CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Lecture 1: Software Quality,) N
Verification, and Validation,. AN T

Gregory Gay
DIT636/DAT560 - January 19, 2026)

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

menti.com, code 5493 1979

When is software ready for release?

\;2 CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Our Society Depends on Software

This is software: So is this:
WEB IMAGES = 0 . TNE R

(!
o

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Flawed Software Will Hurt Profits

« 2002: “Bugs cost the U.S. economy $60 billion
annually... and testing would relieve one-third of

the cost.” (NIST)
* “In 2016, that number jumped to $1.1 trillion”
(Cohane)

* “Finding and fixing a software problem after delivery
is often 100 times more expensive than finding and

fixing it before.” (Barry Boehm (USC))

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Flawed Software Will Be Exploited

40 Million Card Accounts
Affected by Security Breach at
Target

7 e = = Y-Rf

Sony: Hack so bad, our computers still don't
work

By Charles Riley @CRrileyCNN January 23,2015: 10:10 AMET

(I3 Recommend 1R @S P3E

UStream

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular OpenSSL
cryptographic software library. This weakness allows stealing the
information protected, under normal conditions, by the SSL/TLS
encryption used to secure the Internet. SSL/TLS provides
communication security and privacy over the Internet for applications
such as web, email, instant messaging (IM) and some virtual private
networks (VPNs).

The Heartbleed bug allows anyone on the Internet to read the memory
of the systems protected by the vulnerable versions of the OpenSSL
software. This compromises the secret keys used to identify the service
providers and to encrypt the traffic, the names and passwords of the
users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to
impersonate services and users.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Flawed Software Will Hurt People

In 2010, software faults were responsible for
26% of medical device recalls.

2011-2015: 627 devices (1.4 million units)
recalled, 12 devices (191K units) in
“highest-risk” category.

- “There is a reasonable probability that use of
~~+ these products will cause serious adverse
health consequences or death.”

- US Food and Drug Administration
T

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

This Course

 What is “good” software?
« Determined using quality attributes
« (dependability, performance, scalability, availability, ...)

 How do we show it is “good”?
e Verification and Validation
* Process containing testing and analysis activities.

{8%)) UNIVERSITY OF GOTHENBURG

Today’s Goals

Introduce The Class

2018-08-27

AKA: What the heck is going on?
Go over course PM

Clarify expectations
Assignments/grading

Answer any questions

Introduce the idea of “quality”

Cover the basics of verification and validation

Chalmers University of Technology

{8%)) UNIVERSITY OF GOTHENBURG

Contact Details

* Instructor: Greg Gay (Dr., Professor, $#*%)
« E-mail: ggay@chalmers.se

 Website:

 https://chalmers.instructure.com/courses/38208

* https://greg4cr.qgithub.io/courses/spring26dit636

mailto:ggay@chalmers.se
https://chalmers.instructure.com/courses/38208
https://greg4cr.github.io/courses/spring26dit636

UNIVERSITY OF GOTHENBURG

Teaching Team

« Teaching Assistants
» Lirong “Esme” Yi (lirongy@chalmers.se)
« Lialia Beniaminova (gusbeniali@student.gu.se)
» Zhuangzhuang Gong (gongzhuangzhuang928@gmail.com)
» Vasilena Karaivanova (qusvasika@student.gu.se)
* Maksym Matsuhyria (Qqusmaksyma@student.qu.se)
* lonel Pop (guspopio@student.qu.se)
* Rohma Wajid Rasul (rohmawajidrasul@gmail.com)

» Student Representatives
« Seeking GU and Chalmers students - email ggay@chalmer.se

mailto:lirongy@chalmers.se
mailto:gusbeniali@student.gu.se
mailto:gongzhuangzhuang928@gmail.com
mailto:gusvasika@student.gu.se
mailto:gusmaksyma@student.gu.se
mailto:guspopio@student.gu.se
mailto:rohmawajidrasul@gmail.com
mailto:ggay@chalmer.se

i) CHALMERS | €8%)) UNIVERSITY OF GOTHENBURG

Communication and Feedback

Post questions to Canvas discussion forum
(preferred) or e-mail to myself/TAs.

Send me private or sensitive questions!
Send feedback to course reps or me.
Contact studentoffice@cse.gu.se for questions

related to registration, sign-up, LADOK.

mailto:studentoffice@cse.gu.se

CHALMERS |) UNIVERSITY OF GOTHENBURG

Desired Course Outcomes

Knowledge and understanding

e Explain quality assurance models in software engineering and the contents of
quality assurance plans

e Describe the distinction between verification and validation

e Name and describe the basic concepts on testing, as well as different testing
techniques and approaches

e Describe connection between development phases and kinds of testing

e Exemplify and describe a number of different test methods, and be able to use them
in practical situations

e Exemplify and describe tools used for testing software, and be able to use them and
interpret their output

{8%)) UNIVERSITY OF GOTHENBURG

Desired Course Outcomes

Competence and skills

Define metrics required for monitoring the quality of projects, products and
processes in software engineering

Construct appropriate and meaningful test cases, and interpret and explain
(to stakeholders) the results of the application of such test cases (using
appropriate tools) to practical examples

Develop effective tests for systems at differing levels of granularity (e.g.,
unit and system level)

Plan and produce appropriate documentation for testing
Apply different testing techniques on realistic examples

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Desired Course Outcomes

Judgement and approach

e |dentify emerging techniques and methods for
qguality management using relevant sources

e |dentify and hypothesize about sources of program
failures, and reflect on how to better verify the
correctness of such programs

CHALMERS | NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Lecture Plan (approximate)

Lectures 4 - 8, 15

Test Creation
Quality

System (Integration)

Lectures 2-3 Unit Testing

Properties Testing
Automated
: Exploratory and
Scenarios GUI Testing (Search-Bgsed)
Generation

Lectures 9 - 11 Formal Lectures 13 - 14

Verification

Model-Based
Testing and
Verification

Test Adequacy

Structural
Testing

Fault-Based
Testing

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Changes from Last Time

« Slides have been updated.
« Some examples have been added or reworked.

* Assignments have been updated and reworked.
* Assignment 4 split in two (feedback before exams).
 New case examples.

s o 3
A\

g6} CHALMERS | @8§) yNIVERSITY OF GOTHENBURG

(Optional) Course Literature

SOFTWARE TESTING
 Software Testing and Analysis, AL
Mauro Pezze and Michal Young.

* Free e-book

e https://ix.cs.uoregon.edu/~michal/book/free.php

Conriohted ateril

« Effective Software Testing: A Developer's
Guide, Mauricio Aniche.
* Free e-book (GU or Chalmers library)
» https://www.effective-software-testing.com/

https://ix.cs.uoregon.edu/~michal/book/free.php
https://www.effective-software-testing.com/

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Prerequisite Knowledge

* Main language: Java.
« Some code examples also in Python, C/C++, JavaScript.

» Good to know:
« Basic understanding of REST APIs.

« Basic understanding of formal logic.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Course Design

_Lectu res

Exercise Sessions Group Assignments

>

]

-

—

— >

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Examination Form

Sub-Courses

« Written examination (Skriftlig tentamen), 4.5 higher
education credits
* Assignments (Inlamningsuppgifter), 3 higher

education credits
« Grading scale: Fail (U), 3-5

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Assessment

* Individual hall exam at end of course

« Written assignments in teams of three.
e You may choose your own team.
e See Assignment 0 on Canvas. Due Sunday.

* Five written assignments.
« Equally weighted.
« Module grade is average of assignment grades.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Assessment

« Self and peer-evaluation due with each assignment

* May be used to adjust individual assignment grades.
« AKA: don’t slack off!

« Late assignments, -20% per day, 0% after two days

+ If final assignment average is failing, all
assignments must be redone/resubmitted.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Grading Scale

0-49% Fail (U)

50-69% 3

 Score of 1-100, converted to Fail, 3-5: sz
* Final course grade:

(right) Exam
Grade

U 3 4 5
(down)
Assignment
Grade
V) U U U U
3 U 3 4 4
4 U 3 4 5
5 U 4 4 5

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Expected Workload

* This class can be time consuming.
* Understanding the material takes time.
* Project work requires team coordination.

* Do not underestimate the assignments.
Good engineering is hard.

Planning and scheduling your time is essential.
Do NOT delay getting started.

Appoint a team leader (and rotate the role)

6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Other Policies

Integrity and Ethics:

* Work you submit must be your own.

« Generative Al: Can be used to brainstorm, summarize
concepts, fix grammar, generate plots (i.e., to support
learning), but all text and code must be written by YOU.

 If you want to use GenAl, ask me first, disclose in
submission.

» Collaboration is not permitted on assignments.
* Violation = failing grade and reporting.

{8%)) UNIVERSITY OF GOTHENBURG

Other Policies

Classroom Climate:

Arrive on time, don’t talk during lecture unless part of class discussion.
Disruptive students will be warned and dismissed.

Diversity

Students in this class are expected to work with all other students, regardless
of gender, race, sexuality, religion, etc. Zero-tolerance policy for discrimination.

Special Needs

We will provide reasonable accommodations to students that have special
needs. Contact teaching team early to discuss individual needs.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break!

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

When is software ready for release?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The short (and not so simple) answers...

* We release when we can’t find any bugs...
* We release when we have finished testing...
* We release when quality is high...

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

“When Quality is High?”

« What does quality mean?
 How do we measure quality?
« What is “enough” quality?

 How do we assess quality at a single point in time
and over the project lifespan?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Software Quality

« We all want high-quality software.
 We don't all agree on the definition of quality.

* Quality encompasses what and how.
 How dependable it is.

- But also...
* How quickly it runs.
* How available its services are.
How easily it scales to more users.

* Hard to measure and assess objectively.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Quality Attributes

* Describe desired properties of the system.

* Developers prioritize attributes and design system
that meets chosen thresholds.

* Most relevant for this course: dependability

 Ability to consistently offer correct functionality, even
under unforeseen or unsafe conditions.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Quality Attributes
e Availability

 Ability to carry out a task when needed, to minimize
“downtime”, and to recover from failures.
e Performance
 Ability to meet timing requirements. When events occur,
the system must respond quickly.
e Scalability
 Ability to maintain dependability and performance as the
number of concurrent requests grows.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Quality Attributes

e Security
* Ability to protect information from unauthorized access
while providing service to authorized users.

 Modifiability
 Ability to enhance software by fixing issues, adding
features, and adapting to new environments.

* Testability
 Ability to easily identify faults in a system.
« Probability that a fault will result in a visible failure.

%) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

Quality Attributes

* Interoperability
 Ability to exchange information with and provide
functionality to other systems.
e Usability
 Ability to enable users to perform tasks and provide
support to users.

 How easy it is to use the system, learn features, adapt to
meet user needs, and increase confidence and
satisfaction in usage.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Other Quality Attributes

e Environmental Sustainability
o Ability to operate with a minimal carbon footprint.
o Minimal energy consumption.

o Ability to execute operations in locations with high
renewable energy resources.

e Portability

o Ability to translate the system to new hardware and
software platforms.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Quality Attributes

* These qualities often conflict.

 Architecture with few components: improved
performance, but lower maintainability.

« Redundant data helps availability, but lessens security.
« Encryption increases security, but lowers performance.

* Important to decide what is important, and set a
threshold on when it is “good enough”.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

When is Software Ready for Release?

Software is ready for release when you can argue that
it shows sufficient quality.

* Requires choosing quality attributes.
* Requires specifying measurements and thresholds.

* May require different measurements and thresholds for
different functionality and execution scenarios.

« Assessed through Verification and Validation.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Verification and Validation

Activities that must be performed to consider the
software “done.”

 Verification: Proving that software conforms to its
functional and non-functional requirements.

« Validation: Proving that software meets

customer’s true requirements, needs, and
expectations.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Verification and Validation

Barry Boehm:
 Verification:

» “Are we building the product right?”

 Validation:
* “Are we building the right product?”

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Verification

 |s the implementation correct?

« Judged by asking: “Is the implementation consistent with
its specification?”

e Verification is an experiment.
« Perform trials, evaluate results, gather evidence.

CHALMERS | UNIVERSITY OF GOTHENBURG

Verification

* |s an implementation consistent with a
specification?
« “Specification” and “implementation” are roles.

« Usually “source code” and “requirement specification”.

 Butalso...
« Source code and architectural design.
* Architectural design and requirements.
» Test cases and requirements.
« Source code and user manuals.

UNIVERSITY OF GOTHENBURG

How do we know an implementation is correct?

Rationalist Empiricist

“It is correct because | “It is correct because |
proved that certain errors never observed incorrect
do not exist in the system.” behaviors.”

Adapted from Shin Yoo (KAIST) 43

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Static Verification

* Analysis of code and other
development artifacts.

* Proofs: Posing hypotheses and
making arguments using
specifications, models, etc. “It is correct because |

* Inspections: Manual “sanity check” prov?d t_h?t_ c?rr;tain e[rors”do
on artifacts (e.g., source code), not existintne system.
searching for issues.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Advantages of Static Verification

Proofs offer conclusive evidence of problems.

One error can hide other errors. Inspections not
Impacted by program interactions.

Incomplete systems can be inspected.

Code inspections can assess subjective quality
attributes (maintainability, portability, usability).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Dynamic Verification

» Exercising and observing the system.

» Testing: Executing input and checking
whether the resulting output meets
expectations.

“It is correct because |

* Fuzzing: Generating semi-random input never observed
to detect crashes, memory leaks, buffer incorrect behaviors.”
overflows, etc.

« Taint Analysis: Monitoring how
corrupted data spreads through system.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Advantages of Dynamic Verification

* Discovers problems from runtime interaction, timing
problems, or performance issues.

« Cheaper, more scalable than static verification.
* Much easier to achieve volume.
* Works on much more complex systems.

 However, cannot prove that properties are met
Cannot try all possible executions.

CHALMERS |

UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

The Trade-Off

Static Analysis:

Overapproximation

Naive analysis: def foo(n):

* There is a division-by-zero if n >.0.
error here. print(bar(n))
_ S else:
Not being naive is return
expensive.
def bar(a):

return 42 / a

Adapted from Shin Yoo (KAIST)

Dynamic Analysis:
* Underapproximation

* Only detect faults if we
select the right input.

def test _bar():
assert bar(42) ==1

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Validation

 Does the product work in the real world?
 Does the software fulfill the users’ actual needs”?

* Not the same as conforming to a specification.

* If we specify two buttons and implement all behaviors
related to those buttons, we can achieve verification.

 |f the user expected a third button, we failed validation.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Verification and Validation

* Verification
 Does the software work as intended?
« Shows that software is “high quality”.

« Validation
« Does the software meet the needs of your users?
« Shows that software is actually useful.
 This is much harder.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Verification and Validation

* Both are important.
* A well-verified system might not meet the user’s needs.

« Asystem can’t meet the user’s needs unless it is
well-constructed.

* This class largely focuses on verification.
« Testing is the primary activity of verification.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Basic Questions

1. When do verification and validation start and end?

2. How do we obtain acceptable quality at an
acceptable cost?

3. How can we assess readiness for release?
ow can we control quality of successive releases?

5. How can the development process be improved to
make verification more effective?

B
|

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

When Does V&YV Start?

* V&V can start as soon as the project starts.
* Feasibility studies must consider quality assessment.
 Requirements can be used to derive test cases.
« Design can be verified against requirements.
« Code can be verified against design and requirements.
« Feedback can be sought from stakeholders at any time.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

How Can We Assess Readiness?

* Must decide when to stop V&V.

* Need to establish criteria for acceptance.
 How good is “good enough™?

* Measure quality and set threshold to meet.
« Measurements for each chosen attribute.
« Measure during select scenarios.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Product Readiness

o Alternative: Put it in the hands of human users.
- Alpha/Beta Testing

« Users report feedback and failures.
Dependability measurements give quantitative data.
« Opinion surveys give qualitative data (e.g.,usability, bias).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Required Level of V&V

 Depends on:

« Software Purpose: The more critical, the more important
that it is reliable.

« User Expectations: Users may tolerate bugs because
benefits outweigh cost of failure recovery.

* Marketing Environment: Competing products - features
and cost - and speed to market.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Ensuring Quality of Successive Releases

V&V do not end with release.
* New features, environmental adaptations, bug fixes.

* Test new code, retest old code, track changes.
 When code changes, rerun tests to ensure old code works.
* Retain tests that exposed faults to ensure they do not return.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Improving the Development Process

* Try to learn from your mistakes in the next project.

* Collect data during development.

« Fault information, bug reports, project metrics (complexity, #
classes, # lines of code, test coverage, etc.).

« Classify faults into categories.
 Look for common mistakes.
 Learn how to avoid such mistakes.

« Share information within your organization.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* Determining “ready to release” requires software to
meet quality goals.

* Quality attributes describe desired properties.

« Dependability, scalability, performance, availability,
security, maintainability, testabillity, ...

« Must prioritize quality attributes and design a
system that meets chosen thresholds for each.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« Software should be “high quality” and useful before
it is released into the world.

* Verification demonstrates that an implementation
meets its specification.
« This is the primary means of demonstrating that software
Is “high quality” .
« Testing is most common form of verification.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

* Measuring and assessing quality.
* No exercise session this week.

* Plan your team selection.
* The earlier, the better! Due January 25, 23:59.
« See Assignment 0 on Canvas.

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

