CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Gregory Gay
DIT636/DAT560 - February 25, 2026

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Models and Software Analysis

* Before and while building products, engineers
analyze models to address design questions.

o Software is no different.

« Software models capture different ways that the
software behaves during execution.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Behavior Modeling

« Abstraction - simplify problem by identifying and
focusing only on important aspects.
« Solve a simpler problem, then apply to the big problem.

A model is a simplified representation of the
software-under-development.
 |gnores all aspects irrelevant to the current task.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Software Models

« Abstractions of system being developed.
* Only contain details relevant to a particular analysis.

« Can be extracted from specifications, design, code.
« Control and Data Flow
« Model of how control/data move during execution.

« Finite State Machines
* Events cause the system to react, changing its internal state.

(&%) UNIVERSITY OF GOTHENBURG

Control Flow Diagrams

 Model of how control flows 1<x

between basic blocks. T \

« Enables analyses and test
creation centered around
control flow.

e Omits all other
information about the

program.

(8%)) UNIVERSITY OF GOTHENBURG

Data Flow Diagrams

 Model of how
definitions and
usages of
variables are
connected.

e Omits all other
information
about the
program.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Model-Driven Development

« State machine models often created during
requirements analysis.
 Allows refinement of requirements.

« Can prove that requirements hold over model
(Finite State Verification)

« Can generate code from state machine models.
« Used heavily in automotive, embedded.

e Can create tests using models.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Model-Based Testing

« State machine models describe (abstractly) what
happens when input is applied to functionality.

« State machine model structure can be exploited:
« Coverage criteria used to identify important paths.

« Steps taken to perform functionality in different ways or to
get different outcomes.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Finite State Machines

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Finite State Machines

« “State” of software = values assigned to variables.
« Set of all possible real behaviors is often infinite.
« (Called the “state space” of the program.

e Models simplify a “functionality”’/component
into finite states.
« State = simple description or small set of variables

 Execution modeled as transitions between states,
caused by actions.

{8%)) UNIVERSITY OF GOTHENBURG

Finite State Machines

 Nodes represent states |
- Abstract description of the current
value of an entity’s attributes.

« Edges represent transitions
* Events cause state to change.

 Labeled event [guard] / activity
 event: The event that triggered the transition.
« guard: Conditions that must be true to transition.
* activity: Output behavior when this transition is taken.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Terminology

« Event - An “input” that occurs at a defined time.
 The user presses a button.
* The alarm goes off.

« Condition - Predicate that can be checked at
different points in time.
 |s the fuel level above or below a threshold?
« Has the alarm been ringing for more than 10 seconds?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Terminology

« State - Abstract description of the current value of
the entity’s attributes.

* (e.g.: “Normal Operating Mode”, “Emergency Mode”)

 (Can also be current value of a set of variables.
However, keep that set small!
Limit possible variable values (e.g., “<0, 0, >0”, not “any integer”)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

States, Transitions, and Guards

« States change in response to events (transition).

 When multiple transitions are possible, the choice is
guided by the current conditions.
» Also called the guards on a transition.
« We take the transition that satisfies all guards.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

State Transitions

Transitions labeled as:

event [guard] / activity

 event: The event that triggered the transition.
* guard: Conditions required to take this transition.
* actiwvity: Output when this transition is taken.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

State Transitions

event [guard] / activity

« All three are optional.

* Missing Activity: No output from this transition.

* Missing Guard: Always take transition following event.

« Missing Event: Take this transition immediately after
entering preceding state (if guards met).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

State Transition Examples

event [guard] / activity
user presses test button [mode == “safe”] / display “testing”
» User pressing test buttons is an event.

* Transition will only be taken if the mode is “safe”
 Aguard.

 If the transition is taken, then the software will
display “testing” on the screen (activity).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example: Candy Machine

T

[candy > 0]
’[Waiting]ﬁ
user ejects money T luser inserts money
Money
Inserted ser presses button
[candy -1 > 0]/
dispense candy
e (Candy Sold
Candy

[candy -1 = 0] / dispense candy

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

More on Transitions

Guards must be mutually exclusive

If event occurs and no

Able to J transition is valid, then
Purchase ..
money ejected money ejected event Is IJ nored.
[balance M[balance >08&&
balance < needed]
Waiting for N Missing transition for:
Money Needed money [balance > 0 &&

balance >= needed]

’} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Internal Activities

Can react to events and e Special events: entry
conditions without and exit.

transitioning using internal e Other activities occur
activities. each “time step”, until a

transition occurs.
o Entry and exit not
re-triggered.

g‘_o-&_ﬁ RN
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Example: Maintenance Tracking

e Customers send products for
maintenance.

* Maintenance tracking notes current
stage of process.

e Model only what software tracks
and controls!

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example: Maintenance Tracking

If the product is covered by warranty or maintenance contract,
maintenance can be requested through the software. [Waitingfor Request |

' Request - No Warranty |
If the product is not covered by warranty, the software informs the

customer of the estimated cost. Maintenance starts when the customer
accepts the estimate. If the customer does not accept, the item is

returned. [Returningto Customer |

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example: Maintenance Tracking

' Under Local Repair !

All repairs start at a local station. If the station cannot solve

the problem, the product is sent to the main headquarters.
' Repair at Main HQ |

Maintenance is suspended if some components are not
available. [Waitingfor Component |

Once repaired, the product is returned to the customer.

' Returning |

)} CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: Maintenance Tracking

[status==delivered]

request()
[warranty==false] /
estimate sent

request()
[warranty==true]

estimateResponse(True)

orderParts()

return()
updateStatus(“local”)

transfer()

orderParts()

return()
updateStatus(“main_hq”)

{#%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

3 7
b and UNI

Example - Computer Model

 Many classes have stateful behavior.
« States = class variables
* Transitions = method calls
* Derive model from class and create tests.

* We sell computers on our website.
“Model” represents a computer model.

* Models have slots for components (e.g.,
CPU, memory, video card).

{8%)) UNIVERSITY OF GOTHENBURG

Slot Specification

Slot represents a configuration choice in all instances of a particular model of
computer. A given model may have zero or more slots, each of which is marked
as required or optional. If a slot is marked as required, it must be bound to a
suitable component in all legal configurations. Slot offers the following methods:

* Incorporate: Make a slot part of a model, and mark it as either required or
optional. All instances of a model incorporate the same slots.

 Bind: Associate a compatible component with a slot.

 Unbind: The unbind operation breaks the binding of a component to a slot,
reversing the effect of a previous bind operation.

* IsBound: Returns true if a component is currently bound to a slot, or false
if the slot is currently empty.]

—

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Slot State Machine

/@und()
bind
No Model W (No Component e tnoindd g Component isBound()
J incorporate L =ound o _Bound
bind
(model) \/ (component)
unbind()

* Do not derive too many states.

 Map variables to abstract values, not a state for each
possible combination of values.
 Model how a method affects a class.

« States only need to capture interactions between
methods and the class state.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Example - Model

Model represents the current configuration of a model of computer.

« A given model may have zero or more slots, each of which is
marked as required or optional.

« Each slot may contain a single component.

 To be alegal model, the model ID must exist in the ModelDB, each
slot marked as required must be filled, the configuration must
match that of the ModelDB entry for the model ID, and the optional
components must match those allowed for that model in the
ModelDB.

CHALMERS |) UNIVERSITY OF GOTHENBURG

Example - Model

e selectModel(modellD): Sets the model ID to the value passed in, as long as the
model ID is set to “no model selected”. A model ID must be set before any other
services are requested.

e deselectModel(): Sets the model ID to “no model selected”. If the configuration was
previously judged to be legal, it is no longer legal.

e addComponent(slot, component): Adds the selected component to the selected
slot. If the configuration was previously judged to be legal, it is no longer legal.

e removeComponent(slot): Removes the selected component to the selected slot. If
the configuration was previously judged to be legal, it is no longer legal.

e isLegalConfiguration(): Compares the current configuration to the entry in
ModelDB. If the configuration is valid, the Model’s isLegal field is set to “true”.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Choosing States

[No Model] [Confiaurin] [Legal]
Selected guring Configuration

* What does the class represent?
* e.g., a computer model.

* What causes method results to differ?
* e.dg., whether the model is legal or illegal.

« Can the class be in any other states?
* e.g., we may not have set the model yet, we could still be
making decisions and have not determined legality.

_ CHALMERS | UNIVERSITY OF GOTHENBURG

Choosing Transitions and Initial State
Skces < @

selectModel(model)

deselectModel()

addComponent

deselectModel . .
(Configuring] (slot,component)

remove isLegalConfiguration()

Component(slot) [legalConfig=false]
isLegalConfiguration()
legalConfig=true]

Legal
Configuration |

remove

addComponent Component(slot)

(slot,component)

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s Take a Break

AR

,‘ CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Activity - Safe Lock Controller

You must design a state machine for a class that controls the
lock on a safe.

« To unlock the safe, a user inserts a key. The software will issue
a command to open a panel, a user will then enter a password.
» If the password is correct, the lock will be released and the safe will open.

« If the password is incorrect, an alarm will be raised. To stop the alarm, the
user must enter the correct password.

» To relock the safe, the user must close the door and press the
“lock” button on the keypad. The panel will close. The user may
then remove their key. This will complete the locking process.

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Activity - Safe Lock Controller

You must design a state machine for a class that
controls the lock on a safe.

Method Description

openPanel() Checks that the key is inserted and opens the panel if it is.

validatePassword Checks whether the password is correct.

(password)

closePanel() Closes the panel, as long as the door is closed and the lock button has been pressed.
lockSafe() Locks the safe, as long as the panel has been closed.

UNIVERSITY OF GOTHENBURG

Activity Solution

Panel]
Closed

closePanel() [door
closed and lock button
pressed] / close panel

lockSafe() [key removed]
/ lock safe

validatePasswordl(...)
[correct] / open door

o >[Locked Open]

validatePasswordl(...)
[correct] / open door

openPanel() [key
inserted] / open panel

Alarm]

validatePasswordl(...)
[incorrect] / raise alarm

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Model Coverage Criteria

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Creation

« Tests from models can be applied to the program.
« Events translated into method/API calls.
* Program output (abstracted) should match model output.

 Model coverage maps to requirements coverage.
« Tests should be effective for verification.
« Exercises stateful behavior thoroughly.
« Coverage criteria based on states, transitions, paths.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

State Coverage

 Each state must be reached by test cases.
e Num. of Covered States / Number of States

« Easy to understand and obtain, but low
fault-revealing power.
« Software takes action during transitions
* Most states can be reached through multiple transitions.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Transition Coverage

* A transition specifies a pre/post-condition.

* “If system is in state S and sees event |, then after
reacting to it, the system will be in state T.”

* Faulty system could violate (pre, post-condition) pairs.

* Every transition must be covered by test cases.
e Num. Covered Transitions / Number of Transitions

CHALMERS | UNIVERSITY OF GOTHENBURG

! e |f no “final” states, we
[status==delivered] Waiting for } could achieve transition
Request coverage with one large
Returning t request()
[guustolm%ro [wa_rranty==false]/ teSt case.
estimate sent equestl) o Smarter to target
T ostimaigResponse(False [warranty==true] sections in different
N'zwgf;tn't test cases.
/ e Map input to method
estimateResponse(True) Ca”S or Variable
\ .
Under Local orderParts() aSSIgnmentS'
return() Re alr
P S Waiting for
updateStatus(“local”)
transfer() l Component

return()

orderParts()
Repair at
Main HQ updateStatus(“main_hq”)

CHALMERS

UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

° Test 1 (“no warranty”, accept)
warranty = False;
request();
estimateResponse(True);
return();
status = “delivered”;

° Test 2 (“no warranty”, reject)

[status==delivered]

request() warranty = False;

[warranty==false] / request();

estimate sent estimateResponse(False);
request() status = “delivered”;

[warranty==true]

estimateResponse(True)

orderParts()
updateStatus(“local”)

orderParts() _—

return()

transfer()

Test 3 (Local Repair)
warranty = True;
request();
orderParts();

status = “repair_local”;
return();
status="delivered”;
Test 4 (Main HQ Repair)
warranty = True;
request();

transfer();
orderParts();

status = “repair_main;
return();
status="delivered”;

CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

Example - Slot
Z 3T
) _No Component = Lnondy " Component ﬂ isBound()
\D\U‘u”d Bound =

4

[No Model

incorporate

(model) bind

(component)
unbind()

* incorporate(model), isBound(), unbind()
 incorporate(model), bind(component), isBound()
 incorporate(model), bind(component), unbind(), isBound()

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example - Model
TCA1: o Mocejzl]< ‘

selectModel(M1) [M1, 1 slots = C1]
deselectModel() l
selectModel(M1) deselectModel selectModel(model)
addComponent(S1,C1) deselectModel() . addComponent
isLegalConfiguration() //true remove Confi slot,component)
deselectModel() ponent(siét) —— _

galConfi isLegalCo
TC2: guration() guration()
selectModel(M1) [M1, 1 slot = C1] legalConfig oy addComponent
addComponent(S1,C1) lot
isLegalConfiguration() //true Configurati (slot,compon

addComponent(S2,C2)
isLegalConfiguration() // false
removeComponent(S2)
isLegalConfiguration() // true
removeComponent(S1)

remove
Component(slot)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Path Coverage Criteria
* Transition coverage based on assumption that
transitions are independent.

« Many machines exhibit “history sensitivity”.
« Transitions available depend on path taken.

» Path-based metrics can cope with sensitivity.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Path Coverage Metrics
* Single State Path Coverage

* Requires that each subpath that traverses states at most
once to be included in a path that is exercised.
« Single Transition Path Coverage
* Requires that each subpath that traverses a transition at
most once to be included in a path that is exercised.
« Boundary Interior Loop Coverage

« Each distinct loop must be exercised minimum, an
intermediate, and a large number of times.

_ CHALMERS | UNIVERSITY OF GOTHENBURG

Single State/Transition

[status==delivereal | \Waiting for
Path Coverage st J
Returning t [west) y /
. warranty==
e Each subpath Customer | Gimate sont
‘dfuest
that traverses £ fostmateRegponse(Fals pranty==irue]
a state (or | No?/(\]/:(rera ’
transition) at
mos t once estimateResponse(Tru
VL
must be Under T orderParts()
. return() i
exercised. acke — Waiting for
updateStatus(“locais
transfer() l 1_Component
L —orderParts() v
return() Repair at
Main HQ updateStatus(“main_hq”)

46

UNIVERSITY OF GOTHENBURG

Boundary Interior
LOO p C ove ra g e [status==de|ivered]4'[No J

Maintenance
Returning to [equest() false]/
warranty==false
Customer estimate sent

e Each IOOp T request()

estimateResponse(False

mUSt be [warranty==true]
exercised 1, No Warranty
2! N t|meS. estimateResponse(True)
e (N =some v
h ig her Under Local orderParts()
return() Repair
~— > oo

num be r) updateStatus(“local”) Waltmg for

transfer() l Component

orderParts()
return() Repair at
Main HQ updateStatus(“main_hq”)

47

{81)) UNIVERSITY OF GOTHENBURG

For the safe lock model, derive test suites
that achieve state and transition coverage.

Activity

Panel
|

lockSafe() [key removed]
/ lock safe closePanel() [door
closed and lock button

pressed] / close panel

validatePasswordl(...)
[correct] / open door

o >[Locked Open]

validatePasswordl(...)
[correct] / open door

openPanel() [key
inserted] / open panel

Alarm]

validatePasswordl(...)
[incorrect] / raise alarm

UNIVERSITY OF GOTHENBURG

Activity Solution

Test 1: “Standard Path”
(insert key), openPanel(),

validatePassword(correct), (close

door, press lock button),
closePanel(), (remove key),
lockSafe()

®

Locked

openPanel() [key
inserted] / open panel

Panel
Closed
closePanel() [door
closed and lock button
pressed] / close panel

lockSafe() [key
removed] / lock s

validatePasswordl(...) Open
[correct] / open door

validatePasswordl(...
[correct] / open door

N—"

Alarm

validatePasswordl(...)
incorrect] / raise alarm

UNIVERSITY OF GOTHENBURG

Activity Solution

Test 2: “Trigger Alarm”
(insert key), openPanel(),
validatePassword(incorrect), Panel
validatePassword(correct) lockSafe() [key Closed

closePanel() [door
closed and lock button
pressed] / close panel

removed] / lock s

® ~ Locked validatePasswordl(...)
[correct] / open door

Open

validatePasswordl(...
[correct] / open door

N

openPanel() [key
inserted] / open panel

A}érm
swordl(...) /
incorrect] / raise alarm

|
Y, ,.:\“\/
]

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity Solution - Additional Tests

* These two tests achieve state and transition
coverage, but do not verify all outcomes.
» Also test alternate outcomes where guards are not met.
« Key not inserted.

* Door not closed.
* Lock button not pressed.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* Models can be used to systematically create tests.
« Exercises stateful behavior of a class or functionality.
« Maps well to requirements.

« State machines model expected behavior.
« Cover states, transitions, non-looping paths, loops.

« Can also verify properties over models as part of
verification (next class).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

Finite State Verification

Assignment 3
e Due March 1

Assignment 4
e Due March 8

Questions?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

