
Exercise 6:
Finite State Verification

Gregory Gay
DIT636/DAT560 - March 4, 2026

2

Finish Lecture 13 Activity First!

2018-08-27 Chalmers University of Technology 3

Microwave
Consider a simple microwave controller modeled as a
finite state machine using the following state variables:
• Door: {Open, Closed} -- sensor input indicating

state of the door
• Button: {None, Start, Stop} -- button press

(assumes at most one at a time)
• Timer: 0...999 -- (remaining) seconds to cook
• Cooking: Boolean -- state of the heating element

4

Partial Model
MODULE microwave

VAR

 Door: {Open, Closed};

 Button: {None, Start, Stop};

 Timer: 0..999;

 Cooking: boolean;

ASSIGN

 init(Door) := Closed;

 init(Button) := None;

 init(Timer) := 0;

 next(Timer) :=

 case

 Timer > 0 & Cooking=TRUE : Timer - 1;

 Timer > 0 & Cooking=FALSE & Button!=Stop : Timer;

 Button=Stop : 0;

 Timer=0 : 0..999;

 TRUE: Timer;

 esac;

 init(Cooking) := FALSE;

 next(Cooking) :=

 case

 -- Suggestion: Start by defining the

 -- conditions that would cause

 -- cooking to start. Then add conditions

 -- that would make it stop.

 -- Finally, ensure it will continue

 -- running if it is supposed to.

 (FILL THIS IN)

 TRUE: FALSE;

 esac;

5

Example Properties
• CTL: The microwave shall stop cooking after the

door is opened.
• AG (Door = Open -> AX (!Cooking))

• LTL: It shall never be the case that the microwave
can continue cooking indefinitely.
• G (Cooking -> F (!Cooking))

• Formulate the other informal requirements in
temporal logic.

Linear Time Logic Formulae
Formulae written with propositional variables (boolean
properties), logical operators (and, or, not, implication),
and a set of modal operators:

X (next) X (weather == rain) In the next state, it will be raining.

G (globally) G (weather == rain) Now and in all future states, it will be raining.

F (finally) F (weather == rain) Eventually, there will be a state where it is raining.

U (until) (weather == rain) U
(temperature < 0)

It will rain until the temperature drops below 0.
(The value of “weather” can change once temperature is less than 0)

R (release) weather == rain) R
(temperature < 0)

It will cease to rain after the temperature drops below 0.
(Both operands must be true at the same time for at least one state
before the value of “weather” can change)

6

Computation Tree Logic Formulae
Combine path quantifier (A, E) with a temporal operator (X, G, F, U, W):

A (all) Affects all paths branching out from the current state.

E (exists) Affects at least one path branching out from the current state.

7

X (next) X (weather == rain) In the next state on this path, it will be raining.

G (globally) G (weather == rain) Now and in all future states on this path, it will be raining.

F (finally) F (weather == rain) Eventually on this path, there will be a state where it is raining.

U (until) (weather == rain) U
(temperature < 0)

On this path, it will rain until the temperature drops below 0.
(The temperature must eventually be less than 0)

W (weak until) weather == rain) W
(temperature < 0)

On this path, it will rain until the temperature drops below 0.
(The temperature could remain above 0 forever)

8

Try to Verify the Model and Properties
• http://nusmv.fbk.eu/

• NuSMV homepage (tool download, tutorials, etc.)
• Use NuSMV 2.6.

• Define next(Cooking) such that the two example
properties hold. See if your properties hold.
• If they don’t, make sure the properties are correct.
• Then, make sure the model is complete and correct.

• If you get stuck, a sample solution is on Canvas.

http://nusmv.fbk.eu/

