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Test Adequacy Criteria

Compromise between
the impossible and the inadequate

« Can we measure “good testing™?

* Test adequacy criteria “score” tests by measuring
completion of test obligations.
« Checklists of properties that must be met by test cases.
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Structural Coverage Criteria

 Criteria based on exercising:
« Statements (nodes of CFG)
« Branches (edges of CFG)
« Decisions and Conditions
« Paths
... and many more

 Measurements used as adequacy criteria
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Elements Vs. Paths

o Statement, Branch,
Condition Coverage all focus
on one element at a time.

« Atest executes a path, not a
single element.

« Each element on that path is
dependent on the others.

boolean:E]= ...
boolean B = ...

boolean |expr|=

if

}

Alll B;

(

expr (&& C)

{

System.out.

println(“Here I am!”);




Elements Vs. Paths

{81)) UNIVERSITY OF GOTHENBURG

There are different control
paths through a program...

... And different ways that
data passed along paths can
influence execution.

Important to examine not
just elements, but paths.

boolean A = Fault in definition
boolean B = ...
boolean expr =| A || B; Corrupts definition

of expr if B = False

f |(expr && C) {
System.out.println(“Here I am!”);

expr can corrupt outcome if C = True
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Today’s Goals

 Introduce Path Coverage

« Data Flow Coverage Criteria
« Focus on how information spreads through a program.

« Based on Definition-Use Pairs
(Where is X defined? Where is each definition of X used?)
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Path Coverage
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Path Coverage

» Path coverage requires that all paths through the
CFG are covered.

Eal Paths:
alse C \ A B,C,E, G
A,B,D,E, G
A 0 aFa'y' = >|E A B,D,F, G
True F

True

* Coverage = Number of Paths Covered

Number of Total Paths
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Path Coverage

public int flipSome(int[] A, int N, int X)

{
int i=0;
while (i<N and A[i] <X)
{
if (A[i]<0)
A[i] = - A[1];
i++; False = _ Al
} Ali] = - All;
return A; return(1) v
} > j++

Path coverage is a powerful coverage metric, but is often impractical.
e How many paths does this have?
e FEach loop cycle is a separate path!
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Path Coverage /

How many cases

for Statement
Branch
Path

|
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Path coverage with (loop <= 20) requires:
3,656,158,440,062,976 test cases

If you run 1000 tests per second, this will
take 116,000 years.

However, there are ways to get some of the benefits of
path coverage without the cost...
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Path Coverage

* Theoretically, a very strong coverage metric.
« Many faults emerge through sequences of interactions.
« But... Generally impossible to achieve.

« Loops result in an infinite number of path variations.
* Even ignoring loops, many paths through code.
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Boundary Interior Coverage

e Groups paths that differ only in the subpath they

follow when repeating the body of a loop.
« Executing loop 20 times is different than executing it
twice, but same subpaths repeat over and over.
* Unroll loop in CFG into distinct subpaths, and cover
those instead of worrying about loop cycles.
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Boundary Interior Coverage

A->B->M

A>B->C->E->L->B

A>B->C->D->F->L->B

A>B>C->D->G->H->L->B

A>B>C->D->G->|->L->B
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Boundary Interior Coverage

public int flipSome(int[] A, int N, int X)

{
int i=0;
while (i<N and A[i] <X)
{
if (A[i]<@)
A[i] = - A[i];
i++;
}

return A;

Paths:

e A B,

e A B,
A, B

o0

,F.B
F

!E’ ,B

i=0

i<N and A[i] <X

False

C

return(1) =

i<N and A[i] <X

Test Input
e [],0,10
o [-1],1,10
e [1],1,10
A
' I8
True
i< D
Ali]<0 >‘ True
" Alil = - ALTL; [E
i++ | F L
|i++ F

—
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Boundary Interior Example

1. public int doSomething(int x, int y)

2. {

3 while(y > @) {

4 if(x > 9) {

5. y =y -X;

6 if (y > 0)

7 System.out.println(“Y: “ + y);
8 }else {

9. X =X+ 1;

10. if (x <= 0)

11. System.out.println(X: “ + x);
12. }

13. }

14. return x + y;
15. }

1

14
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B d Interior E le 7™
oundary Interior Example "™ ;-

e 1,3-T,4-T5,6-T,7,3
1. public int doSomething(int x, int y) 1 e 1,3-T,4-T,5,6-F, 3
2. { e 1,6 3-T, 4-F 9, 10-T, 11, 3
3 while(y > 0) { e 1,63-T.4-F, 9, 10-F, 3
4 if(x » 9) { F T
5. y =y -X;
6 if (y > 0) 14 - Test Input:
7 System.out.println(“Y: “ + y); F e 10, -1
8 }else { e 3,4
9 X =X + 1; 5 9 o -1,1

10. if (x <= 0)
11. System.out.println(X: “ + x); 0

12. } T F T £
14. return x + y;

15. }
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Number of Paths

« Boundary Interior Coverage
bounds number of paths.

 However, still exponential.

N non-loop branches results in
2N paths.

« Additional limitations may
need to be imposed.

1f
1f

1f

S1;
S2;
S3;

SN;
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Data Flow




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Control Flow

1<x

« Capture how execution
navigates between blocks ! T
of statements. * continue *
o

« \We care about a

statement’s effectonly
when it affects the path.

« Deemphasizes information
being transmitted.
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Data Flow

* Program statements compute and transform data...

 Reason about data dependence

 Avariable is used here.
Where does its value come from?

 |s this value ever used?
* |s this variable properly initialized?

 |f the expression assigned to a variable is changed what
else would be affected?
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Data Flow

* Basis of compiler optimization.
* Used to derive test cases.
* Have we covered the dependencies?

* Used to detect faults and other anomalies.

* \When can we cache result of a calculation instead of
recalculating it?
« (Can we eliminate a variable definition?
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Definition-Use Pairs

 Data is defined.
e ... and data is used.

« Pairs of definitions and uses capture data flow.

« Definitions - when variables are declared, initialized,
assigned values, or received as parameters.

« Uses - when variables referenced in expressions,
parameter passing, return statements.
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Definitions and Uses

1. min = 1; 1. def - min

2. max = N; 2. def-max, use-N

3. mid = ((min + (max - min))/2); 3. def - mid, use - min,

4. while (A[mid] != x or min <= max){ max

5. mid = ((min + (max - min))/2); 4. use - A[mid], mid, x,

6. if (x > A[mid]){ min, max

7. min = mid + 1 5. def - mid, use - min,
max

8. ; else { 6. use - x, A[mid], mid

9. max = mid - 1; 7. def - min, use - mid

10. } 8. -

11. } 9. def - max, use - mid

N
H
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Definitions and Uses
/\

def - min

def - max, use - N
def - mid, use - min,
max

4. use - A[mid], mid, X,
min, max

def - mid, use - min,
max

use - x, A[mid], mid
def - min, use - mid

Wh =

o

©o~No

def - max, use - mid
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Definition-Use (DU) Pairs

 We can say there is a DU pair when:
* There is a definition of variable X at location A.
« Variable X is used at location B.
* A control-flow path exists from A to B.
« and the path is definition-clear for X from A to B.

 If X 'is redefined, original definition is killed and pair
IS now between new definition and use in B.
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Example - Definition-Use Pairs

1. min = 1;

2. max = N;

3. mid = ((min + (max - min))/2);

4. while (A[mid] != x or min <= max){
5. mid = ((min + (max - min))/2);
6. if (x > A[mid]){

7. min = mid + 1

8. } else {

9. max = mid - 1;
10. }
11. }
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Example - GCD

1. def:x,y
1. public int gcd(int x, int y){ 2. def: tmp
2. int tmp; 3. use:y
3. while(y!=0){ 4. use: X,y
4. tmp = X % y; def: tmp
> X =Y 5. use:y
S: } Y = s def: x
8. return x; 6. use:tmp
9. } def: y
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Example - GCD

1. public int gcd(int x, int y){
2. int tmp;

3. while(y!=0){

4. tmp = X % y;

5. X =Y;

6. y = tmp;

7. }

8. return Xx;

9.



CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example - collapseNewlines

7. public static String collapseNewlines(String argStr)
8. {

9. char last = argStr.charAt(0);

10. StringBuffer argBuf = new StringBuffer();

11.
12. for(int cldx = @; cldx < argStr.length(); cldx++)
13. {
14. char ch = argStr.charAt(cldx); Variable D-U Pairs
15. if(ch !'= “\n’ || last != “\n’)
16. { argStr (7,9), (7,12), (7, 14)
17. argBuf.append(ch); last (9, 15), (18, 15)
18. last = ch;
19. } argBuf (10,22), (17, 22)
20. } cldx (12, 12), (12, 14)
21.

) ch (14, 15), (14, 17), (14, 18)
22. return argBuf.toString();
23. }
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Let’s Take a Break
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Dealing With Arrays and Pointers

* Arrays and pointers (including object references

and arguments) introduce issues.

 |tis not possible to determine whether two access refer to

the same storage location.
alx] = 13;
k = alyl;
Are these a def-use pair?
e al2] = 42;
i =Db[2];
Are these a def-use pair?
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Aliasing
* Two names refer to the same memory location.
e 1nt[] a

new i1nt[3];

int[] b = a;
al2] = 42;
i =Db[2];
« Worse in C:
p = &b;

*(p + 1) = k;
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Uncertainty

 Aliasing introduces uncertainty.
* |nstead of definition or use of one variable, may have a
potential def or use of a set of variables.

« Safest: treat any use of a potential alias of V as a
use of V.

« Creates many def-use pairs (some may not be real), but
avoids missing pairs.
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Dealing With Uncertainty

« Can treat all potential aliases as definitions and uses:

all] = 13; No uncertainty. Def of a[1], use of a[2].

k = al2];

i[X] 2[ ]13' Potential uncertainty. Treat as def and use of array a.
= alyl;

e Can be very imprecise.
* They are only really the same if x and y are the same.
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Dealing With Uncertainty

« Option 2: Treat uncertainty about aliases like
uncertainty about control flow.

alx] = 13; alx] = 13;
k = alyl; ~ 1f(x == vy) k = alx];
else k = alyl;

« Rewrite code to make references explicit.
 In transformed code, all array references are distinct.
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Situational Def-Use Pairs

e ++counter, counter++, counter+=1
counter = counter + 1

 Use of counter then a new definition.

e char *ptr = *otherPtr
» Definition of string *ptr

« Use of memory index ptr, string *otherPtr, and memory
index otherPtr.

e ptr++

« Use of memory index ptr, definition of both memory index and
string *ptr (change to index moves pointer to a new location).
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Data Flow Coverage Criteria
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Overcoming Limitations of Path Coverage

* We can potentially expose many faults by targeting
particular paths of execution.

 What are the important paths to cover?
« Some methods impose heuristic limitations.

« Use data flow to select paths based on how one element
can affect the computation of another.
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Choosing the Paths

« Computing the wrong value leads to a failure only
when that value Is used.

« Ensure that definitions are actually used by covering
paths from definitions to uses.

« All DU Pair Coverage, All DU Paths Coverage, All
Definitions Coverage

« Varying power and cost.
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All DU Pair Coverage

* Requires each DU pair be exercised in at least one
program execution.

« Counts if we cover any of the paths between a definition
and its use.

« Can easily achieve structural coverage without covering
all DU pairs.

« Coverage = number exercised DU pairs
number of DU pairs
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All DU Pairs Coverage Example

1. public int doSomething(int x, int y)
2. {
3 while(y > 0) {
4 if(x > 9) {
5. y =y -X;
6 if (y > 9) X.
7 System.out.println(“Y: “ + y); (1,4),(1,9),(1,9), (1, 14)
8 }8156 { (9’ 10)’ (9’ 11)’ (9’ 4)’ (91 5)’ (91 9), (9, 14)
9. X =X+ 1;
10. if (x <= @) 2(11 3 (1.5, (1. 14)
. . . P+ X); DA A
E } System.out.println(X X) (5. 6). (5. 7). (5. 3), (5, 5, (5, 14)
13. }
14. return x + y;
15. }
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X: (1,4), (1, 5), (1, 9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14) Testinput
Y:(1,3),(1,5), (1,14), (5,6), (5, 7), (5, 3), (5, 5), (5, 14) 2' 3 ’7

1. public int doSomething(int x, int y) 1 3. 21

2. {

3 while(y > @) {

4 if(x > 0) { F

5. y=y - X;

6 if (y > 0) 14

7 System.out.println(“Y: “ + y);

8 }else {

9. X =X+ 1;

10. if (x <= 0)

11. System.out.println(X: “ + x);

12. } T

13. } 7

14. return x + y;

15. }
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All DU Paths Coverage

* A use may be reachable along several paths from
the definition.

®* Cover all non-looping paths for each DU pair.

« Can reveal faults where a path is exercised that should
use a certain definition but doesn't.

Coverage = number of exercised DU paths
number of DU paths




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

All DU Paths Example

LooNOTUVTE WN R

int x = 1;

DU Pair (2, 8) for X can be
reached along multiple paths.
e 2,3T,4T,5,8

. e 2 3T,4F 8
if (y > 7) { e 2,3F8
if (z > 5) {
Z =X + 5;
} Test Input:
} e y=10,z=6
— . e y=10,z=3
y =X + 75 e y =2, z=(anything)
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Path Explosion Problem

* Even WIthOUt IOOping public void countBits(char ch){
paths, number of DU i (B D) recount;
i if (ch & 2)  ++count;
paths can be exponential. e reount
 Code between definition If (ch & 8)  hcount;
and use can be irrelevant i ch s sy ot
to that variable, but if (ch & 64) ++count;

if (ch & 128) ++count;
System.out.println(ch + “ has ” +
count + “bits set to 1”);

}

contains many paths.
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All Definitions Coverage

* Alternative when others are too expensive.

® Pair each definition with at least one use.
« Skips many DU pairs, but ensures each definition tried.

Coverage = number of covered definitions

number of definitions
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X:
Y:

(1,4),(1,5), (1,9), (1, 14), (9, 10), (9, 11), (9, 5), (9, 9), (9, 14)
(1,3),(1,5), (1, 14), (5,6), (5,7), (5, 3), (5, 5), (5, 14)

X: Definitions on lines 1, 9
Y: Definitions on lines 1, 5

1. public int doSomething(int x, int y)

2. {

3 while(y > @) {

4 if(x > 9) { F
5. y =y -X;

6 if (y > 0) 14
7 System.out.println(“Y: “ + y);

8 }else {

9. X =X+ 1;

10. if (x <= 0)

11. System.out.println(X: “ + x);

12. } T
13. ) e Any input covers (1, -) pairs. 7

14. return x + y;

15. } e Reaching lines 5, 9 covers

(5,14) and (9,14) pairs.
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Infeasibility Problem

* Metrics may ask for impossible test cases.

« Path-based metrics may require infeasible
combinations of feasible elements.
 Alias analysis may add additional infeasible paths.

 All Definitions, All DU-Pairs Coverage reasonable.
« All DU-Paths is much harder!
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Activity - DU Pair Coverage

; ) 1. int doS thi int x, int
* Identify all DU pair ). :n ereneting(ant X, At y)
* Write your own test 3 while(y > @) {
input to achieve All : “c(xy’_ej .
DU Pair Coverage. 6 telse {
¢ e.g., Input (1, 2) 7 X =X + 1;
For x, covers pairs: 8 }
(1,4), ... 9 }
10. return x + y;
11. }
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Activity - DU Pairs

1. int doSomething(int x, int y)

2. { Variable Defs Uses

3 while(y > 0) { X 1,7 4,5,7,10

4 if(x > 0) { y 1,5 3,5,10

5. y =y - X;

6 }E].SE { Variable D-U Pairs

7 X = X+ 15 : R
8 } y (1,3), (1, 5), (1, 10), (5, 3), (5, 5),
9 } (5, 10)

10. return x + y;
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- - - Variable Defs Uses
Activity - DU Pairs . v asn
y 1,5 3,5,10
1. int doSomething(int x, int y)
Variable D-U Pairs
2. {
3 while(y > @) { X M upeg 1@;(
4. (x> @) { y {4,301, 5), (1,10)45,3),45,5),
5. y =Yy - X; (5-10)-
6 telse { Test Input 1: (x =1, y = 2)
7 X =X + 1; Coverslines 1, 3,4, 5, 3,4, 5, 3,10
8 } Test Input 2: (x=-1,y =1)
Coverslines1,3,4,6,7,3,4,6,7,3,4,5, 3,10
9 } Test Input 3: (x =1,y =0)
10. return X + y; Covers lines 1, 3, 8
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Data Flow Control Flow
Path Coverage

|
Boundary Interior

Coverage

All DU Paths
Coverage

All DU Pairs Coverage

All Definitions
Coverage

| subsumption
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Data Flow

All DU Paths
Coverage

Control Flow

Boundary Interior
Coverage

All Definitions
Coverage

Loop Boundary
Coverage

ComBound Condition
Coverage

Power,
Cost

Individual
Elements

Paths | subsumption

Decision Coverage
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We Have Learned

« Control-flow and data-flow capture important paths
In program execution.

* Analysis of how variables are defined and then
used and the dependencies between definitions
and usages can help us reveal important faults.

« Many forms of analysis can be performed using
data flow information.
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We Have Learned

 |f there is a fault in a computation, we can observe
it by looking at where the computation is used.

« By identifying DU pairs and paths, we can create
tests that trigger faults along those paths.
- All DU Pairs coverage
« All DU Paths coverage
 All Definitions coverage
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Next Time

* Next lecture - Mutation Testing

« Assignment 3
* Due March 1!
* We have covered everything on it.
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