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How do we know a system is correct?

Rationalists Empiricists

“It is correct because | “It is correct because |
proved that certain errors never observed incorrect
do not exist in the system.” behaviors.”

Adapted from Shin Yoo (KAIST) 2
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* You have a requirement the program
must obey.

* Great! Let's write some tests!
* Does testing prove the
requirement is met?

“It is correct because |
o Not quite... proved that certain errors do

_ not exist in the system.”
m Testing can only make a
statistical argument.
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Testing

* Most systems have near-infinite possible inputs.

« Some failures are rare or hard to recreate.
« Or require very specific input.

 How can we prove that our e
system meets the requirements?

it
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What About a Model?

 We have previously used models to create tests.
* Models are simpler than the real program.

* Models can be used to verify full programs.
« Can see if properties hold exhaustively over a model.
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sense pace
D w public static void Main(){

. . System.out.printin(“Hell
Specification tD —_— o world!"):
(i mmmmm imeOut —% }
\ simplePacin )
. And If the model is And If the model accurately
If the model satisfies )
well-formed, consistent, represents the program.

the specification...
P and complete.

If we can prove that the model satisfies the requirement,
then we can argue that the program should as well.
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Finite State Verification

* Express requirements as Boolean formulae.

« Exhaustively search state space of the model for
violations of those properties.

 If the property holds - proof of correctness.

A

« Contrast with testing - == .
no violation might Son e
mean bad tests. E i
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Today’s Goals

« Formulating requirements as logical expressions.
* Introduction to temporal logic.

* Building behavioral models in NuSMV.

» Performing finite-state verification over the model.
« Exhaustive search algorithms.
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Expressing Requirements in
Temporal Logic
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Expressing Properties

* Properties expressed in a formal logic.

« Boolean expressions, representing facts we asset over
execution paths.

« EXxpressions contain boolean variables, subexpressions,
and operators... as well as temporal operators.

* Ensures that properties hold over execution
paths, not just at a single point in time.
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Expressing Properties
o Safety Properties

« Check that a specific event or sequence happens exactly
as specified.

« “If the traffic light is red, it will always turn green within 10
seconds.”

« “If an emergency vehicle arrives at a red light, it must turn green
in the next time step.”
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Expressing Properties

 Liveness Properties
« Eventually something specific happens.
* Fairness criteria.

« Reason over paths of unknown length.
« “If the light is red, it must eventually become green.”
« “If the package is shipped, it must eventually arrive.”

« “If Player A is taking a turn, Player B must be allowed a turn at
some time in the future.”
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Temporal Logic
* Linear Time Logic (LTL)

» Reason about events over a single timeline.

« Computation Tree Logic (CTL)

« Branching logic that can reason about multiple timelines.
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Linear Time Logic Formulae

Formulae written with boolean predicates, logical
operators (and, or, not, implication), and operators:

X (next) X (weather == rain) In the next state, it will be raining.
G (globally) G (weather == rain) Now and in all future states, it will be raining.
F (finally) F (weather == rain) Eventually, there will be a state where it is raining.
U (until) (weather == rain) U It will rain until the temperature drops below O.
(temperature < 0) (The value of “weather” can change once temperature is less than 0)
R (release) weather ==rain) R It will cease to rain after the temperature drops below 0.
(temperature < 0) (Both operands must be true at the same time for at least one state
before the value of “weather” can change)
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LTL Examples

« X (next) - This operator provides a constraint on
the next moment in time.
e ((emotion == sad) && (money == 0))

-> X(emotion == sad) =

e ((emotion == hungry) && (money > 0))
-> X(pizza == ordered)

hungry pizza ==
money >0 ordered
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LTL Examples

* F (finally) - At some unknown point in the future,
this property will be true.

e ((status == funny) && ownCamera)

-> F(status == famous)
e (emotion == sad) -> F(emotion == happy)
e (letter == sent) -> F(letter == received)
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LTL Examples

* G (globally) - Property must be true now and forever.
e G(winLottery -> G(rich))

Qe T

e G((light==green) -> F(light==red))
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LTL Examples

* U (until) - One property must be true until the
second becomes true.

e (lecture==started) ->
((teacher==talking) U (lecture==ended))

e born -> (alive U dead)
e requested -> (!replied U acknowledged)

lecture == started teacher == lecture==ended
teacher == talking talking ot teacher != talking
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requested = action requested

M O re LT L Exa m p I e s received = request received

processed = request processed
done = action completed

e G (requested -> F (received))
e G (received -> X (processed))

e G (processed -> F (G (done)))
* G (requested -> G (!done)) not possible, based on above.
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requested = action requested

M O re LT L Exa m p I es received = request received

processed = request processed
done = action completed

e G (requested -> F (received))
« At any point in this timeline, if the action is
requested, the request must eventually be received.
e X (requested -> F (recieved))

* |If arequestis made in the next step, it must
eventually be received.

* Arequest made now or after the next step does not
have this guarantee.
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Computation Tree Logic Formulae

Combine path quantifiers (A,E) with temporal operator:

A (all) Affects all paths branching out from the current state.
E (exists) Affects at least one path branching out from the current state.
X (next) X (weather == rain) In the next state on this path, it will be raining.
G (globally) G (weather == rain) Now and in all future states on this path, it will be raining.
F (finally) F (weather == rain) Eventually on this path, there will be a state where it is raining.
U (until) (weather ==rain) U On this path, it will rain until the temperature drops below 0.
(temperature < 0) (The temperature must eventually be less than 0)
W (weak until) weather == rain) W On this path, it will rain until the temperature drops below 0.
(temperature < 0) (The temperature could remain above 0 forever)
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CTL Examples

* requested: a request has been made
« acknowledged: request has been acknowledged.

®* AG (requested -> AF acknowledged)

« On all paths, at every state in the path (AG)
« If a request is made, then for all paths starting at that point,
eventually (AF), it must be acknowledged.

lacknowledged — l!acknowledged —> acknowledged
requested <

acknowledged
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CTL Examples

* requested: a request has been made
« acknowledged: request has been acknowledged.

® AG (requested -> EF acknowledged)

« On all paths, at every state in the path (AG)
If a request is made, then for a subset of paths starting at that
point, eventually (EF), it must be acknowledged.
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e AG chocolate

CTL Examples

chocolate = “| like chocolate.”

e AF (EG chocolate)

E = e EF chocolate
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CTL Examples
chocolate = “| like chocolate.”
warm = “it is warm”

e AG (chocolate U warm)
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Example - Elevator

 If the cabin is moving, the direction is up, and it
Is on floor 3, then it will be at floor 4 next.
e G (((floor==3) && (status==moving) &&
(direction==up)) -> X (floor==4))

« If | request the elevator on floor 1, and the cabin
is not at that floor, it must eventually reach me

(or be broken).
e AG ((request floorl && floor!=1) -> AF
(floor==1 || status==broken))

((

</

4
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Example - Elevator

» If the elevator is requested on floor 1, and the
cabin is at floor 4, it could stop at floor 3 along @@
the way to let passengers in.

* AG ((request_floorl && floor==4) -> EX
(floor==3 && door==open))

* Leaves open possibility that the cabin is moving up,
could break, could remain at floor 4 longer, no one
requested it on floor 3, ... S )

</

((

* The door must not be open while cabin moving.
e G (status==moving -> door==closed)
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Let’s Take a Break
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Building Models
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Building Models

« Many different modeling languages.
* Most verification tools use their own language.

* Most map to finite state machines.
» Define list of variables.
* Describe how values are calculated.
« Each “time step”, recalculate values of these variables.
« State is the current values of all variables.
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Building Models in NuSMV

« NuSMV is a symbolic model checker.

* Models written in a basic language, represented using
Binary Decision Diagrams (BDDs).
« BDDs translate concrete states into compact summary states.
« Allows large models to be processed efficiently.
* Properties may be expressed in CTL or LTL.

 |f a model may be falsified, it provides a concrete
counterexample demonstrating how it was falsified.
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A Basic NuSMV Model

request: boolean;

status: {ready, busy};

ASSIGN | Expressions define how the state of each variable can change.

init(status) := ready;

next(status) :=

case
status=ready & request: busy;
status=ready & !request : ready;
TRUE: {ready, busy};

esac;

SPEC AG(request -> AF (status = busy)) | Property we wish to prove over the model.
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Checking Properties

 Execute from command line:

NuSVM <model name>

* Properties that are true
are Indicated as true.

 If property is false, a
counter-example is
shown (input violating
the property).

C19ZRMR:bin ggay$ ./NuSMV main.smv

*** This is NuSMV 2.6.0 (compiled on Wed Oct 14 15:32:58 2015)

*** Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-users@list.fbk.eu>.

*#%* Please report bugs to <Please report bugs to <nusmv-users@fbk.eu>>

*** Copyright (c) 2010-2014, Fondazione Bruno Kessler

**%* This version of NuSMV is linked to the CUDD library version 2.4.1
*** Copyright (c) 1995-2004, Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver.
*#s** See http://minisat.se/MiniSat.html

*** Copyright (c) 2003-2086, Niklas Een, Niklas Sorensson

*** Copyright (c) 2007-2010, Niklas Sorensson

-- specification AG (request -> AF status = busy) 1is true
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Checking Properties

 New property: AG (status = ready)

-~ specification AG status = ready 1is false

¢ (ObVlOUSIy nOt true = -- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

We Set |t rand0m|y |n the Trace Type: Counterexample

-> State: 1.1 <-

absence of a request) raquest = FALSE
status = ready
« Counterexample: S

 |n first state, request = false, status = ready.

* We set status randomly for second state (because
request was false). It is set to busy, violating property.
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MODULE main

VAR

traffic_light: {RED, YELLOW, GREEN}; init(ped_light) := WAIT;

ped light: {WAIT, WALK, FLASH}; next(ped _light) := case

walk_request_button: {RESET, SET}; ped_1ight=WAIT & traffic_light=RED: WALK;
ASSTIGN ped_light=WAIT: WAIT;

ped 1light=WALK: {WALK,FLASH};

init(traffic_light) := RED; ped_1light=FLASH: {FLASH, WAIT};
next(traffic_light) := case TRUE: {WAIT};
traffic_light=RED & button=RESET: €sac;
GREEN; init(walk_request_button) := RESET;
traffic_light=RED: RED; next(walk_request_button) := case

walk request_button=SET &

traffic_light=GREEN & button=SET: ped light=WALK: RESET;

{GREEN, YELLOW}; walk request button=SET: SET;
traffic_light=GREEN: GREEN; walk_request_button=RESET &
traffic_light=YELLOW: traffic_light=GREEN: {RESET,SET};

{YELLOW, RED}; walk _request_button=RESET: RESET;

TRUE: {RED}; TRUE: {RESET};

esac;
esac;
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MODULE main
VAR

traffic_light: {RED, YELLOW, GREEN};
ped_light: {WAIT, WALK, FLASH};
walk request_button: {RESET, SET};

ASSIGN
init(traffic_light) :

RED;
next(traffic_light) := case

traffic_light=RED & button=RESET:

GREEN;
traffic_light=RED: RED;

traffic_light=GREEN & button=SET:

{GREEN, YELLOW};
traffic_light=GREEN: GREEN;

traffic_light=YELLOW:
{YELLOW, RED};

TRUE: {RED};

esac;

init(ped_light) :
next(ped_light) :
ped_1ight=WAIT & traffic_light=RED: WALK;
ped light=WAIT: WAIT;
ped _light=WALK: {WALK,FLASH};
ped light=FLASH: {FLASH, WAIT};
TRUE: {WAIT};

WAIT;
case

esac;
init(walk_request_button) := RESET;
next(walk_request_button) := case

walk request button=SET &
ped light=WALK: RESET;
walk_request_button=SET: SET;
walk_request_button=RESET &
traffic_light=GREEN: {RESET,SET};
walk request button=RESET: RESET;
TRUE: {RESET};

esac;
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Activity - Example
* Safety Property

« A specific event/sequence happens as specified.
e The pedestrian light cannot indicate that | should

walk when the traffic light is green.

« This is a safety property. We are saying that this should
NEVER happen.

e AG (pedestrian_light = walk -> traffic light
= green)
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Activity - Example

* Liveness Property
« Eventually something of interest happens.
e G (traffic_light = RED &
walk request button = RESET -> F
(traffic_light = green))
* If the light is red, and the button is reset, then eventually,
the light will turn green.

* This is a liveness property, as we assert that something
will eventually happen.
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Proving Properties Over Models
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Proving Properties
« Search state space for property violations.

* Violations give us counter-examples
« Path that demonstrates the violation.
« (useful test case)

* Implications of counter-example:
* Property is incorrect.
« Model does not reflect expected behavior.
» Real issue found in the system being designed.
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Test Generation from FS Verification

 We can also take properties we know to be true
and negate them.

« (Called a “trap property” - we assert that a known
property can never be met.

* Produces a counterexample showing the property
can be met.
« Can be used as a test for the real system.
« Demonstrates that final system meets specification.
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Exhaustive Search

* Algorithms examine all
execution paths through
the state space.

* Major limitation - state
space explosion.

« Limit number of variables
and possible values to
control state space size.
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Search Based on SAT

» Express properties in conjunctive normal form:
e f = (!x2 || x5) && (x1 || !x3 || x4) s&s
(x4 || ! xb5) && (x1]] x2)
 Examine reachable states and choose a transition
based on how it affects the CNF expression.

 |f we want x2 to be false, choose a transition that
Imposes that change.

* Continue until CNF expression is satisfied.
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Boolean Satisfiability (SAT)

* Find assignments to Boolean variables X1,X2,...,X
that results in expression ¢ evaluating to true.

« Defined over expressions written in conjunctive
normal form.

c 90=(X, VX)) A(TX, VX))
- (X, V —X,)is a clause, made of variables, —, V

n

« Clauses are joined with A
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Boolean Satisfiability

* Find assignment to X,,X,,X,,X,,X, to solve
* (X, VX)A X VX, VX)A X, VX)) A (X
X,)
* One solution: 1,0,1, 1, 1
c (X, VX)AX VX, VX)A X,V —X)A (X
X,)
. (iOV1)/\(1 VAT VHAAY 1)A(1VO0)
* MAMAM)AQN)
o 1

\%

1

\%

1
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Branch & Bound Algorithm

Set variable to true or false.

Apply that value.

Does value satisfy the clauses that it appears in?

 If so, assign a value to the next variable.
 |f not, backtrack (bound) and apply the other value.

Prunes branches of the boolean decision tree as
values are applied.
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Branch & Bound Algorithm

e=(%x2V x5 AX1V —x3Vx4) Ax4dV —x5) A (x1V
X2)
1. Set x1 to false.
¢=(—x2V x5 AOV —x3Vx4) A4V —x5)A 0V
X2)
2. Set x2 to false.
Pp=(1Vx5) AOV —x3Vx4) Ax4V —x5) A 0V 0)
3. Backtrack and set x2 to true.
e=(0V x5 AOV x3Vx4) Ax4V —x5)A0VA1)



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

DPLL Algorithm

 Set a variable to true/false.
* Apply that value to the expression.
« Remove all satisfied clauses.

 If assignment does not satisfy a clause, then remove that
variable from that clause.

 |f this leaves any unit clauses (single variable clauses),
assign a value that removes those next.

« Repeat until a solution is found.
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DPLL Algorithm

@=(x%x2V x5 AXx1V —x3Vx4) Ax4dV —x5 A (x1V
X2)

1. Set x2 to false.
@=("0VxXx5) AXx1TV —x3V x4) A x4V —x5 A (x1V0)
=1V —x3V x4) A x4V —x5) A (x1)
2. Set x1 to true.
e=(1V —x3Vx4) A(x4V —x5) A (1)
¢ = (x4 V —x5)
3. Set x4 to false, then x5 to false.
¢ =(0V —x5)
¢ =(70)
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Model Refinement

* Must balance precision ot
with efficiency. /\
* Models that are too simple o s
introduce failure paths that o s
may not be in the real st themoda e e s
system. L [E—

« Complex models may be
infeasible due to resource
exhaustion.
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Who Uses This Stuff?

« Used heavily in safety-critical development.
« Verifies certain complex, critical functions.
« Used extensively in automotive, aerospace, medical.

e Amazon Web Services

« Used to verify security policies, stateful behaviors.
« Used to verify LLM correctness.

* Not used for all functionality.
» Time-consuming, requires additional effort.
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We Have Learned

« We can perform verification by creating models of

function behavior and proving that the requirements
hold over the model.
« To do so, express requirements as logical formulae
written in a temporal logic.

 Finite state verification exhaustively searches the state
space for violations of properties.

* Presents counter-examples showing properties are
violated.
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We Have Learned

* By performing this process, we can gain confidence
that the system will meet the specifications.

« (Can also generate test cases to demonstrate that
properties hold over the final system.

* Negate a property, the counter-example shows that the
property can be met.

« Execute the input from the counter-example on the real
system - should give the same result!
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Next Time

 EXxercise Session: Finite-State Verification
 Lec 14: Automated Test Generation

* Assignment 4 - Questions?
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