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How do we know a system is correct?

“It is correct because I 
proved that certain errors 
do not exist in the system.”

“It is correct because I 
never observed incorrect 

behaviors.”

Rationalists Empiricists

Adapted from Shin Yoo (KAIST)



So, You Want to Perform Verification...

• You have a requirement the program 
must obey.

• Great! Let’s write some tests!
• Does testing prove the 

requirement is met?
○ Not quite…

■ Testing can only make a 
statistical argument.
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“It is correct because I 
proved that certain errors do 

not exist in the system.”



Testing
• Most systems have near-infinite possible inputs.
• Some failures are rare or hard to recreate.

• Or require very specific input.

• How can we prove that our 
system meets the requirements?
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What About a Model?
• We have previously used models to create tests.

• Models are simpler than the real program.

• Models can be used to verify full programs.
• Can see if properties hold exhaustively over a model.
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What Can We Do With This Model?

If we can prove that the model satisfies the requirement, 
then we can argue that the program should as well.

Specification 
public static void Main(){

System.out.println(“Hell
o world!”);
}

If the model satisfies 
the specification...

And If the model is 
well-formed, consistent, 
and complete.

And If the model accurately 
represents the program.
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Finite State Verification
• Express requirements as Boolean formulae.
• Exhaustively search state space of the model for 

violations of those properties.
• If the property holds - proof of correctness.
• Contrast with testing -

no violation might 
mean bad tests.
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Today’s Goals
• Formulating requirements as logical expressions.

• Introduction to temporal logic.

• Building behavioral models in NuSMV.
• Performing finite-state verification over the model.

• Exhaustive search algorithms.
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Expressing Requirements in 
Temporal Logic



Expressing Properties
• Properties expressed in a formal logic.

• Boolean expressions, representing facts we asset over 
execution paths.

• Expressions contain boolean variables, subexpressions, 
and operators… as well as temporal operators. 

• Ensures that properties hold over execution 
paths, not just at a single point in time.
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Expressing Properties
• Safety Properties

• Check that a specific event or sequence happens exactly 
as specified.

• “If the traffic light is red, it will always turn green within 10 
seconds.”

• “If an emergency vehicle arrives at a red light, it must turn green 
in the next time step.”
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Expressing Properties
• Liveness Properties

• Eventually something specific happens.
• Fairness criteria.
• Reason over paths of unknown length.

• “If the light is red, it must eventually become green.”
• “If the package is shipped, it must eventually arrive.”
• “If Player A is taking a turn, Player B must be allowed a turn at 

some time in the future.”
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Temporal Logic
• Linear Time Logic (LTL)

• Reason about events over a single timeline.

• Computation Tree Logic (CTL)
• Branching logic that can reason about multiple timelines.
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There are 
clouds now. It will rain now.

There are 
clouds now.

It will rain now.

It will snow now.

It is sunny now.



Linear Time Logic Formulae
Formulae written with boolean predicates, logical 
operators (and, or, not, implication), and operators:

14

X (next) X (weather == rain) In the next state, it will be raining.

G (globally) G (weather == rain) Now and in all future states, it will be raining.

F (finally) F (weather == rain) Eventually, there will be a state where it is raining.

U (until) (weather == rain) U 
(temperature < 0)

It will rain until the temperature drops below 0. 
(The value of “weather” can change once temperature is less than 0)

R (release) weather == rain) R 
(temperature < 0)

It will cease to rain after the temperature drops below 0. 
(Both operands must be true at the same time for at least one state 
before the value of “weather” can change)



LTL Examples
• X (next) - This operator provides a constraint on 

the next moment in time.
• ((emotion == sad) && (money == 0)) 

-> X(emotion == sad)

• ((emotion == hungry) && (money > 0)) 
-> X(pizza == ordered) 
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sad
money = 0 sad

hungry
money > 0

pizza == 
ordered



LTL Examples
• F (finally) - At some unknown point in the future, 

this property will be true.
• ((status == funny) && ownCamera) 

-> F(status == famous)

• (emotion == sad) -> F(emotion == happy)
• (letter == sent) -> F(letter == received)
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sad sad happy…



LTL Examples
• G (globally) - Property must be true now and forever.

• G(winLottery -> G(rich))

• G((light==green) -> F(light==red))
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!rich winLottery
rich rich rich

green redred …



LTL Examples
• U (until) - One property must be true until the 

second becomes true.
• (lecture==started) -> 

((teacher==talking) U (lecture==ended))

• born -> (alive U dead)
• requested -> (!replied U acknowledged)
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lecture == started
teacher == talking!talk …teacher == 

talking
lecture==ended

teacher != talking



More LTL Examples
• G (requested -> F (received))

• G (received -> X (processed))

• G (processed -> F (G (done)))
• G (requested -> G (!done)) not possible, based on above.
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requested = action requested
received = request received 
processed = request processed
done = action completed

requested !received received… processed

!donedone …done…



More LTL Examples
• G (requested -> F (received))

• At any point in this timeline, if the action is 
requested, the request must eventually be received. 

• X (requested -> F (recieved))
• If a request is made in the next step, it must 

eventually be received.
• A request made now or after the next step does not 

have this guarantee.
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requested = action requested
received = request received 
processed = request processed
done = action completed



Computation Tree Logic Formulae
Combine path quantifiers (A,E) with temporal operator:
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A (all) Affects all paths branching out from the current state.

E (exists) Affects at least one path branching out from the current state.

X (next) X (weather == rain) In the next state on this path, it will be raining.

G (globally) G (weather == rain) Now and in all future states on this path, it will be raining.

F (finally) F (weather == rain) Eventually on this path, there will be a state where it is raining.

U (until) (weather == rain) U 
(temperature < 0)

On this path, it will rain until the temperature drops below 0. 
(The temperature must eventually be less than 0)

W (weak until) weather == rain) W 
(temperature < 0)

On this path, it will rain until the temperature drops below 0. 
(The temperature could remain above 0 forever)



CTL Examples
• requested: a request has been made
• acknowledged: request has been acknowledged.

• AG (requested -> AF acknowledged)
• On all paths, at every state in the path (AG)
• If a request is made, then for all paths starting at that point, 

eventually (AF), it must be acknowledged.
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requested

!acknowledged !acknowledged acknowledged

acknowledged



CTL Examples
• requested: a request has been made
• acknowledged: request has been acknowledged.

• AG (requested -> EF acknowledged)
• On all paths, at every state in the path (AG)
• If a request is made, then for a subset of paths starting at that 

point, eventually (EF), it must be acknowledged.
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requested

!acknowledged !acknowledged acknowledged

!acknowledged



CTL Examples
chocolate = “I like chocolate.” 

24

chocolate

chocolate

chocolate

!chocolate

!chocolate

!chocolate

• AG chocolate

• EF chocolate
• AF (EG chocolate)

chocolate

!chocolate

!chocolate

!chocolate

!chocolate

chocolate

chocolate

!chocolate

chocolate

chocolate

chocolate



CTL Examples
chocolate = “I like chocolate.”
warm = “it is warm” 

!chocolate

• EG (AF chocolate)

• AG (chocolate U warm)

chocolate

chocolate
!warm

chocolate
!warm

chocolate
warm

chocolate
warm

!chocolate
!warm

!chocolate
warm

!chocolate
!warm

chocolate
warm

!chocolate !chocolate

!chocolatechocolate!chocolate

chocolate
warm
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Example - Elevator
• If the cabin is moving, the direction is up, and it 

is on floor 3, then it will be at floor 4 next.
• G (((floor==3) && (status==moving) && 

(direction==up)) -> X (floor==4))

• If I request the elevator on floor 1, and the cabin 
is not at that floor, it must eventually reach me 
(or be broken).
• AG ((request_floor1 && floor!=1) -> AF 

(floor==1 || status==broken))
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Example - Elevator
• If the elevator is requested on floor 1, and the 

cabin is at floor 4, it could stop at floor 3 along 
the way to let passengers in.

• AG ((request_floor1 && floor==4) -> EX 
(floor==3 && door==open))

• Leaves open possibility that the cabin is moving up, 
could break, could remain at floor 4 longer, no one 
requested it on floor 3, …

• The door must not be open while cabin moving.
• G (status==moving -> door==closed)
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Let’s Take a Break
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Building Models



Building Models
• Many different modeling languages.
• Most verification tools use their own language.
• Most map to finite state machines.

• Define list of variables.
• Describe how values are calculated.
• Each “time step”, recalculate values of these variables.
• State is the current values of all variables. 
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Building Models in NuSMV
• NuSMV is a symbolic model checker.

• Models written in a basic language, represented using 
Binary Decision Diagrams (BDDs).

• BDDs translate concrete states into compact summary states.
• Allows large models to be processed efficiently.

• Properties may be expressed in CTL or LTL.
• If a model may be falsified, it provides a concrete 

counterexample demonstrating how it was falsified.
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A Basic NuSMV Model
MODULE main 

VAR 

    request: boolean; 

    status: {ready, busy}; 

ASSIGN 

    init(status) := ready; 

    next(status) := 

    case 

        status=ready & request: busy; 

        status=ready & !request : ready;

        TRUE: {ready, busy}; 

    esac;

SPEC AG(request -> AF (status = busy))
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Models consist of one or more modules, which execute in parallel.
The state of the model is the current value of all variables.

Expressions define how the state of each variable can change.

“request” is set randomly. This represents an 
environmental factor out of our control.

Property we wish to prove over the model.
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Checking Properties
• Execute from command line: 
NuSVM <model name>

• Properties that are true
are indicated as true.

• If property is false, a
counter-example is 
shown (input violating
the property).
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Checking Properties
• New property: AG (status = ready)
• (Obviously not true -

we set it randomly in the
absence of a request)

• Counterexample:
• In first state, request = false, status = ready. 
• We set status randomly for second state (because 

request was false). It is set to busy, violating property.  



MODULE main 

VAR 

   traffic_light: {RED, YELLOW, GREEN};
   ped_light: {WAIT, WALK, FLASH};
   walk_request_button: {RESET, SET};

ASSIGN 

    init(traffic_light) := RED; 

    next(traffic_light) := case 

        traffic_light=RED & button=RESET: 
                    GREEN; 

        traffic_light=RED: RED;

        traffic_light=GREEN & button=SET: 
                   {GREEN,YELLOW};

        traffic_light=GREEN: GREEN;

        traffic_light=YELLOW: 
                   {YELLOW, RED};

        TRUE: {RED}; 

    esac;
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init(ped_light) := WAIT; 
next(ped_light) := case 
    ped_light=WAIT & traffic_light=RED: WALK; 
    ped_light=WAIT: WAIT;
    ped_light=WALK: {WALK,FLASH};
    ped_light=FLASH: {FLASH, WAIT};
    TRUE: {WAIT}; 
esac;
init(walk_request_button) := RESET;
next(walk_request_button) := case 
    walk_request_button=SET & 
        ped_light=WALK: RESET; 
    walk_request_button=SET: SET;
    walk_request_button=RESET & 
        traffic_light=GREEN: {RESET,SET};
    walk_request_button=RESET: RESET;
    TRUE: {RESET}; 
esac;
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● Describe a safety property (something does or does not happen at a specific time) 
and formulate in CTL.

● Describe a liveness property (something eventually happens) and formulate in LTL.MODULE main 

VAR 

   traffic_light: {RED, YELLOW, GREEN};
   ped_light: {WAIT, WALK, FLASH};
   walk_request_button: {RESET, SET};

ASSIGN 

    init(traffic_light) := RED; 

    next(traffic_light) := case 

        traffic_light=RED & button=RESET: 
                    GREEN; 

        traffic_light=RED: RED;

        traffic_light=GREEN & button=SET: 
                   {GREEN,YELLOW};

        traffic_light=GREEN: GREEN;

        traffic_light=YELLOW: 
                   {YELLOW, RED};

        TRUE: {RED}; 

    esac;

init(ped_light) := WAIT; 
next(ped_light) := case 
    ped_light=WAIT & traffic_light=RED: WALK; 
    ped_light=WAIT: WAIT;
    ped_light=WALK: {WALK,FLASH};
    ped_light=FLASH: {FLASH, WAIT};
    TRUE: {WAIT}; 
esac;
init(walk_request_button) := RESET;
next(walk_request_button) := case 
    walk_request_button=SET & 
        ped_light=WALK: RESET; 
    walk_request_button=SET: SET;
    walk_request_button=RESET & 
        traffic_light=GREEN: {RESET,SET};
    walk_request_button=RESET: RESET;
    TRUE: {RESET}; 
esac;



Activity - Example
• Safety Property

• A specific event/sequence happens as specified.
• The pedestrian light cannot indicate that I should 

walk when the traffic light is green. 
• This is a safety property. We are saying that this should 

NEVER happen. 
• AG (pedestrian_light = walk -> traffic_light 

!= green)
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Activity - Example
• Liveness Property

• Eventually something of interest happens.
• G (traffic_light = RED & 

walk_request_button = RESET -> F 
(traffic_light = green))
• If the light is red, and the button is reset, then eventually, 

the light will turn green. 
• This is a liveness property, as we assert that something 

will eventually happen.
38
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Proving Properties Over Models



Proving Properties
• Search state space for property violations.
• Violations give us counter-examples

• Path that demonstrates the violation. 
• (useful test case)

• Implications of counter-example:
• Property is incorrect.
• Model does not reflect expected behavior.
• Real issue found in the system being designed.
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Test Generation from FS Verification
• We can also take properties we know to be true 

and negate them.
• Called a “trap property” - we assert that a known 

property can never be met.

• Produces a counterexample showing the property 
can be met.
• Can be used as a test for the real system.
• Demonstrates that final system meets specification.
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Exhaustive Search
• Algorithms examine all 

execution paths through 
the state space.

• Major limitation - state 
space explosion.
• Limit number of variables 

and possible values to 
control state space size.
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Search Based on SAT
• Express properties in conjunctive normal form: 

• f = (!x2 || x5) && (x1 || !x3 || x4) && 
(x4 || ! x5) && (x1|| x2) 

• Examine reachable states and choose a transition 
based on how it affects the CNF expression.
• If we want x2 to be false, choose a transition that 

imposes that change.
• Continue until CNF expression is satisfied.
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Boolean Satisfiability (SAT)
• Find assignments to Boolean variables X1,X2,...,Xn 

that results in expression φ evaluating to true. 
• Defined over expressions written in conjunctive 

normal form.
• φ = (X1 ∨ ￢X2) ∧ (￢X1 ∨ X2) 
• (X1 ∨ ￢X2) is a clause, made of variables, ￢, ∨ 
• Clauses are joined with ∧
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Boolean Satisfiability
• Find assignment to X1,X2,X3,X4,X5 to solve 

• (￢X2 ∨ X5) ∧ (X1 ∨￢X3 ∨ X4) ∧ (X4 ∨ ￢X5) ∧ (X1 ∨ 
X2)

• One solution: 1, 0, 1, 1, 1
• (￢X2 ∨ X5) ∧ (X1 ∨￢X3 ∨ X4) ∧ (X4 ∨ ￢X5) ∧ (X1 ∨ 

X2)
• (￢0 ∨ 1) ∧ (1 ∨￢1 ∨1) ∧ (1 ∨ ￢1) ∧ (1 ∨ 0)
• (1) ∧ (1) ∧ (1) ∧ (1)
• 1



Branch & Bound Algorithm
• Set variable to true or false.
• Apply that value.
• Does value satisfy the clauses that it appears in?

• If so, assign a value to the next variable.
• If not, backtrack (bound) and apply the other value.

• Prunes branches of the boolean decision tree as 
values are applied.
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Branch & Bound Algorithm
φ = (￢x2 ∨ x5)  ∧ (x1 ∨ ￢x3 ∨ x4)  ∧ (x4 ∨ ￢x5) ∧ (x1 ∨ 
x2) 
 1. Set x1 to false.

φ = (￢x2 ∨ x5)  ∧ (0 ∨ ￢x3 ∨ x4)  ∧ (x4 ∨ ￢x5) ∧ (0 ∨ 
x2)

2. Set x2 to false.
φ = (1 ∨ x5)  ∧ (0 ∨ ￢x3 ∨ x4)  ∧ (x4 ∨ ￢x5) ∧ (0 ∨ 0)  

3. Backtrack and set x2 to true.
φ = (0 ∨ x5)  ∧ (0 ∨ ￢x3 ∨ x4)  ∧ (x4 ∨ ￢x5) ∧ (0 ∨ 1)
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DPLL Algorithm
• Set a variable to true/false.

• Apply that value to the expression.
• Remove all satisfied clauses. 
• If assignment does not satisfy a clause, then remove that 

variable from that clause.
• If this leaves any unit clauses (single variable clauses), 

assign a value that removes those next.
• Repeat until a solution is found.
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DPLL Algorithm
φ = (￢x2 ∨ x5)  ∧ (x1 ∨ ￢x3 ∨ x4)  ∧ (x4 ∨ ￢x5) ∧ (x1 ∨ 
x2) 
1. Set x2 to false.

φ = (￢0 ∨ x5)  ∧ (x1 ∨ ￢x3 ∨ x4)  ∧ (x4 ∨ ￢x5) ∧ (x1 ∨ 0) 
φ = (x1 ∨ ￢x3 ∨ x4)  ∧ (x4 ∨ ￢x5) ∧ (x1)

2. Set x1 to true.
φ = (1 ∨ ￢x3 ∨ x4)  ∧ (x4 ∨ ￢x5) ∧ (1)
φ = (x4 ∨ ￢x5) 

3. Set x4 to false, then x5 to false.
φ = (0 ∨ ￢x5) 
φ = (￢0)
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Model Refinement
• Must balance precision 

with efficiency.
• Models that are too simple 

introduce failure paths that 
may not be in the real 
system.

• Complex models may be 
infeasible due to resource 
exhaustion.
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Who Uses This Stuff?
• Used heavily in safety-critical development.

• Verifies certain complex, critical functions.
• Used extensively in automotive, aerospace, medical.

• Amazon Web Services
• Used to verify security policies, stateful behaviors.
• Used to verify LLM correctness.

• Not used for all functionality.
• Time-consuming, requires additional effort.



We Have Learned
• We can perform verification by creating models of 

function behavior and proving that the requirements 
hold over the model.
• To do so, express requirements as logical formulae 

written in a temporal logic.
• Finite state verification exhaustively searches the state 

space for violations of properties.
• Presents counter-examples showing properties are 

violated.
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We Have Learned
• By performing this process, we can gain confidence 

that the system will meet the specifications.
• Can also generate test cases to demonstrate that 

properties hold over the final system.
• Negate a property, the counter-example shows that the 

property can be met.
• Execute the input from the counter-example on the real 

system - should give the same result!
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Next Time
• Exercise Session: Finite-State Verification 
• Lec 14: Automated Test Generation

• Assignment 4 - Questions?




