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Test Adequacy Criteria
Compromise between
the impossible and the inadequate

• Can we measure “good testing”? 
• Test adequacy criteria “score” tests by measuring 

completion of test obligations.
• Checklists of properties that must be met by test cases.
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Structural Coverage Criteria
• Criteria based on exercising:

• Statements (nodes of CFG)
• Branches (edges of CFG)
• Decisions and Conditions
• Paths
• … and many more

• Measurements used as adequacy criteria
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Elements Vs. Paths
• Statement, Branch, 

Condition Coverage all focus 
on one element at a time.

• A test executes a path, not a 
single element.

• Each element on that path is 
dependent on the others.

boolean A = … 
boolean B = … 
boolean expr = A || B;

if (expr && C) {
    System.out.println(“Here I am!”);
}
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Elements Vs. Paths
boolean A = … 
boolean B = … 
boolean expr = A || B;

if (expr && C) {
    System.out.println(“Here I am!”);
}

                  Fault in definition

               Corrupts definition 
                of expr if B = False

expr can corrupt outcome if C = True

• There are different control 
paths through a program…

• … And different ways that 
data passed along paths can 
influence execution.

• Important to examine not 
just elements, but paths.



6

Today’s Goals
• Introduce Path Coverage
• Data Flow Coverage Criteria

• Focus on how information spreads through a program.
• Based on Definition-Use Pairs

• (Where is X defined? Where is each definition of X used?)
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Path Coverage



Path Coverage
• Path coverage requires that all paths through the 

CFG are covered.

• Coverage = Number of Paths Covered
Number of Total Paths

8

B

True

False

A

C

D
E

F

Paths:
A, B, C, E, G
A, B, D, E, G
A, B, D, F, GG

False

True



Path Coverage
public int flipSome(int[] A, int N, int X) 
{

int i=0;
while (i<N and A[i] <X) 
{

if (A[i]<0) 
A[i] = - A[i];

i++;
}
return A;

} i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0

Path coverage is a powerful coverage metric, but is often impractical.
● How many paths does this have?
● Each loop cycle is a separate path!
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How many cases 
for Statement

Branch
Path

Path Coverage

loop <= 20
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Path coverage with (loop <= 20) requires:
3,656,158,440,062,976 test cases

If you run 1000 tests per second, this will 
take 116,000 years.

However, there are ways to get some of the benefits of 
path coverage without the cost...
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Path Coverage
• Theoretically, a very strong coverage metric.

• Many faults emerge through sequences of interactions.
• But… Generally impossible to achieve. 

• Loops result in an infinite number of path variations.
• Even ignoring loops, many paths through code.
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Boundary Interior Coverage
• Groups paths that differ only in the subpath they 

follow when repeating the body of a loop.
• Executing loop 20 times is different than executing it 

twice, but same subpaths repeat over and over.
• Unroll loop in CFG into distinct subpaths, and cover 

those instead of worrying about loop cycles.
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Boundary Interior Coverage
A
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A -> B -> M

A -> B -> C -> E -> L -> B

A -> B -> C -> D -> F -> L -> B

A -> B -> C -> D -> G -> H -> L -> B

A -> B -> C -> D -> G -> I -> L -> B
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Boundary Interior Coverage
public int flipSome(int[] A, int N, int X) 
{

int i=0;
while (i<N and A[i] <X) 
{

if (A[i]<0) 
A[i] = - A[i];

i++;
}
return A;

}

i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0
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i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0

i++

i<N and A[i] <X i<N and A[i] <X

A

B

C

D

E
F

F

B B

Paths:
● A, B, C
● A, B, D, F, B
● A, B, D, E, F, B

Test Input
● [ ], 0, 10
● [-1], 1, 10
● [1], 1, 10
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Boundary Interior Example
1. public int doSomething(int x, int y) 

2. {

3. while(y > 0) {

4. if(x > 0) { 

5. y = y - x;

6.              if (y > 0) 

7.                  System.out.println(“Y: “ + y);

8. }else {

9. x = x + 1;

10.             if (x <= 0)

11.                 System.out.println(X: “ + x);

12. }

13. }

14. return x + y;

15. }

1

3

4

5 9

14

F T

T F

6

7

10

11

T TF
F



17

Boundary Interior Example
1. public int doSomething(int x, int y) 

2. {

3. while(y > 0) {

4. if(x > 0) { 

5. y = y - x;

6.              if (y > 0) 

7.                  System.out.println(“Y: “ + y);

8. }else {

9. x = x + 1;

10.             if (x <= 0)

11.                 System.out.println(X: “ + x);

12. }

13. }

14. return x + y;

15. }

1

3

4

5 9

14

F T

T F

6

7

10

11

T TF
F

3 3 3 3

Paths:
● 1, 3-F, 14
● 1, 3-T, 4-T, 5, 6-T, 7, 3
● 1, 3-T, 4-T, 5, 6-F, 3
● 1, 3-T, 4-F, 9, 10-T, 11, 3
● 1, 3-T,4-F, 9, 10-F, 3 

Test Input: 
● 10, -1
● 3, 4
● -1, 1



Number of Paths
• Boundary Interior Coverage 

bounds number of paths.
• However, still exponential.

• N non-loop branches results in 
2N paths.

• Additional limitations may 
need to be imposed.

if (a) S1;
if (b) S2;
if (c) S3;
…
if (x) SN;

18



19

Data Flow 



Control Flow
• Capture how execution 

navigates between blocks 
of statements.

• We care about a 
statement’s effect only 
when it affects the path.
• Deemphasizes information 

being transmitted.

x--;
/* continue */

1<x

T F
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Data Flow
• Program statements compute and transform data…
• Reason about data dependence

• A variable is used here. 
• Where does its value come from?

• Is this value ever used?
• Is this variable properly initialized?
• If the expression assigned to a variable is changed what 

else would be affected?
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Data Flow
• Basis of compiler optimization.
• Used to derive test cases.

• Have we covered the dependencies?
• Used to detect faults and other anomalies.

• When can we cache result of a calculation instead of 
recalculating it?

• Can we eliminate a variable definition?

22



Definition-Use Pairs
• Data is defined.

• … and data is used.

• Pairs of definitions and uses capture data flow.
• Definitions - when variables are declared, initialized, 

assigned values, or received as parameters.
• Uses - when variables referenced in expressions, 

parameter passing, return statements.

23



Definitions and Uses
1. min = 1;
2. max = N;
3. mid = ((min + (max - min))/2);
4. while (A[mid] != x or min <= max){
5.     mid = ((min + (max - min))/2);
6.     if (x > A[mid]){

7.         min = mid + 1

8.     } else {

9.         max = mid - 1;

10.     }
11. }

1. def - min
2. def - max, use - N
3. def - mid, use - min, 

max
4. use - A[mid], mid, x, 

min, max
5. def - mid, use - min, 

max
6. use - x, A[mid], mid
7. def - min, use - mid
8. -
9. def - max, use - mid
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Definitions and Uses

1. def - min
2. def - max, use - N
3. def - mid, use - min, 

max
4. use - A[mid], mid, x, 

min, max
5. def - mid, use - min, 

max
6. use - x, A[mid], mid
7. def - min, use - mid
8. -
9. def - max, use - mid

min = 1; max = 
N;

A[mid] != 
x or min 
<= max

mid = ((min + (max 
- min))/2);

x > 

A[mid]

min = mid 
+ 1;

max = 
mid -1;

mid = ((min + (max - min))/2);
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Definition-Use (DU) Pairs
• We can say there is a DU pair when:

• There is a definition of variable X at location A.
• Variable X is used at location B.
• A control-flow path exists from A to B.
• and the path is definition-clear for X from A to B.

• If X is redefined, original definition is killed and pair 
is now between new definition and use in B. 
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Example - Definition-Use Pairs
1. min = 1;
2. max = N;
3. mid = ((min + (max - min))/2);
4. while (A[mid] != x or min <= max){
5.     mid = ((min + (max - min))/2);
6.     if (x > A[mid]){

7.         min = mid + 1

8.     } else {

9.         max = mid - 1;

10.     }
11. }

1. def - min
2. def - max, use - N
3. def - mid, use - min, 

max
4. use - A[mid], mid, x, 

min, max
5. def - mid, use - min, 

max
6. use - x, A[mid], mid
7. def - min, use - mid
8. -
9. def - max, use - mid

DU Pairs
min: (1, 3), (1, 4), (1, 5), 
(7, 4), (7, 5)
max: (2, 3), (2, 4), (2, 5), 
(9, 4), (9, 5)
N: (0, 2)
mid: (3, 4), (5, 6), (5, 7), 
(5, 9), (5, 4) 
x: (0, 4), (0, 6)
A: (0, 4), (0, 6)
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Example - GCD
1. public int gcd(int x, int y){
2.     int tmp;
3.     while(y!=0){
4.         tmp = x % y;
5.         x = y;
6.         y = tmp;
7.     }
8.     return x;
9. }

1. def: x, y
2. def: tmp
3. use: y
4. use: x, y 

def: tmp
5. use: y

def: x
6. use: tmp

def: y
7.  -
8. use: x
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Example - GCD
1. public int gcd(int x, int y){
2.     int tmp;
3.     while(y!=0){
4.         tmp = x % y;
5.         x = y;
6.         y = tmp;
7.     }
8.     return x;
9. } 1. def: x, y          2. def: tmp

3. use: y             4. use: x, y def: tmp
5. use: y def: x   6. use: tmp def: y
8. use: x

public int gcd(int x, int y) {
int tmp;

tmp = x % y

y = tmp;

while (y != 0) {

x = y

return x;

Def-Use Pairs
x: (1, 4), (5, 4), (5, 8), (1, 8)
y: (1, 3), (1, 4), (1, 5), (6, 3), (6, 4), (6, 5)
tmp: (4, 6) 
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Example - collapseNewlines

Variable Definitions Uses

argStr 7 9, 12, 14

last 9, 18 15

argBuf 10, 17 22

cldx 12 12, 14

ch 14 15, 17, 18

7. public static String collapseNewlines(String argStr)

8. {

9. char last = argStr.charAt(0);

10. StringBuffer argBuf = new StringBuffer();

11.

12. for(int cldx = 0; cldx < argStr.length(); cldx++)

13. {

14. char ch = argStr.charAt(cldx);

15. if(ch != ‘\n’ || last != ‘\n’)

16. {

17. argBuf.append(ch);

18. last = ch;

19. }

20. }

21.

22. return argBuf.toString();

23. }
30

Variable D-U Pairs

argStr (7, 9), (7,12), (7, 14)

last (9, 15), (18, 15)

argBuf (10,22), (17, 22)

cldx (12, 12), (12, 14)

ch (14, 15), (14, 17), (14, 18)
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Let’s Take a Break



Dealing With Arrays and Pointers
• Arrays and pointers (including object references 

and arguments) introduce issues.
• It is not possible to determine whether two access refer to 

the same storage location.
• a[x] = 13;

k = a[y];
• Are these a def-use pair?

• a[2] = 42;
i = b[2];

• Are these a def-use pair?
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Aliasing
• Two names refer to the same memory location.

• int[] a = new int[3]; 
int[] b = a;
a[2] = 42;
i = b[2];

• Worse in C:
p = &b;
*(p + i) = k;
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Uncertainty
• Aliasing introduces uncertainty.

• Instead of definition or use of one variable, may have a 
potential def or use of a set of variables.

• Safest: treat any use of a potential alias of V as a 
use of V.
• Creates many def-use pairs (some may not be real), but 

avoids missing pairs.
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Dealing With Uncertainty
• Can treat all potential aliases as definitions and uses:

• Can be very imprecise. 
• They are only really the same if x and y are the same.

a[1] = 13;
k = a[2];

a[x] = 13;
k = a[y];

No uncertainty. Def of a[1], use of a[2]. 

Potential uncertainty. Treat as def and use of array a. 
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Dealing With Uncertainty
• Option 2: Treat uncertainty about aliases like 

uncertainty about control flow.

• Rewrite code to make references explicit.
• In transformed code, all array references are distinct.

a[x] = 13;
k = a[y];

a[x] = 13;
if(x == y) k = a[x];
else k = a[y];
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Situational Def-Use Pairs
• ++counter, counter++, counter+=1

counter = counter + 1
• Use of counter then a new definition.

• char *ptr = *otherPtr
• Definition of string *ptr
• Use of memory index ptr, string *otherPtr, and memory 

index otherPtr.
• ptr++

• Use of memory index ptr, definition of both memory index and 
string *ptr (change to index moves pointer to a new location).
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Data Flow Coverage Criteria



Overcoming Limitations of Path Coverage

• We can potentially expose many faults by targeting 
particular paths of execution.

• What are the important paths to cover?
• Some methods impose heuristic limitations.
• Use data flow to select paths based on how one element 

can affect the computation of another.
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Choosing the Paths
• Computing the wrong value leads to a failure only 

when that value is used. 
• Ensure that definitions are actually used by covering 

paths from definitions to uses. 
• All DU Pair Coverage, All DU Paths Coverage, All 

Definitions Coverage
• Varying power and cost.
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All DU Pair Coverage
• Requires each DU pair be exercised in at least one 

program execution.
• Counts if we cover any of the paths between a definition 

and its use.
• Can easily achieve structural coverage without covering 

all DU pairs.

• Coverage = number exercised DU pairs
number of DU pairs
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All DU Pairs Coverage Example
1. public int doSomething(int x, int y) 

2. {

3. while(y > 0) {

4. if(x > 0) { 

5. y = y - x;

6.              if (y > 0) 

7.                  System.out.println(“Y: “ + y);

8. }else {

9. x = x + 1;

10.             if (x <= 0)

11.                 System.out.println(X: “ + x);

12. }

13. }

14. return x + y;

15. }

1

3

4

5 9

14

F T

T F

6

7

10

11

T TF
F

X: 
(1, 4), (1, 5), (1, 9), (1, 14)
(9, 10), (9, 11), (9, 4), (9, 5), (9, 9), (9, 14)

Y:
(1, 3), (1, 5), (1, 14)
(5, 6), (5, 7), (5, 3), (5, 5), (5, 14)
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1. public int doSomething(int x, int y) 

2. {

3. while(y > 0) {

4. if(x > 0) { 

5. y = y - x;

6.              if (y > 0) 

7.                  System.out.println(“Y: “ + y);

8. }else {

9. x = x + 1;

10.             if (x <= 0)

11.                 System.out.println(X: “ + x);

12. }

13. }

14. return x + y;

15. }

1

3

4

5 9

14

F T

T F

6

7

10

11

T TF
F

X: (1, 4), (1, 5), (1, 9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14)
Y: (1, 3), (1, 5), (1, 14),  (5, 6), (5, 7), (5, 3), (5, 5), (5, 14)

Test Input:
1. -1, 1
2. 3, 7
3. -2, 1

X: (1, 4), (1, 5), (1, 9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14)
Y: (1, 3), (1, 5), (1, 14),  (5, 6), (5, 7), (5, 3), (5, 5), (5, 14)
X: (1, 4), (1, 5), (1, 9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14)
Y: (1, 3), (1, 5), (1, 14),  (5, 6), (5, 7), (5, 3), (5, 5), (5, 14)
X: (1, 4), (1, 5), (1, 9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14)
Y: (1, 3), (1, 5), (1, 14),  (5, 6), (5, 7), (5, 3), (5, 5), (5, 14)



All DU Paths Coverage
• A use may be reachable along several paths from 

the definition. 
• Cover all non-looping paths for each DU pair.
• Can reveal faults where a path is exercised that should 

use a certain definition but doesn’t. 

Coverage = number of exercised DU paths
number of DU paths
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All DU Paths Example
1. ...
2. int x = 1;
3. if (y > 7) {
4.     if (z > 5) {
5.         z = x + 5; 
6.     }
7. }
8. y = x + 7;
9. ...

2

3

8

4

5

T
F

T
F

DU Pair (2, 8) for X can be 
reached along multiple paths.

● 2, 3T, 4T, 5, 8
● 2, 3T, 4F, 8
● 2, 3F, 8

Test Input:
● y = 10, z = 6
● y = 10, z = 3
● y = 2, z = (anything)



Path Explosion Problem
• Even without looping 

paths, number of DU 
paths can be exponential.
• Code between definition 

and use can be irrelevant 
to that variable, but 
contains many paths.

public void countBits(char ch){
int count = 0;
if (ch & 1) ++count;
if (ch & 2) ++count;
if (ch & 4) ++count;
if (ch & 8) ++count;
if (ch & 16) ++count;
if (ch & 32) ++count;
if (ch & 64) ++count;
if (ch & 128) ++count;
System.out.println(ch + “ has ” + 

count + “bits set to 1”);
}
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All Definitions Coverage
• Alternative when others are too expensive. 

• Pair each definition with at least one use.
• Skips many DU pairs, but ensures each definition tried.

Coverage = number of covered definitions
number of definitions
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1. public int doSomething(int x, int y) 

2. {

3. while(y > 0) {

4. if(x > 0) { 

5. y = y - x;

6.              if (y > 0) 

7.                  System.out.println(“Y: “ + y);

8. }else {

9. x = x + 1;

10.             if (x <= 0)

11.                 System.out.println(X: “ + x);

12. }

13. }

14. return x + y;

15. }

1

3

4

5 9

14

F T

T F

6

7

10

11

T TF
F

X: (1, 4), (1, 5), (1, 9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14)
Y: (1, 3), (1, 5), (1, 14),  (5, 6), (5, 7), (5, 3), (5, 5), (5, 14)

X: Definitions on lines 1, 9
Y: Definitions on lines 1, 5

● Any input covers (1, -) pairs.
● Reaching lines 5, 9 covers 

(5,14) and (9,14) pairs.



Infeasibility Problem
• Metrics may ask for impossible test cases.
• Path-based metrics may require infeasible 

combinations of feasible elements.
• Alias analysis may add additional infeasible paths.

• All Definitions, All DU-Pairs Coverage reasonable.
• All DU-Paths is much harder!
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Activity - DU Pair Coverage
• Identify all DU pair
• Write your own test 

input to achieve All 
DU Pair Coverage.
• e.g., Input (1, 2)

For x, covers pairs: 
(1,4), … 

1. int doSomething(int x, int y) 

2. {

3. while(y > 0) {

4. if(x > 0) { 

5. y = y - x;

6. }else {

7. x = x + 1;

8. }

9. }

10. return x + y;

11. }
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Activity - DU Pairs
1. int doSomething(int x, int y) 

2. {

3. while(y > 0) {

4. if(x > 0) { 

5. y = y - x;

6. }else {

7. x = x + 1;

8. }

9. }

10. return x + y;

11. }

Variable Defs Uses

x 1, 7 4, 5, 7, 10

y 1, 5 3, 5, 10

Variable D-U Pairs

x (1, 4), (1, 5), (1, 7), (1, 10), (7, 4), 
(7, 5), (7, 7), (7, 10) 

y (1, 3), (1, 5), (1, 10), (5, 3), (5, 5), 
(5, 10)
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Activity - DU Pairs
1. int doSomething(int x, int y) 

2. {

3. while(y > 0) {

4. if(x > 0) { 

5. y = y - x;

6. }else {

7. x = x + 1;

8. }

9. }

10. return x + y;

11. }

Variable D-U Pairs

x (1, 4), (1, 5), (1, 7), (1, 10), (7, 4), 
(7, 5), (7, 7), (7, 10) 

y (1, 3), (1, 5), (1, 10), (5, 3), (5, 5), 
(5, 10)

Test Input 1: (x = 1, y = 2)
Covers lines 1, 3, 4, 5, 3, 4, 5, 3, 10
Test Input 2: (x = -1, y = 1)
Covers lines 1, 3, 4, 6, 7, 3, 4, 6, 7, 3, 4, 5, 3, 10
Test Input 3: (x = 1, y = 0)
Covers lines 1, 3, 8
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Variable Defs Uses

x 1, 7 4, 5, 7, 10

y 1, 5 3, 5, 10



Statement 
Coverage

Branch Coverage
Basic Condition 

Coverage

Power, 
Cost

Loop Boundary 
Coverage

Compound Condition 
Coverage

All Definitions 
Coverage

All DU Pairs Coverage

All DU Paths 
Coverage

Boundary Interior 
Coverage

Path Coverage

53

Data Flow Control Flow

Individual 
Elements Paths subsumption

Decision Coverage



Statement 
Coverage

Branch Coverage
Basic Condition 

Coverage

Power, 
Cost

Loop Boundary 
Coverage

Compound Condition 
Coverage

All Definitions 
Coverage

All DU Pairs Coverage

All DU Paths 
Coverage

Boundary Interior 
Coverage

Path Coverage
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Data Flow Control Flow

Individual 
Elements Paths subsumption

Decision Coverage



We Have Learned
• Control-flow and data-flow capture important paths 

in program execution.
• Analysis of how variables are defined and then 

used and the dependencies between definitions 
and usages can help us reveal important faults.

• Many forms of analysis can be performed using 
data flow information.
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We Have Learned
• If there is a fault in a computation, we can observe 

it by looking at where the computation is used. 
• By identifying DU pairs and paths, we can create 

tests that trigger faults along those paths.
• All DU Pairs coverage
• All DU Paths coverage
• All Definitions coverage
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Next Time
• Next lecture - Mutation Testing

• Assignment 3
• Due March 1! 
• We have covered everything on it.




