CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Lecture 13: e Nl
Finite State Verification ¢

Gregory Gay
DIT636/DAT560 - March 2, 2026)

How do we know a system is correct?

Rationalists Empiricists

“It is correct because | “It is correct because |
proved that certain errors never observed incorrect
do not exist in the system.” behaviors.”

Adapted from Shin Yoo (KAIST) 2

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

* You have a requirement the program
must obey.

* Great! Let's write some tests!
* Does testing prove the
requirement is met?

“It is correct because |
o Not quite... proved that certain errors do

_ not exist in the system.”
m Testing can only make a
statistical argument.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Testing

* Most systems have near-infinite possible inputs.

« Some failures are rare or hard to recreate.
« Or require very specific input.

 How can we prove that our e
system meets the requirements?

it

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

What About a Model?

 We have previously used models to create tests.
* Models are simpler than the real program.

* Models can be used to verify full programs.
« Can see if properties hold exhaustively over a model.

{81)) UNIVERSITY OF GOTHENBURG

sense pace
D w public static void Main(){

. . System.out.printin(“Hell
Specification tD —_— o world!"):
(i mmmmm imeOut —% }
\ simplePacin)
. And If the model is And If the model accurately
If the model satisfies)
well-formed, consistent, represents the program.

the specification...
P and complete.

If we can prove that the model satisfies the requirement,
then we can argue that the program should as well.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Finite State Verification

* Express requirements as Boolean formulae.

« Exhaustively search state space of the model for
violations of those properties.

 If the property holds - proof of correctness.

A

« Contrast with testing - == .
no violation might Son e
mean bad tests. E i

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Today’s Goals

« Formulating requirements as logical expressions.
* Introduction to temporal logic.

* Building behavioral models in NuSMV.

» Performing finite-state verification over the model.
« Exhaustive search algorithms.

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Expressing Requirements in
Temporal Logic

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Expressing Properties

* Properties expressed in a formal logic.

« Boolean expressions, representing facts we asset over
execution paths.

« EXxpressions contain boolean variables, subexpressions,
and operators... as well as temporal operators.

* Ensures that properties hold over execution
paths, not just at a single point in time.

{8%)) UNIVERSITY OF GOTHENBURG

Expressing Properties
o Safety Properties

« Check that a specific event or sequence happens exactly
as specified.

« “If the traffic light is red, it will always turn green within 10
seconds.”

« “If an emergency vehicle arrives at a red light, it must turn green
in the next time step.”

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Expressing Properties

 Liveness Properties
« Eventually something specific happens.
* Fairness criteria.

« Reason over paths of unknown length.
« “If the light is red, it must eventually become green.”
« “If the package is shipped, it must eventually arrive.”

« “If Player A is taking a turn, Player B must be allowed a turn at
some time in the future.”

& T RN
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Temporal Logic
* Linear Time Logic (LTL)

» Reason about events over a single timeline.

« Computation Tree Logic (CTL)

« Branching logic that can reason about multiple timelines.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Linear Time Logic Formulae

Formulae written with boolean predicates, logical
operators (and, or, not, implication), and operators:

X (next) X (weather == rain) In the next state, it will be raining.
G (globally) G (weather == rain) Now and in all future states, it will be raining.
F (finally) F (weather == rain) Eventually, there will be a state where it is raining.
U (until) (weather == rain) U It will rain until the temperature drops below O.
(temperature < 0) (The value of “weather” can change once temperature is less than 0)
R (release) weather ==rain) R It will cease to rain after the temperature drops below 0.
(temperature < 0) (Both operands must be true at the same time for at least one state
before the value of “weather” can change)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

LTL Examples

« X (next) - This operator provides a constraint on
the next moment in time.
e ((emotion == sad) && (money == 0))

-> X(emotion == sad) =

e ((emotion == hungry) && (money > 0))
-> X(pizza == ordered)

hungry pizza ==
money >0 ordered

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

LTL Examples

* F (finally) - At some unknown point in the future,
this property will be true.

e ((status == funny) && ownCamera)

-> F(status == famous)
e (emotion == sad) -> F(emotion == happy)
e (letter == sent) -> F(letter == received)

g‘_o-&_ﬁ RN
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

LTL Examples

* G (globally) - Property must be true now and forever.
e G(winLottery -> G(rich))

Qe T

e G((light==green) -> F(light==red))

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

LTL Examples

* U (until) - One property must be true until the
second becomes true.

e (lecture==started) ->
((teacher==talking) U (lecture==ended))

e born -> (alive U dead)
e requested -> (!replied U acknowledged)

lecture == started teacher == lecture==ended
teacher == talking talking ot teacher != talking

{81)) UNIVERSITY OF GOTHENBURG

requested = action requested

M O re LT L Exa m p I e s received = request received

processed = request processed
done = action completed

e G (requested -> F (received))
e G (received -> X (processed))

e G (processed -> F (G (done)))
* G (requested -> G (!done)) not possible, based on above.

{8%)) UNIVERSITY OF GOTHENBURG

requested = action requested

M O re LT L Exa m p I es received = request received

processed = request processed
done = action completed

e G (requested -> F (received))
« At any point in this timeline, if the action is
requested, the request must eventually be received.
e X (requested -> F (recieved))

* |If arequestis made in the next step, it must
eventually be received.

* Arequest made now or after the next step does not
have this guarantee.

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Computation Tree Logic Formulae

Combine path quantifiers (A,E) with temporal operator:

A (all) Affects all paths branching out from the current state.
E (exists) Affects at least one path branching out from the current state.
X (next) X (weather == rain) In the next state on this path, it will be raining.
G (globally) G (weather == rain) Now and in all future states on this path, it will be raining.
F (finally) F (weather == rain) Eventually on this path, there will be a state where it is raining.
U (until) (weather ==rain) U On this path, it will rain until the temperature drops below 0.
(temperature < 0) (The temperature must eventually be less than 0)
W (weak until) weather == rain) W On this path, it will rain until the temperature drops below 0.
(temperature < 0) (The temperature could remain above 0 forever)

_ CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

CTL Examples

* requested: a request has been made
« acknowledged: request has been acknowledged.

®* AG (requested -> AF acknowledged)

« On all paths, at every state in the path (AG)
« If a request is made, then for all paths starting at that point,
eventually (AF), it must be acknowledged.

lacknowledged — l!acknowledged —> acknowledged
requested <

acknowledged

& T RN
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

CTL Examples

* requested: a request has been made
« acknowledged: request has been acknowledged.

® AG (requested -> EF acknowledged)

« On all paths, at every state in the path (AG)
If a request is made, then for a subset of paths starting at that
point, eventually (EF), it must be acknowledged.

{§6) CHALMERS | (8§)) UNIVERSITY OF GOTHENBURG

AN
‘\‘%«?;é,b UNIVERSITY OF TECHNOLOGY

e AG chocolate

CTL Examples

chocolate = “| like chocolate.”

e AF (EG chocolate)

E = e EF chocolate

i? CHALMERS | @fﬁ, UNIVERSITY OF GOTHENBURG

CTL Examples
chocolate = “| like chocolate.”
warm = “it is warm”

e AG (chocolate U warm)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example - Elevator

 If the cabin is moving, the direction is up, and it
Is on floor 3, then it will be at floor 4 next.
e G (((floor==3) && (status==moving) &&
(direction==up)) -> X (floor==4))

« If | request the elevator on floor 1, and the cabin
is not at that floor, it must eventually reach me

(or be broken).
e AG ((request floorl && floor!=1) -> AF
(floor==1 || status==broken))

((

</

4

CHALMERS | UNIVERSITY OF GOTHENBURG

Example - Elevator

» If the elevator is requested on floor 1, and the
cabin is at floor 4, it could stop at floor 3 along @@
the way to let passengers in.

* AG ((request_floorl && floor==4) -> EX
(floor==3 && door==open))

* Leaves open possibility that the cabin is moving up,
could break, could remain at floor 4 longer, no one
requested it on floor 3, ... S)

</

((

* The door must not be open while cabin moving.
e G (status==moving -> door==closed)

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s Take a Break

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Building Models

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Building Models

« Many different modeling languages.
* Most verification tools use their own language.

* Most map to finite state machines.
» Define list of variables.
* Describe how values are calculated.
« Each “time step”, recalculate values of these variables.
« State is the current values of all variables.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Building Models in NuSMV

« NuSMV is a symbolic model checker.

* Models written in a basic language, represented using
Binary Decision Diagrams (BDDs).
« BDDs translate concrete states into compact summary states.
« Allows large models to be processed efficiently.
* Properties may be expressed in CTL or LTL.

 |f a model may be falsified, it provides a concrete
counterexample demonstrating how it was falsified.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

A Basic NuSMV Model

request: boolean;

status: {ready, busy};

ASSIGN | Expressions define how the state of each variable can change.

init(status) := ready;

next(status) :=

case
status=ready & request: busy;
status=ready & !request : ready;
TRUE: {ready, busy};

esac;

SPEC AG(request -> AF (status = busy)) | Property we wish to prove over the model.

NIVERSITY OF GOTHENBURG

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Checking Properties

 Execute from command line:

NuSVM <model name>

* Properties that are true
are Indicated as true.

 If property is false, a
counter-example is
shown (input violating
the property).

C19ZRMR:bin ggay$./NuSMV main.smv

*** This is NuSMV 2.6.0 (compiled on Wed Oct 14 15:32:58 2015)

*** Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-users@list.fbk.eu>.

#% Please report bugs to <Please report bugs to <nusmv-users@fbk.eu>>

*** Copyright (c) 2010-2014, Fondazione Bruno Kessler

**%* This version of NuSMV is linked to the CUDD library version 2.4.1
*** Copyright (c) 1995-2004, Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver.
*#s** See http://minisat.se/MiniSat.html

*** Copyright (c) 2003-2086, Niklas Een, Niklas Sorensson

*** Copyright (c) 2007-2010, Niklas Sorensson

-- specification AG (request -> AF status = busy) 1is true

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Checking Properties

 New property: AG (status = ready)

-~ specification AG status = ready 1is false

¢ (ObVlOUSIy nOt true = -- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

We Set |t rand0m|y |n the Trace Type: Counterexample

-> State: 1.1 <-

absence of a request) raquest = FALSE
status = ready
« Counterexample: S

 |n first state, request = false, status = ready.

* We set status randomly for second state (because
request was false). It is set to busy, violating property.

CHALMERS UNIVERSITY OF GOTHENBURG

NIVERSITY OF TECHNOLOGY

MODULE main

VAR

traffic_light: {RED, YELLOW, GREEN}; init(ped_light) := WAIT;

ped light: {WAIT, WALK, FLASH}; next(ped _light) := case

walk_request_button: {RESET, SET}; ped_1ight=WAIT & traffic_light=RED: WALK;
ASSTIGN ped_light=WAIT: WAIT;

ped 1light=WALK: {WALK,FLASH};

init(traffic_light) := RED; ped_1light=FLASH: {FLASH, WAIT};
next(traffic_light) := case TRUE: {WAIT};
traffic_light=RED & button=RESET: €sac;
GREEN; init(walk_request_button) := RESET;
traffic_light=RED: RED; next(walk_request_button) := case

walk request_button=SET &

traffic_light=GREEN & button=SET: ped light=WALK: RESET;

{GREEN, YELLOW}; walk request button=SET: SET;
traffic_light=GREEN: GREEN; walk_request_button=RESET &
traffic_light=YELLOW: traffic_light=GREEN: {RESET,SET};

{YELLOW, RED}; walk _request_button=RESET: RESET;

TRUE: {RED}; TRUE: {RESET};

esac;
esac;

CHALMERSE

NIVERSITY OF TECHNOLOGY

MODULE main
VAR

traffic_light: {RED, YELLOW, GREEN};
ped_light: {WAIT, WALK, FLASH};
walk request_button: {RESET, SET};

ASSIGN
init(traffic_light) :

RED;
next(traffic_light) := case

traffic_light=RED & button=RESET:

GREEN;
traffic_light=RED: RED;

traffic_light=GREEN & button=SET:

{GREEN, YELLOW};
traffic_light=GREEN: GREEN;

traffic_light=YELLOW:
{YELLOW, RED};

TRUE: {RED};

esac;

init(ped_light) :
next(ped_light) :
ped_1ight=WAIT & traffic_light=RED: WALK;
ped light=WAIT: WAIT;
ped _light=WALK: {WALK,FLASH};
ped light=FLASH: {FLASH, WAIT};
TRUE: {WAIT};

WAIT;
case

esac;
init(walk_request_button) := RESET;
next(walk_request_button) := case

walk request button=SET &
ped light=WALK: RESET;
walk_request_button=SET: SET;
walk_request_button=RESET &
traffic_light=GREEN: {RESET,SET};
walk request button=RESET: RESET;
TRUE: {RESET};

esac;

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Activity - Example
* Safety Property

« A specific event/sequence happens as specified.
e The pedestrian light cannot indicate that | should

walk when the traffic light is green.

« This is a safety property. We are saying that this should
NEVER happen.

e AG (pedestrian_light = walk -> traffic light
= green)

%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Activity - Example

* Liveness Property
« Eventually something of interest happens.
e G (traffic_light = RED &
walk request button = RESET -> F
(traffic_light = green))
* If the light is red, and the button is reset, then eventually,
the light will turn green.

* This is a liveness property, as we assert that something
will eventually happen.

{8%)) UNIVERSITY OF GOTHENBURG

Proving Properties Over Models

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Proving Properties
« Search state space for property violations.

* Violations give us counter-examples
« Path that demonstrates the violation.
« (useful test case)

* Implications of counter-example:
* Property is incorrect.
« Model does not reflect expected behavior.
» Real issue found in the system being designed.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Generation from FS Verification

 We can also take properties we know to be true
and negate them.

« (Called a “trap property” - we assert that a known
property can never be met.

* Produces a counterexample showing the property
can be met.
« Can be used as a test for the real system.
« Demonstrates that final system meets specification.

{81)) UNIVERSITY OF GOTHENBURG

Exhaustive Search

* Algorithms examine all
execution paths through
the state space.

* Major limitation - state
space explosion.

« Limit number of variables
and possible values to
control state space size.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Search Based on SAT

» Express properties in conjunctive normal form:
e f = (!x2 || x5) && (x1 || !x3 || x4) s&s
(x4 || ! xb5) && (x1]] x2)
 Examine reachable states and choose a transition
based on how it affects the CNF expression.

 |f we want x2 to be false, choose a transition that
Imposes that change.

* Continue until CNF expression is satisfied.

I

%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Boolean Satisfiability (SAT)

* Find assignments to Boolean variables X1,X2,...,X
that results in expression ¢ evaluating to true.

« Defined over expressions written in conjunctive
normal form.

c 90=(X, VX)) A(TX, VX))
- (X, V —X,)is a clause, made of variables, —, V

n

« Clauses are joined with A

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Boolean Satisfiability

* Find assignment to X,,X,,X,,X,,X, to solve
* (X, VX)A X VX, VX)A X, VX)) A (X
X,)
* One solution: 1,0,1, 1, 1
c (X, VX)AX VX, VX)A X,V —X)A (X
X,)
. (iOV1)/\(1 VAT VHAAY 1)A(1VO0)
* MAMAM)AQN)
o 1

\%

1

\%

1

I
5 ‘\\\‘/’7‘
: /\\ k\/

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Branch & Bound Algorithm

Set variable to true or false.

Apply that value.

Does value satisfy the clauses that it appears in?

 If so, assign a value to the next variable.
 |f not, backtrack (bound) and apply the other value.

Prunes branches of the boolean decision tree as
values are applied.

I
5 ‘\\\‘/’7‘
: /\\ k\/

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Branch & Bound Algorithm

e=(%x2V x5 AX1V —x3Vx4) Ax4dV —x5) A (x1V
X2)
1. Set x1 to false.
¢=(—x2V x5 AOV —x3Vx4) A4V —x5)A 0V
X2)
2. Set x2 to false.
Pp=(1Vx5) AOV —x3Vx4) Ax4V —x5) A 0V 0)
3. Backtrack and set x2 to true.
e=(0V x5 AOV x3Vx4) Ax4V —x5)A0VA1)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

DPLL Algorithm

 Set a variable to true/false.
* Apply that value to the expression.
« Remove all satisfied clauses.

 If assignment does not satisfy a clause, then remove that
variable from that clause.

 |f this leaves any unit clauses (single variable clauses),
assign a value that removes those next.

« Repeat until a solution is found.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

DPLL Algorithm

@=(x%x2V x5 AXx1V —x3Vx4) Ax4dV —x5 A (x1V
X2)

1. Set x2 to false.
@=("0VxXx5) AXx1TV —x3V x4) A x4V —x5 A (x1V0)
=1V —x3V x4) A x4V —x5) A (x1)
2. Set x1 to true.
e=(1V —x3Vx4) A(x4V —x5) A (1)
¢ = (x4 V —x5)
3. Set x4 to false, then x5 to false.
¢ =(0V —x5)
¢ =(70)

{81)) UNIVERSITY OF GOTHENBURG

Model Refinement

* Must balance precision ot
with efficiency. /\
* Models that are too simple o s
introduce failure paths that o s
may not be in the real st themoda e e s
system. L [E—

« Complex models may be
infeasible due to resource
exhaustion.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Who Uses This Stuff?

« Used heavily in safety-critical development.
« Verifies certain complex, critical functions.
« Used extensively in automotive, aerospace, medical.

e Amazon Web Services

« Used to verify security policies, stateful behaviors.
« Used to verify LLM correctness.

* Not used for all functionality.
» Time-consuming, requires additional effort.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« We can perform verification by creating models of

function behavior and proving that the requirements
hold over the model.
« To do so, express requirements as logical formulae
written in a temporal logic.

 Finite state verification exhaustively searches the state
space for violations of properties.

* Presents counter-examples showing properties are
violated.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* By performing this process, we can gain confidence
that the system will meet the specifications.

« (Can also generate test cases to demonstrate that
properties hold over the final system.

* Negate a property, the counter-example shows that the
property can be met.

« Execute the input from the counter-example on the real
system - should give the same result!

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

 EXxercise Session: Finite-State Verification
 Lec 14: Automated Test Generation

* Assignment 4 - Questions?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

