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Space Shuttle Challenger
• Seal failure in rocket booster causes 

explosion, killing seven astronauts.
• Investigation found technical and 

organizational issues.
• Became a case example studied in 

many forms of engineering.
• Learn from your failures.
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Fault-Based Testing
• By studying faults in previous designs, we can 

prevent similar faults in new designs.
• Many testing techniques based on what we think 

should happen. 
• We can also design tests based on knowledge of 

what has gone wrong in other programs.
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Implemented in Language Design
• Automated Garbage Collection

• Prevents dangling pointers, memory leaks, other memory 
management faults.

• Automatic Array Bounds Checking
• Does not prevent bad indexes from being used, but 

ensures they are noticed and limits damage.

• Type Checking
• Prevent malformed value use in input or computations.
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Fault-Based Testing
• Consider the types of faults we expect to see.

• Create mutated versions of the program.
• See if tests fail for those mutated versions.

• Fault Seeding
• Deliberately creating programs with faults to see if our 

tests are good enough to detect them.
• May help us find new faults in the unmutated program.
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Uses of Fault Seeding

• Fault seeding can be used to: 
• Judge the adequacy of a test suite.

• Alternative to code coverage.
• Design test cases to augment a suite.

• Provides evidence that we have done a good job.
• If our tests have not found faults, are there no more major 

issues, or are they bad tests?
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Mutation Testing
• Encode common faults as 

mutation operators. 
• Insert the modeled fault into 

program statements.

• Produces a mutant.
• A clone of the program with a 

seeded fault. 

SUT

Mutant

Mutation 
Operator

if((a == 1) && !b){ ...

if((a == 1) || !b){ ...
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Mutation Operators



Mutation Operators
• Intended to model common types of faults.
• Designed to be applied to any type of code, without 

human intervention.
• Tend to be simple syntactic faults.

• Replacing one variable reference with another.
• Changing a comparison from < to <=.
• Referencing a parent class instead of a child.
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Mutation Operators

public class MyCode {

    …

    public void myFunction (...) {

        Object x = (a + ((b - x[1]) / 3));

        Object y = this.y;

        Object z = …;

    }

    …

}

Object-Oriented 
Mutations

Operand Mutations Expression 
Mutations

Language-Specific 
Mutations

Statement Mutations
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Operand Modifications

public class MyCode {

    …

    public void myFunction (...) {

        Object x = (a + ((b - c[1]) / 3));

        Object y = this.z;

        Object z = …;

    }

    …

}

Replace constant C1 with constant C2.
3 -> 15

Replace constant C1 with variable S.
3 -> a

Replace variable S with constant C1.
a -> 10

Replace variable S1 with variable S2.
z -> x
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Operand Modifications

public class MyCode {

    …

    public void myFunction (...) {

        Object x = (a + ((b - c[1]) / 3));

        Object y = this.z;

        Object z = …;

    }

    …

}

Replace variable or constant with array reference A[i].

3 -> c[5]

Replace array reference A[i] with variable or constant.

c[1] -> a

Replace array reference A1[i] with array reference A2[y].

(another array or another index in same array)

c[1] -> c[5]
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Expression - Arithmetic Operators

public class MyCode {

    …

    public void myFunction (...) {

        Object x = (a + ((b - c[1]) / 3));

        Object y = this.z;

        Object z = …;

    }

    …

}

Replace one arithmetic operator with another

(b - c[1]) -> (b + c[1])

Replace one shortcut operator with another

(b++) -> (b--)       x += y -> x /= y

Insert an arithmetic operator (and operand)

Object x = (a + ((b - c[1]) / 3)) / 5;

Insert a shortcut operator.

Object x = (++a + ((b - c[1]) / 3));

Delete an arithmetic operator (and operand)

Object x = (a + ((b - c[1]) / 3));

Delete a shortcut operator.

(b++) -> (b)
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Expression - Relational Operators

    public void myFunction (...) {

        int x = (a + ((b - c[1]) / 3));

        if (x >= 5) { 

            Boolean y = ((m && n) || o);

        }

    }

Replace one relational operator with another

(x >= 5) -> (x != 5)

Replace one boolean operator with another

((m && n) || o) -> ((m || n) || o) 

Insert or delete relational and boolean operators.

((m && n) || o) -> ((m && n) || o) && p

((m && n) || o) -> ((m && n) || o)



Expression Modifications
• Absolute Value Insertion

• Replace a subexpression with abs(e).
• int Z = X + Y; -> int Z = abs(X + Y);

• Constant for Predicate Replacement
• Replace boolean predicate with a constant value (T/F).

• bool Z = (A || B) && C; -> bool Z = (A || true) && C;
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Statement Modifications

public class MyCode {

    …

    public void myFunction (...) {

        Object x = (a + ((b - c[1]) / 3));

        Object y = this.z;

        Object z = …;

    }

    …

}

Delete a random statement.

  Object z = …;

Replace labels in a switch statement.

case 1: -> case 2:

Move closing brace up or down one line.

    Object z = …;    ->    }

}     Object z = …;



Encapsulation/Inheritance 
• Access Modifier Change

• Change a modifier to (public/protected/private)
• public void DoThis(int x) -> 

private void DoThis(int x)
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Inheritance Modifications
• Overriding Method Deletion

• Delete an overriden method from a subclass.
• References call the version inherited from a parent.

• Class Child implements Parent { … 
@Override public int doThis(){ .. } …
int X = doThis(); } 
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Inheritance Modifications
• Super Keyword Insertion/Deletion

• Inserts or deletes the super() keyword.

• @Override
public void doSomething(){ 
    super(); … } ->
@Override
public void doSomething(){ 
    … }



Inheritance Modifications
• Super Calling Position Change

• Moves calls to the parent version to other positions.

• @Override
public int doThis(){
    int x = super(); int y = 5; ...  }   ->

    int y = 5; ... int x = super();  } 
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Inheritance Modifications
• Explicit Parent Constructor Call Deletion

• Deletes super() call in a constructor.
• To detect, tests must detect an incorrect initial state.

• Class Child implements Parent {
    int x;
    public Child () { super(); ... } } -> 
Class Child implements Parent {
    int x;
    public Child () { ... } }
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Polymorphism Modifications
• Declaration with Child Class Type

• Replace a declaration with a valid child instance.
• Parent a = new Parent(); -> Parent a = new Child();

• Declaration With Parent Class Type
• Change the declared type of a variable to its parent.

• Child a = new Child(); -> Parent a = new Child();
• boolean equals(Child c){..} -> 

boolean equals(Parent c){..}
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Polymorphism Modifications
• Type Cast Operator Insertion/Deletion

• Cast the type of an object reference to the parent or child of the 
original type.
• p.toString() -> ((Child) p).toString()

• Or delete a type cast operator.
• ((Child) p).toString()-> p.toString()

• Cast Type Change
• Changes a cast to another valid data type.
• ((SomeChild) c).toString() -> 

((OtherChild) c).toString()
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Language-Specific Modifications
• Mutation operators written for a particular language.
• Java:

• this insertion/deletion
• Static modifier insertion/deletion
• Member variable initialization deletion
• Default constructor deletion
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Mutation Testing



Mutation Testing
• Select mutation operators.
• Generate mutants by applying mutation operators.
• Execute tests against original class and mutants. 

○ A mutant is killed if the test passes on the original 
program and fails on the mutant.

○ A mutant not killed is considered live.
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Mutation Testing
• Mutation operators reflect small syntactic mistakes.

• Programmers do make such mistakes! 
• However, many faults are conceptual mistakes.

• Mistaken assumptions about requirements.
• Forgotten requirements.

• Is mutation testing a reasonable technique for 
judging test adequacy?
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Viability of Mutation Testing
• Mutation testing is valid if seeded faults are 

representative of real faults. 
• Competent Programmer Hypothesis

• A faulty program differs from a correct program only by 
small textual changes.

• If so, we only have to distinguish the program from all 
such small variants.

• Assumption: the SUT is “close to” correct.
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Coupling Effect
• Many faults are small syntactical errors.
• Conceptual faults often manifest as syntax errors.
• Complex faults result in larger textual differences.

• However, mutation testing is still valid if test cases for 
simple issues can detect complex issues.

• Coupling Effect Hypothesis - complex faults can be 
modeled as a set of small faults.
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Coupling Effect
• A complex change is a series of 

small changes.
• If one change not covered up by 

others, a test that exposes it can 
also detect a more complex change.

• Mutation testing effective if both competent 
programmer and coupling effect hypotheses hold.
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Judging Test Sensitivity
• Mutants are often simpler than real faults.
• Mutation is still good at judging sensitivity of your 

tests to minor changes in the code.
• If tests can distinguish mutants from the real code, then 

your tests execute the code thoroughly.
• If you miss mutants, you can add new tests to detect 

them and make your suite more sensitive.
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Mutant Quality
To be used in testing, mutants must be:
• Syntactically correct (valid)

• Mutants must compile and execute.

• Plausible (useful) 
• Must provide valuable information on how the system 

works for testers working to improve the system.
• A mutant can be valid, but not useful.

• All or almost all tests fail.

32



Mutant Quality
Mutants might remain live if:
• They are equivalent to the original program.

• for(i=0; i < 10; i++) -> 
• for(i=0; i != 10; i++)
• Identifying equivalency is NP-hard.

• Test suite is inadequate for that mutation. 
• (a <= b) and (a >= b) cannot be differentiated if a==b 

in the test case. 
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Mutant Type Summary
Valid Invalid

Useful Few Tests Detect Mutant Does Not Compile

Not Useful Almost All Tests Detect 
Mutant

Does Not Compile

Equivalent Output Always Same As 
Original Program

Does Not Compile
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Let’s Take a Break



Mutation Coverage
Adequacy of suite can be measured as:

 (# mutants killed)
(total mutants)

• Helps ensure that the test suite is robust against 
the modeled mutation types.
• Ensures that suite is sensitive to small changes in code. 
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Practical Considerations
Mutation testing is expensive.
• Must run all tests against all mutants.
• Many mutants typically generated.

• One mutation operator applied per mutant.
• May be dozens - hundreds per class.

• Can randomly choose X mutants or operators.
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Statistical Mutation Testing
• A test suite that kills some mutants may be as 

effective as one that kills all mutants.
• Obtain a statistical estimate of the ability of the 

suite to detect mutations.
• Randomly generate N mutants.
• Samples must be a valid statistical model of occurrence 

frequencies of real faults. 
• Target 100% coverage over the sample.
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Mutation Testing at Google
• Very large codebase, so using all mutants or using 

mutants often impractical.
• Skip lines not covered by tests.
• Skip “uninteresting” lines.

• Logging, testing, timing, loop conditions.

• Used during code reviews.
• Present undetected mutants to suggest new tests or 

potential code mistakes.



Activity
1. How many mutations are possible for 

Relational Operator Replacement, 
Constant-for-Constant Replacement

2. Apply relational operator replacement 
operation to line 4, choose input that 
will show different output from original.

3. Design an equivalent mutant. 
4. Design a valid, but not useful mutant. 

public int[] makePositive(int[] a){

int threshold = 0;

for(int i=0; i < a.length; i++){

if(a[i] < threshold){

a[i]= -a[i];

}

}

return a;

}
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Activity - Solution
• How many mutations are possible:

• Relational Operator Replacement: 
• Two lines can be mutated

• for(int i=0; i < a.length; i++){

• if(a[i] < threshold){

41



Activity - Solution
• How many mutations are possible:

• Constant-for-Constant Replacement
• Two lines can be mutated.

• int threshold = 0;

• for(int i=0; i < a.length; i++){
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Activity - Solution
• Apply the relational operator replacement operation to 

statement 4:
• if(a[i] < threshold){      ->
• if(a[i] == threshold){ 

• Choose test input that would kill that mutant.
• a[-1,0,1]
• -1 would not become positive.
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Activity - Solution
• Design an equivalent mutant. 

• Can do so by applying the relational operator 
replacement operation to statement 4:
• if(a[i] < threshold){ becomes:
• if(a[i] <= threshold){ 

• Since threshold=0, and -0 = 0, no test would detect.
• Does not help us test, as the fault cannot cause a failure.
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Activity - Solution
• Design a valid, but not useful mutant. 

• Compiles, but trivially fails.
• Apply relational operator replacement to statement 4:

• if(a[i] < threshold){ becomes:
• if(a[i] > threshold){ 
• Any positive numbers are made negative, all negative 

remain negative. Almost any test would detect this.
• Many mutants are not useful.
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Activity
• Valid-but-useful?

• Compiles, but is subtle and hard to detect.
• Valuable when testing - we need the right test to detect.

• int threshold = 2;
• Constant-for-constant
• Only detected if the input array contains 1 in it.
• If we check boundary values, we might catch this, but otherwise 

could miss it!
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PITest Demo
(https://pitest.org/) 

https://pitest.org/


We Have Learned
• Mutation testing inserts faults to judge test suite 

sensitivity and adequacy.
• Mutation operators automatically create faulty 

versions of a program.
• Operators model expected syntactic faults.

• Tests are judged according to their ability to detect 
faults - useful sensitivity analysis.
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Next Time
• Model-Based Testing
• Exercise Session: Mutation Testing

• Assignment 3 due March 1.




