CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Gregory Gay
DIT636/DAT560 - February 23, 2026



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Space Shuttle Challenger

« Seal failure in rocket booster causes
explosion, killing seven astronauts.

* Investigation found technical and
organizational issues.

 Became a case example studied in
many forms of engineering.

e Learn from your failures.




&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Fault-Based Testing

« By studying faults in previous designs, we can
prevent similar faults in new designs.

* Many testing techniques based on what we think
should happen.

* We can also design tests based on knowledge of
what has gone wrong in other programs.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Implemented in Language Design

« Automated Garbage Collection

* Prevents dangling pointers, memory leaks, other memory
management faults.

« Automatic Array Bounds Checking

« Does not prevent bad indexes from being used, but
ensures they are noticed and limits damage.

* Type Checking

* Prevent malformed value use in input or computations.



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Fault-Based Testing

« Consider the types of faults we expect to see.
« Create mutated versions of the program.
« See if tests fail for those mutated versions.

* Fault Seeding

» Deliberately creating programs with faults to see if our
tests are good enough to detect them.

« May help us find new faults in the unmutated program.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Uses of Fault Seeding

* Fault seeding can be used to:

« Judge the adequacy of a test suite.
Alternative to code coverage.

» Design test cases to augment a suite.

* Provides evidence that we have done a good job.

 |f our tests have not found faults, are there no more major
issues, or are they bad tests?




\} CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Mutation Testing

« Encode common faults as
mutation operators.
* |Insert the modeled fault into

program statements.
* Produces a mutant.

* Aclone of the program with a
seeded fault.




CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Mutation Operators




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Mutation Operators

 Intended to model common types of faults.

« Designed to be applied to any type of code, without
human intervention.

« Tend to be simple syntactic faults.
« Replacing one variable reference with another.
« Changing a comparison from < to <=.
« Referencing a parent class instead of a child.



UNIVERSITY OF GOTHENBURG

Mutation Operators

public class MyCode {

public void myFunction (...) {

Object x = (a + ((b - x[1]) / 3));

Object y

this.y;

Object-Oriented
Mutations

Operand Mutations

Expression
Mutations

Language-Specific
Mutations

Statement Mutations




{8%)) UNIVERSITY OF GOTHENBURG

Operand Modifications

public class MyCode {

Replace constant C7 with constant C2.
3->15

public void myFunction (...) {
Object x = (a + ((b - c[1]) / 3));
Object y = this.z;
ebjeet—2z——=

Replace constant C7 with variable S.
3->a

Replace variable S with constant C1.
a->10

Replace variable S7 with variable S2.

Z->X




CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Operand Modifications

Replace variable or constant with array reference A[i].

public class MyCode { 3-> 0[5]

public void myFunction (...) {

) Replace array reference AJi] with variable or constant.
Object x = (a + ((b - c[1]) / 3));

c[1] > a

Object y = this.z;

} Replace array reference A1[i] with array reference A2[y].

(another array or another index in same array)

} c[1] -> c[9]




CHALMERS |

NIVERSITY OF GOTHENBURG

Expression - Arithmetic Operators

Replace one arithmetic operator with another
(b - c[1]) -> (b + c[1])

public class MyCode { Replace one shortcut operator with another

(b++) -> (b--) X+=y ->x /=y

public void myFunction (...) { Insert an arithmetic operator (and operand)

Object x = (a + ((b - c[1]) / 3)); Object x = (a + ((b - c[1]) / 3)) / 5;

Object y = this.z; Insert a shortcut operator.

object—72—=——+ Object x = (+#+a + ((b - c[1]) / 3));

Delete an arithmetic operator (and operand)

Object x = (a + ((b —efZl) / 3));

Delete a shortcut operator.

}

(b++) -> (b)



UNIVERSITY OF GOTHENBURG

Expression - Relational Operators

Replace one relational operator with another

(x >=5) > (x !=75)

public void myFunction (...) {
int x = (a + ((b - c[1]) / 3));
if (x >=5) {
Boolean y = ((m & n) || 0);

Replace one boolean operator with another

((m & n) [| o) > ((m || n) || o)

} Insert or delete relational and boolean operators.
((m & n) || o) > ((m& n) [| o) & p
((m & n) || o) > ((m &) || o)




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Expression Modifications

« Absolute Value Insertion

* Replace a subexpression with abs(e).
e int Z =X +Y; -> int Z = abs(X + Y);

« Constant for Predicate Replacement

« Replace boolean predicate with a constant value (T/F).
bool Z = (A || B) & C; -> bool Z = (A || true) && C;




CHALMERS | ) UNIVERSITY OF GOTHENBURG

Statement Modifications

Delete a random statement.

public class MyCode { ebjeet—z—=—;

public void myFunction (...) {

) Replace labels in a switch statement.
Object x = (a + ((b - c[1]) / 3));

case 1: -> case 2:

Object y = this.z;
ebjeet—2z——=
} Move closing brace up or down one line.

Object z = ...; -> }




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Encapsulation/Inheritance

« Access Modifier Change
« Change a modifier to (public/protected/private)
 public void DoThis(int x) ->
private void DoThis(int x)




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Inheritance Modifications
. Overrldlng Method Deletion

Delete an overriden method from a subclass.
« References call the version inherited from a parent.

e Class Ch11d 1mp1ements Parent { .

TAW ¢ A |
\}1 o o I " uw

int X = doThis(); }




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Inheritance Modifications

- Super Keyword Insertion/Deletion
* Inserts or deletes the super() keyword.

* @Override
public void doSomething(){
super(); ... } ->
@Override
public void doSomething(){

.}



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Inheritance Modifications
« Super Calling Position Change

* Moves calls to the parent version to other positions.
* @Override
public int doThis(){
int x = super(); inty =5; ... } >

int y = 5; ... int x = super(); }



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Inheritance Modifications

« Explicit Parent Constructor Call Deletion
» Deletes super() call in a constructor.
« To detect, tests must detect an incorrect initial state.

« Class Child implements Parent {
int x;
public Child () { super(); ... } } -
Class Child implements Parent {
int x;
public Child () { ... } }

>



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Polymorphism Modifications
« Declaration with Child Class Type

 Replace a declaration with a valid child instance.
« Parent a = new Parent(); ->Parent a = new Child();

« Declaration With Parent Class Type

« Change the declared type of a variable to its parent.
e Child a = new Child(); ->Parent a = new Child();
* boolean equals(Child c){..} ->
boolean equals(Parent c){..}



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Polymorphism Modifications

* Type Cast Operator Insertion/Deletion
« Cast the type of an object reference to the parent or child of the
original type.
e p.toString() -> ((Child) p).toString()
* Or delete a type cast operator.
* ((Child) p).toString()-> p.toString()

« Cast Type Change
« Changes a cast to another valid data type.
 ((SomeChild) c).toString() ->
((0otherChild) c).toString()



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Language-Specific Modifications

« Mutation operators written for a particular language.

« Java:
* this insertion/deletion
« Static modifier insertion/deletion
« Member variable initialization deletion
« Default constructor deletion




CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Mutation Testing




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Mutation Testing

« Select mutation operators.
* Generate mutants by applying mutation operators.

» EXxecute tests against original class and mutants.

o A mutant is killed if the test passes on the original
program and fails on the mutant.

o A mutant not killed is considered live.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Mutation Testing

« Mutation operators reflect small syntactic mistakes.
* Programmers do make such mistakes!

 However, many faults are conceptual mistakes.
« Mistaken assumptions about requirements.
* Forgotten requirements.

* |s mutation testing a reasonable technique for
judging test adequacy?



I

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Viability of Mutation Testing

« Mutation testing is valid if seeded faults are
representative of real faults.

e Competent Programmer Hypothesis

« Afaulty program differs from a correct program only by
small textual changes.

 |f so, we only have to distinguish the program from all
such small variants.

« Assumption: the SUT is “close to” correct.



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Coupling Effect

« Many faults are small syntactical errors.
« Conceptual faults often manifest as syntax errors.

« Complex faults result in larger textual differences.

« However, mutation testing is still valid if test cases for
simple issues can detect complex issues.

« Coupling Effect Hypothesis - complex faults can be
modeled as a set of small faults.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Coupling Effect

* A complex change is a series of
small changes.

 If one change not covered up by
others, a test that exposes it can
also detect a more complex change.

« Mutation testing effective if both competent
programmer and coupling effect hypotheses hold.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Judging Test Sensitivity

« Mutants are often simpler than real faults.

« Mutation is still good at judging sensitivity of your
tests to minor changes in the code.

* |If tests can distinguish mutants from the real code, then
your tests execute the code thoroughly.

 |If you miss mutants, you can add new tests to detect
them and make your suite more sensitive.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Mutant Quality

To be used in testing, mutants must be:

« Syntactically correct (valid)
« Mutants must compile and execute.

* Plausible (useful)

* Must provide valuable information on how the system
works for testers working to improve the system.

e A mutant can be valid, but not useful.
* All or almost all tests fail.



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Mutant Quality

Mutants might remain live if:

» They are equivalent to the original program.
e for(i=0; 1 < 10; i++) ->
 for(i=0; i != 10; i++)
 |dentifying equivalency is NP-hard.

« Test suite is inadequate for that mutation.

« (a <= b) and (a >= b) cannot be differentiated if a==b
In the test case.



i:,? CHALMERS | UNIVERSITY OF GOTHENBURG

Mutant Type Summary

Valid Invalid

Useful Does Not Compile

Not Useful Almost All Tests Detect Does Not Compile
Mutant

Equivalent Output Always Same As Does Not Compile
Original Program




CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s Take a Break




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Mutation Coverage

Adequacy of suite can be measured as:
(# mutants killed)

(total mutants)

* Helps ensure that the test suite is robust against

the modeled mutation types.
* Ensures that suite is sensitive to small changes in code.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Practical Considerations

Mutation testing is expensive.
* Must run all tests against all mutants.
 Many mutants typically generated.

* One mutation operator applied per mutant.
 May be dozens - hundreds per class.

« Can randomly choose X mutants or operators.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Statistical Mutation Testing

* Atest suite that kills some mutants may be as
effective as one that kills all mutants.

* Obtain a statistical estimate of the ability of the
suite to detect mutations.

 Randomly generate N mutants.

« Samples must be a valid statistical model of occurrence
frequencies of real faults.

« Target 100% coverage over the sample.



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Mutation Testing at Google

* Very large codebase, so using all mutants or using
mutants often impractical.
« Skip lines not covered by tests.
« Skip “uninteresting” lines.
Logging, testing, timing, loop conditions.
* Used during code reviews.

* Present undetected mutants to suggest new tests or
potential code mistakes.



UNIVERSITY OF GOTHENBURG

Activity

1. How many mutations are possible for
Relational Operator Replacement, public int[] makePositive(int[] a){
Constant-for-Constant Replacement int threshold = ©;

2. Apply relational operator replacement for(int i=0; i < a.length; i++){
operation to line 4, choose input that if(a[i] < threshold){

will show different output from original. al[i]= -a[i];
: : }
3. Design an equivalent mutant. }
4. Design a valid, but not useful mutant. return a;




&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Activity - Solution

« How many mutations are possible:

« Relational Operator Replacement:
* Two lines can be mutated
- for(int i=0; i < a.length; i++){
- if(a[i] < threshold)({




&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Activity - Solution

« How many mutations are possible:

« Constant-for-Constant Replacement

* Two lines can be mutated.
« 1int threshold = 0;
- for(int i=0; i < a.length; i++){




%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Activity - Solution
* Apply the relational operator replacement operation to

statement 4.
« if(a[i] < threshold){ ->
« if(a[i] == threshold){
* Choose test input that would kill that mutant.
* a[-1,0,1]
« -1 would not become positive.



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity - Solution
* Design an equivalent mutant.

« Can do so by applying the relational operator

replacement operation to statement 4.
e if(a[i] < threshold){ becomes:
e if(a[i] <= threshold){
« Since threshold=0, and -0 = 0, no test would detect.
* Does not help us test, as the fault cannot cause a failure.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity - Solution

« Design a valid, but not useful mutant.
« Compiles, but trivially fails.

« Apply relational operator replacement to statement 4.
« if(a[i] < threshold){ becomes:
« if(a[i] > threshold)({
* Any positive numbers are made negative, all negative
remain negative. Almost any test would detect this.

 Many mutants are not useful.



&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Activity

 Valid-but-useful?

« Compiles, but is subtle and hard to detect.
* Valuable when testing - we need the right test to detect.

e int threshold = 2;
+ Constant-for-constant
* Only detected if the input array contains 1 in it.

« If we check boundary values, we might catch this, but otherwise
could miss it!



{8%)) UNIVERSITY OF GOTHENBURG

PlTest Demo
(https://pitest.org/)



https://pitest.org/

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« Mutation testing inserts faults to judge test suite
sensitivity and adequacy.

« Mutation operators automatically create faulty
versions of a program.
« Operators model expected syntactic faults.

« Tests are judged according to their ability to detect
faults - useful sensitivity analysis.



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

 Model-Based Testing
« Exercise Session: Mutation Testing

* Assignment 3 due March 1.




UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY



