CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Lecture 10: Structural Testing - N\l /
Paths and Data Flow P A

Gregory Gay
DIT636/DAT560 - February 18, 2026

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Adequacy Criteria

Compromise between
the impossible and the inadequate

« Can we measure “good testing™?

* Test adequacy criteria “score” tests by measuring
completion of test obligations.
« Checklists of properties that must be met by test cases.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Structural Coverage Criteria

 Criteria based on exercising:
« Statements (nodes of CFG)
« Branches (edges of CFG)
« Decisions and Conditions
« Paths
... and many more

 Measurements used as adequacy criteria

{8%)) UNIVERSITY OF GOTHENBURG

Elements Vs. Paths

o Statement, Branch,
Condition Coverage all focus
on one element at a time.

« Atest executes a path, not a
single element.

« Each element on that path is
dependent on the others.

boolean:E]= ...
boolean B = ...

boolean |expr|=

if

}

Alll B;

(

expr (&& C)

{

System.out.

println(“Here I am!”);

Elements Vs. Paths

{81)) UNIVERSITY OF GOTHENBURG

There are different control
paths through a program...

... And different ways that
data passed along paths can
influence execution.

Important to examine not
just elements, but paths.

boolean A = Fault in definition
boolean B = ...
boolean expr =| A || B; Corrupts definition

of expr if B = False

f |(expr && C) {
System.out.println(“Here I am!”);

expr can corrupt outcome if C = True

6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Today’s Goals

 Introduce Path Coverage

« Data Flow Coverage Criteria
« Focus on how information spreads through a program.

« Based on Definition-Use Pairs
(Where is X defined? Where is each definition of X used?)

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Path Coverage

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Path Coverage

» Path coverage requires that all paths through the
CFG are covered.

Eal Paths:
alse C \ A B,C,E, G
A,B,D,E, G
A 0 aFa'y' = >|E A B,D,F, G
True F

True

* Coverage = Number of Paths Covered

Number of Total Paths

&) CHALMERS |) UNIVERSITY OF GOTHENBURG

Path Coverage

public int flipSome(int[] A, int N, int X)

{
int i=0;
while (i<N and A[i] <X)
{
if (A[i]<0)
A[i] = - A[1];
i++; False = _ Al
} Ali] = - All;
return A; return(1) v
} > j++

Path coverage is a powerful coverage metric, but is often impractical.
e How many paths does this have?
e FEach loop cycle is a separate path!

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Path Coverage /

How many cases

for Statement
Branch
Path

|

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Path coverage with (loop <= 20) requires:
3,656,158,440,062,976 test cases

If you run 1000 tests per second, this will
take 116,000 years.

However, there are ways to get some of the benefits of
path coverage without the cost...

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Path Coverage

* Theoretically, a very strong coverage metric.
« Many faults emerge through sequences of interactions.
« But... Generally impossible to achieve.

« Loops result in an infinite number of path variations.
* Even ignoring loops, many paths through code.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Boundary Interior Coverage

e Groups paths that differ only in the subpath they

follow when repeating the body of a loop.
« Executing loop 20 times is different than executing it
twice, but same subpaths repeat over and over.
* Unroll loop in CFG into distinct subpaths, and cover
those instead of worrying about loop cycles.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Boundary Interior Coverage

A->B->M

A>B->C->E->L->B

A>B->C->D->F->L->B

A>B>C->D->G->H->L->B

A>B>C->D->G->|->L->B

CHALMERS |) UNIVERSITY OF GOTHENBURG

Boundary Interior Coverage

public int flipSome(int[] A, int N, int X)

{
int i=0;
while (i<N and A[i] <X)
{
if (A[i]<@)
A[i] = - A[i];
i++;
}

return A;

Paths:

e A B,

e A B,
A, B

o0

,F.B
F

!E’ ,B

i=0

i<N and A[i] <X

False

C

return(1) =

i<N and A[i] <X

Test Input
e [],0,10
o [-1],1,10
e [1],1,10
A
' I8
True
i< D
Ali]<0 >‘ True
" Alil = - ALTL; [E
i++ | F L
|i++ F

—

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Boundary Interior Example

1. public int doSomething(int x, int y)

2. {

3 while(y > @) {

4 if(x > 9) {

5. y =y -X;

6 if (y > 0)

7 System.out.println(“Y: “ + y);
8 }else {

9. X =X+ 1;

10. if (x <= 0)

11. System.out.println(X: “ + x);
12. }

13. }

14. return x + y;
15. }

1

14

UNIVERSITY OF GOTHENBURG

B d Interior E le 7™
oundary Interior Example "™ ;-

e 1,3-T,4-T5,6-T,7,3
1. public int doSomething(int x, int y) 1 e 1,3-T,4-T,5,6-F, 3
2. { e 1,6 3-T, 4-F 9, 10-T, 11, 3
3 while(y > 0) { e 1,63-T.4-F, 9, 10-F, 3
4 if(x » 9) { F T
5. y =y -X;
6 if (y > 0) 14 - Test Input:
7 System.out.println(“Y: “ + y); F e 10, -1
8 }else { e 3,4
9 X =X + 1; 5 9 o -1,1

10. if (x <= 0)
11. System.out.println(X: “ + x); 0

12. } T F T £
14. return x + y;

15. }

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Number of Paths

« Boundary Interior Coverage
bounds number of paths.

 However, still exponential.

N non-loop branches results in
2N paths.

« Additional limitations may
need to be imposed.

1f
1f

1f

S1;
S2;
S3;

SN;

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Data Flow

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Control Flow

1<x

« Capture how execution
navigates between blocks ! T
of statements. * continue *
o

« \We care about a

statement’s effectonly
when it affects the path.

« Deemphasizes information
being transmitted.

#8) CHALMERS | (&% UNIVERSITY OF GOTHENBURG

Data Flow

* Program statements compute and transform data...

 Reason about data dependence

 Avariable is used here.
Where does its value come from?

 |s this value ever used?
* |s this variable properly initialized?

 |f the expression assigned to a variable is changed what
else would be affected?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Data Flow

* Basis of compiler optimization.
* Used to derive test cases.
* Have we covered the dependencies?

* Used to detect faults and other anomalies.

* \When can we cache result of a calculation instead of
recalculating it?
« (Can we eliminate a variable definition?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Definition-Use Pairs

 Data is defined.
e ... and data is used.

« Pairs of definitions and uses capture data flow.

« Definitions - when variables are declared, initialized,
assigned values, or received as parameters.

« Uses - when variables referenced in expressions,
parameter passing, return statements.

o
g6} CHALMERS | @8§) yNIVERSITY OF GOTHENBURG

Definitions and Uses

1. min = 1; 1. def - min

2. max = N; 2. def-max, use-N

3. mid = ((min + (max - min))/2); 3. def - mid, use - min,

4. while (A[mid] != x or min <= max){ max

5. mid = ((min + (max - min))/2); 4. use - A[mid], mid, x,

6. if (x > A[mid]){ min, max

7. min = mid + 1 5. def - mid, use - min,
max

8. ; else { 6. use - x, A[mid], mid

9. max = mid - 1; 7. def - min, use - mid

10. } 8. -

11. } 9. def - max, use - mid

N
H

UNIVERSITY OF GOTHENBURG

Definitions and Uses
/\

def - min

def - max, use - N
def - mid, use - min,
max

4. use - A[mid], mid, X,
min, max

def - mid, use - min,
max

use - x, A[mid], mid
def - min, use - mid

Wh =

o

©o~No

def - max, use - mid

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Definition-Use (DU) Pairs

 We can say there is a DU pair when:
* There is a definition of variable X at location A.
« Variable X is used at location B.
* A control-flow path exists from A to B.
« and the path is definition-clear for X from A to B.

 If X 'is redefined, original definition is killed and pair
IS now between new definition and use in B.

CHALMERS | (8)) UNIVERSITY OF GOTHENBURG

WIEF UNIVERSITY OF TECHNOLOGY

Example - Definition-Use Pairs

1. min = 1;

2. max = N;

3. mid = ((min + (max - min))/2);

4. while (A[mid] != x or min <= max){
5. mid = ((min + (max - min))/2);
6. if (x > A[mid]){

7. min = mid + 1

8. } else {

9. max = mid - 1;
10. }
11. }

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example - GCD

1. def:x,y
1. public int gcd(int x, int y){ 2. def: tmp
2. int tmp; 3. use:y
3. while(y!=0){ 4. use: X,y
4. tmp = X % y; def: tmp
> X =Y 5. use:y
S: } Y = s def: x
8. return x; 6. use:tmp
9. } def: y

UNIVERSITY OF GOTHENBURG

Example - GCD

1. public int gcd(int x, int y){
2. int tmp;

3. while(y!=0){

4. tmp = X % y;

5. X =Y;

6. y = tmp;

7. }

8. return Xx;

9.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example - collapseNewlines

7. public static String collapseNewlines(String argStr)
8. {

9. char last = argStr.charAt(0);

10. StringBuffer argBuf = new StringBuffer();

11.
12. for(int cldx = @; cldx < argStr.length(); cldx++)
13. {
14. char ch = argStr.charAt(cldx); Variable D-U Pairs
15. if(ch !'= “\n’ || last != “\n’)
16. { argStr (7,9), (7,12), (7, 14)
17. argBuf.append(ch); last (9, 15), (18, 15)
18. last = ch;
19. } argBuf (10,22), (17, 22)
20. } cldx (12, 12), (12, 14)
21.

) ch (14, 15), (14, 17), (14, 18)
22. return argBuf.toString();
23. }

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s Take a Break

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Dealing With Arrays and Pointers

* Arrays and pointers (including object references

and arguments) introduce issues.

 |tis not possible to determine whether two access refer to

the same storage location.
alx] = 13;
k = alyl;
Are these a def-use pair?
e al2] = 42;
i =Db[2];
Are these a def-use pair?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Aliasing
* Two names refer to the same memory location.
e 1nt[] a

new i1nt[3];

int[] b = a;
al2] = 42;
i =Db[2];
« Worse in C:
p = &b;

*(p + 1) = k;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Uncertainty

 Aliasing introduces uncertainty.
* |nstead of definition or use of one variable, may have a
potential def or use of a set of variables.

« Safest: treat any use of a potential alias of V as a
use of V.

« Creates many def-use pairs (some may not be real), but
avoids missing pairs.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Dealing With Uncertainty

« Can treat all potential aliases as definitions and uses:

all] = 13; No uncertainty. Def of a[1], use of a[2].

k = al2];

i[X] 2[]13' Potential uncertainty. Treat as def and use of array a.
= alyl;

e Can be very imprecise.
* They are only really the same if x and y are the same.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Dealing With Uncertainty

« Option 2: Treat uncertainty about aliases like
uncertainty about control flow.

alx] = 13; alx] = 13;
k = alyl; ~ 1f(x == vy) k = alx];
else k = alyl;

« Rewrite code to make references explicit.
 In transformed code, all array references are distinct.

{8%)) UNIVERSITY OF GOTHENBURG

Situational Def-Use Pairs

e ++counter, counter++, counter+=1
counter = counter + 1

 Use of counter then a new definition.

e char *ptr = *otherPtr
» Definition of string *ptr

« Use of memory index ptr, string *otherPtr, and memory
index otherPtr.

e ptr++

« Use of memory index ptr, definition of both memory index and
string *ptr (change to index moves pointer to a new location).

{81)) UNIVERSITY OF GOTHENBURG

Data Flow Coverage Criteria

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Overcoming Limitations of Path Coverage

* We can potentially expose many faults by targeting
particular paths of execution.

 What are the important paths to cover?
« Some methods impose heuristic limitations.

« Use data flow to select paths based on how one element
can affect the computation of another.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Choosing the Paths

« Computing the wrong value leads to a failure only
when that value Is used.

« Ensure that definitions are actually used by covering
paths from definitions to uses.

« All DU Pair Coverage, All DU Paths Coverage, All
Definitions Coverage

« Varying power and cost.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

All DU Pair Coverage

* Requires each DU pair be exercised in at least one
program execution.

« Counts if we cover any of the paths between a definition
and its use.

« Can easily achieve structural coverage without covering
all DU pairs.

« Coverage = number exercised DU pairs
number of DU pairs

&) CHALMERS |) UNIVERSITY OF GOTHENBURG

All DU Pairs Coverage Example

1. public int doSomething(int x, int y)
2. {
3 while(y > 0) {
4 if(x > 9) {
5. y =y -X;
6 if (y > 9) X.
7 System.out.println(“Y: “ + y); (1,4),(1,9),(1,9), (1, 14)
8 }8156 { (9’ 10)’ (9’ 11)’ (9’ 4)’ (91 5)’ (91 9), (9, 14)
9. X =X+ 1;
10. if (x <= @) 2(11 3 (1.5, (1. 14)
. . . P+ X); DA A
E } System.out.println(X X) (5. 6). (5. 7). (5. 3), (5, 5, (5, 14)
13. }
14. return x + y;
15. }

UNIVERSITY OF GOTHENBURG

X: (1,4), (1, 5), (1, 9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14) Testinput
Y:(1,3),(1,5), (1,14), (5,6), (5, 7), (5, 3), (5, 5), (5, 14) 2' 3 ’7

1. public int doSomething(int x, int y) 1 3. 21

2. {

3 while(y > @) {

4 if(x > 0) { F

5. y=y - X;

6 if (y > 0) 14

7 System.out.println(“Y: “ + y);

8 }else {

9. X =X+ 1;

10. if (x <= 0)

11. System.out.println(X: “ + x);

12. } T

13. } 7

14. return x + y;

15. }

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

All DU Paths Coverage

* A use may be reachable along several paths from
the definition.

®* Cover all non-looping paths for each DU pair.

« Can reveal faults where a path is exercised that should
use a certain definition but doesn't.

Coverage = number of exercised DU paths
number of DU paths

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

All DU Paths Example

LooNOTUVTE WN R

int x = 1;

DU Pair (2, 8) for X can be
reached along multiple paths.
e 2,3T,4T,5,8

. e 2 3T,4F 8
if (y > 7) { e 2,3F8
if (z > 5) {
Z =X + 5;
} Test Input:
} e y=10,z=6
— . e y=10,z=3
y =X + 75 e y =2, z=(anything)

(&%) UNIVERSITY OF GOTHENBURG

Path Explosion Problem

* Even WIthOUt IOOping public void countBits(char ch){
paths, number of DU i (B D) recount;
i if (ch & 2) ++count;
paths can be exponential. e reount
 Code between definition If (ch & 8) hcount;
and use can be irrelevant i ch s sy ot
to that variable, but if (ch & 64) ++count;

if (ch & 128) ++count;
System.out.println(ch + “ has ” +
count + “bits set to 1”);

}

contains many paths.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

All Definitions Coverage

* Alternative when others are too expensive.

® Pair each definition with at least one use.
« Skips many DU pairs, but ensures each definition tried.

Coverage = number of covered definitions

number of definitions

UNIVERSITY OF GOTHENBURG

X:
Y:

(1,4),(1,5), (1,9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14)
(1,3),(1,5), (1, 14), (5,6), (5,7), (5, 3), (5, 5), (5, 14)

X: Definitions on lines 1, 9
Y: Definitions on lines 1, 5

1. public int doSomething(int x, int y)

2. {

3 while(y > @) {

4 if(x > 9) { F
5. y =y -X;

6 if (y > 0) 14
7 System.out.println(“Y: “ + y);

8 }else {

9. X =X+ 1;

10. if (x <= 0)

11. System.out.println(X: “ + x);

12. } T
13.) e Any input covers (1, -) pairs. 7

14. return x + y;

15. } e Reaching lines 5, 9 covers

(5,14) and (9,14) pairs.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Infeasibility Problem

* Metrics may ask for impossible test cases.

« Path-based metrics may require infeasible
combinations of feasible elements.
 Alias analysis may add additional infeasible paths.

 All Definitions, All DU-Pairs Coverage reasonable.
« All DU-Paths is much harder!

) CHALMERS | (8§)) UNIVERSITY OF GOTHENBURG B -

Activity - DU Pair Coverage

;) 1. int doS thi int x, int
* Identify all DU pair). :n ereneting(ant X, At y)
* Write your own test 3 while(y > @) {
input to achieve All : “c(xy’_ej .
DU Pair Coverage. 6 telse {
¢ e.g., Input (1, 2) 7 X =X + 1;
For x, covers pairs: 8 }
(1,4), ... 9 }
10. return x + y;
11. }

CHALMERS |) UNIVERSITY OF GOTHENBURG

Activity - DU Pairs

1. int doSomething(int x, int y)

2. { Variable Defs Uses

3 while(y > 0) { X 1,7 4,5,7,10

4 if(x > 0) { y 1,5 3,5,10

5. y =y - X;

6 }E].SE { Variable D-U Pairs

7 X = X+ 15 : R
8 } y (1,3), (1, 5), (1, 10), (5, 3), (5, 5),
9 } (5, 10)

10. return x + y;

&) CHALMERS |) UNIVERSITY OF GOTHENBURG

- - - Variable Defs Uses
Activity - DU Pairs . v asn
y 1,5 3,5,10
1. int doSomething(int x, int y)
Variable D-U Pairs
2. {
3 while(y > @) { X M upeg 1@;(
4. (x> @) { y {4,301, 5), (1,10)45,3),45,5),
5. y =Yy - X; (5-10)-
6 telse { Test Input 1: (x =1, y = 2)
7 X =X + 1; Coverslines 1, 3,4, 5, 3,4, 5, 3,10
8 } Test Input 2: (x=-1,y =1)
Coverslines1,3,4,6,7,3,4,6,7,3,4,5, 3,10
9 } Test Input 3: (x =1,y =0)
10. return X + y; Covers lines 1, 3, 8

) CHALMERS %)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Data Flow Control Flow
Path Coverage

|
Boundary Interior

Coverage

All DU Paths
Coverage

All DU Pairs Coverage

All Definitions
Coverage

| subsumption

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Data Flow

All DU Paths
Coverage

Control Flow

Boundary Interior
Coverage

All Definitions
Coverage

Loop Boundary
Coverage

ComBound Condition
Coverage

Power,
Cost

Individual
Elements

Paths | subsumption

Decision Coverage

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« Control-flow and data-flow capture important paths
In program execution.

* Analysis of how variables are defined and then
used and the dependencies between definitions
and usages can help us reveal important faults.

« Many forms of analysis can be performed using
data flow information.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

 |f there is a fault in a computation, we can observe
it by looking at where the computation is used.

« By identifying DU pairs and paths, we can create
tests that trigger faults along those paths.
- All DU Pairs coverage
« All DU Paths coverage
 All Definitions coverage

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

* Next lecture - Mutation Testing

« Assignment 3
* Due March 1!
* We have covered everything on it.

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

