visualstudio.com/docs/debugtest/testing#_test-c
overage

• Command line:
• Cobertura
• JaCoCo available as a Maven plug-in:

https://medium.com/capital-one-tech/improve-java-code-with
-unit-tests-and-jacoco-b342643736ed

https://www.jetbrains.com/help/idea/code-coverage.html
https://code.visualstudio.com/docs/debugtest/testing#_test-coverage
https://code.visualstudio.com/docs/debugtest/testing#_test-coverage
https://medium.com/capital-one-tech/improve-java-code-with-unit-tests-and-jacoco-b342643736ed
https://medium.com/capital-one-tech/improve-java-code-with-unit-tests-and-jacoco-b342643736ed

5

Activity
• If tests from last week don’t get 100% line coverage.
• Target methods from each class using one of the

coverage criteria from class.
• Recommendation: Target Branch Coverage
• Skip PlannerInferface and exception.

• If you find code that cannot be covered, explain why.
• If you feel some code doesn’t need covered, explain.

6

Example
From Calendar:
public boolean isBusy(int month, int day, int start, int end){
 boolean busy = false;
 checkTimes(month,day,start,end);
 for(Meeting toCheck : occupied.get(month).get(day)){
 if(start >= toCheck.getStartTime() && start <= toCheck.getEndTime()){
 busy=true;
 }else if(end >= toCheck.getStartTime() && end <= toCheck.getEndTime()){
 busy=true;
 }
 }
 return busy;
}

1
2

3

Loop Condition: Set up Calendar with 1+ meetings on the
date that we provide as input.
Will enter and exit the loop, providing coverage.

1

T, F

7

Example
From Calendar:
public boolean isBusy(int month, int day, int start, int end){
 boolean busy = false;
 checkTimes(month,day,start,end);
 for(Meeting toCheck : occupied.get(month).get(day)){
 if(start >= toCheck.getStartTime() && start <= toCheck.getEndTime()){
 busy=true;
 }else if(end >= toCheck.getStartTime() && end <= toCheck.getEndTime()){
 busy=true;
 }
 }
 return busy;
}

1
2

3

● Set up Calendar with 1+ meetings on the date that
we provide as input.

● Meeting does not conflict with start or end provided.
● Covers False for 2 and 3.

2
3

T, F
F

F

8

Example
From Calendar:
public boolean isBusy(int month, int day, int start, int end){
 boolean busy = false;
 checkTimes(month,day,start,end);
 for(Meeting toCheck : occupied.get(month).get(day)){
 if(start >= toCheck.getStartTime() && start <= toCheck.getEndTime()){
 busy=true;
 }else if(end >= toCheck.getStartTime() && end <= toCheck.getEndTime()){
 busy=true;
 }
 }
 return busy;
}

1
2

3

● Set up Calendar with 1+ meetings on the date that
we provide as input.

● Input start time falls after the meeting start time,
before the meeting end time.

2

T, F
T

9

Example
From Calendar:
public boolean isBusy(int month, int day, int start, int end){
 boolean busy = false;
 checkTimes(month,day,start,end);
 for(Meeting toCheck : occupied.get(month).get(day)){
 if(start >= toCheck.getStartTime() && start <= toCheck.getEndTime()){
 busy=true;
 }else if(end >= toCheck.getStartTime() && end <= toCheck.getEndTime()){
 busy=true;
 }
 }
 return busy;
}

1
2

3

● Set up Calendar with 1+ meetings on the date that
we provide as input.

● Input start time is BEFORE meeting start time.
● Input end time falls after the meeting start time,

before the meeting end time.

3

T, F

T

10

@Test

public void testIsBusyCoverage_1TF_2F_3F() {

// Meeting with no conflict with our dates.

Meeting noConflict = new Meeting(1,13,1,3);

Calendar calendar = new Calendar();

// Add meeting to calendar

try {

calendar.addMeeting(noConflict);

 // Enter a time that has no conflict.

// Covers branches 1TF, 2F, 3F

boolean result = calendar.isBusy(1, 13, 14, 16);

assertFalse(result, "Should cause no conflict");

} catch(TimeConflictException e) {

fail("Should not throw exception: " + e.getMessage());

}

}

● Set up Calendar with 1+ meetings
on the date that we provide as input.

● Meeting does not conflict with start
or end provided.

11

@Test

public void testIsBusyCoverage_1TF_2T() {

Meeting noConflict = new Meeting(1,13,1,3);

Calendar calendar = new Calendar();

// Add meeting to calendar

try {

calendar.addMeeting(noConflict);

 // Start time will fall after meeting start time

// and before meeting end time

// Covers branches 1TF, 2T

boolean result = calendar.isBusy(1, 13, 2, 3);

assertTrue(result, “Should be a conflict with start time");

} catch(TimeConflictException e) {

fail("Should not throw exception: " + e.getMessage());

}

}

● Set up Calendar with 1+ meetings
on the date that we provide as input.

● Input start time falls after the
meeting start time, before the
meeting end time.

12

@Test

public void testIsBusyCoverage_1TF_2F_3T() {

Meeting noConflict = new Meeting(1,13,2,4);

Calendar calendar = new Calendar();

// Add meeting to calendar

try {

calendar.addMeeting(noConflict);

 // Start time will fall before meeting start time

// End time will fall after meeting start time, before end time

// Covers branches 1TF, 2F, 3T

boolean result = calendar.isBusy(1, 13, 1, 3);

assertTrue(result, "Should be a conflict with end time");

} catch(TimeConflictException e) {

fail("Should not throw exception: " + e.getMessage());

}

}

● Set up Calendar with 1+ meetings
on the date that we provide as input.

● Input start time is BEFORE
meeting start time.

● Input end time falls after the
meeting start time, before the
meeting end time.

