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Automating Test Creation

« Testing is invaluable...

* ... but expensive.
« We test for *many* purposes.
* Near-infinite number of
possible tests we could try.
« Hard to achieve volume.
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Automating Test Creation

* Relieve cost by automating
. THE #1 PROGRAMMER EXCUSE
test creation. FOR LEGITIMATELY SLACKING OFF:

 Traditional Focus: [ ' 3
Generate test input. T CETEAE
« Just need to add assertions. TOWORK!
* (Or measure crashes, 21 |
performance, etc.)

 New approaches have
some ability to generate
test oracles.

Automation!

Tests are generating!
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Techniques for Generating Tests

Rationalists (Static) Empiricists (Dynamic)

Generate tests based on Generate tests based on
analysis of the source feedback from executing
code and other text. the system.
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Today’s Goals

« Search-Based Test Generation

« Test creation as an optimization problem, based on
feedback from executing the code.

« (Generate -> Execute -> Evolve

 LLM-Based Test Generation
» Test creation based on textual analysis.
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Search-Based Test Generation
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Random Generation

e Randomly formulate test cases. ‘
o Unit testing: choose a class in the
system, choose random methods, call
with random parameter values.

o System-level testing: choose an
interface, choose random functions
from interface, call with random values.

e Keep trying until goal attained or you
run out of time.
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Example - BMI Calculation

weight

BMI'= s

(height)
Classification (2, 4] (4,7 (7, 10] (10,13  (13,16]  (16,19]  >19
Underweight < 14 <135 <14 <15 <165 <175 <185
Normal weight <175 <14 <20 <22 <245 <265 <25
Overweight ~ <185 <20 <22 <265 <29 <31 <30
Obese >185  >20 > 22 >265  >29 >31 <40

Severely obese — — — — — — > 40
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Example - BMI Calculation

def test bmi value valid():
bmi_calc = BMICalc(150, 41, 18)

bmi_value = bmi_calc.bmi_value() BMiCalc
assert bmi value == 18.2
height
def test_bmi_adult(): weight
bmi_ calc = BMICalc(160, 65, 21) age
bmi_class = bmi_calc.classify _bmi_adults()
assert bmi_class == "Overweight" bmi_value()
classify_bmi_adults()
def test _bmi_children 4y(): classify_bmi_teens_and_children()

bmi calc = BMICalc(1e0, 13, 4)
bmi_class = bmi_calc.classify_bmi_teens_and_children()
assert bmi_class == "Underweight"
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Random Generation - BMI Example

» Create an empty test case:
def test 1():

* |nstantiate the class-under-test with
random values:

def test 1():
cut = BMICalc(1890, 50, 40)

* Insert 1+ method calls or assignments to def test _1():
class variables. cut = BMICalc(180, 50, 49)
«  Number of calls is random output = cut.bmi_value()

cut.height = 15681

«  Which method/variable is random output2 = cut.classify bmi adults()

* Method parameters are random values
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Random Search

Sometime viable:
« Extremely fast.

« Easy to implement, easy to understand.

« All inputs considered equal, so no designer bias.

However...

IM THINKING OF A NUMBER

ONE
SEVEN HUNDRED BILLION.
TRY TO GUESS T

2

é@

%

NOPE.
GUESS
AGAIN.

SI% MILLION
AND FOUR.

NUATS THE MATTER,
DONT YOU LIKE
GAMES 7@

/
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Test Creation as a Search Problem

* Do you have a goal in mind when testing?

« Make the program crash, achieve code coverage, find
performance bottlenecks, ...

« Searching for a test suite that achieves that goal.
- Based on guess-and-check process.
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Test Creation as a Search Problem

* Many testing goals can be measured:
 How many exceptions were thrown?
« How fast was the code?
« What percentage of lines of code were covered?
« How diverse is our input?

 If goal can be measured, search can be automated.
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Search-Based Test Generation

e Make one or more guesses. 30
« Generate one or more individual 3 o "
test cases or full test suites. =
. Searc/i... Q
* Check whether goal is met. 's ‘.

« Score each guess.

e Try until time runs out. -

« Alter the solution based on
feedback and try again!
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Search Strategy

* The order that solutions are tried is the key to
efficiently finding a solution.

* A search follows some defined strategy.
« Called a “metaheuristic”.

 Metaheuristics are used to choose solutions and to
ignore solutions known to be unviable.
« Smarter than pure random guessing!
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Heuristics - Graph Search

e Arrange nodes into a hierarchy.

o Breadth-first search looks at all nodes on
the same level.

o Depth-first search drops down hierarchy
until backtracking must occur.

e Attempt to estimate shortest path.

o A* search examines distance traveled and estimates
optimal next step.

o Requires domain-specific scoring function.
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Search-Based Test Generation

INPUT x
v

"Z!_\ —
- -+ FUNCTION f: —
—
*
U OUTPUT f(x)
The Metaheuristic The Fitness Functions
(Sampling Strategy) (Feedback Strategies) (Goals)
Genetic Algorithm Distance to Coverage Goals Cause Crashes
Simulated Annealing Count of Executions Thrown Cover Code Structure,

Hill Climber Input or Output Diversity Generate Covering Array,
(...) (...) (...)
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Solution Representation

 Must decide what a solution “looks like”.

* For unit testing:
« A solution is a test suite.
* A test suite contains 1+ test cases.
 Each test case interacts with a class-under-test.
 Each test case initialized the class-under-test.

« Each test case contains one or more actions.
« An action is a method call or variable assignment.

« [Each action has parameters (method parameters or values to
assign to variables).
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Fithess Functions

« Domain-based scoring functions that determine
how good a potential solution is.

INPUT x « Should represent goals of tester.
( e Must return a numeric score.
FUNCTION f: * % of a checklist

19 « raw number
OUTPUT f(x) « NOT Boolean (no feedback)

e Can be maximized or minimized.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Fithess Functions
e Should offer feedback:

« Small change in solution should not lead to

INPUT x large change in score.
i - Best functions calculate distance to optimality.
F“”CT'O”f‘r e Can optimize more than one at once.
OUTPUT () * Independently optimize functions

« Combine into single score.
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Example - Code Coverage

« Goal: Attain Branch Coverage over the code.

« Tests must reach all branching points (i.e., if-statement)
and execute all possible outcomes.

Lfx < 1) . In this code:
// Do _something. e Two Branches
telse|if (x == 10){ e Each must evaluate
// Do something else. to true and false.

)
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Example - Code Coverage

« Goal: Attain Branch Coverage over the code.

 Fitness function (Basic):
« Measure coverage and try to maximize % covered.

« Good: Measurable indicator of progress. Can use
standard tools (pytest-cov, Cobertura).

- Bad: No information on how to improve coverage.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example - Code Coverage

 Advanced: Distance-Based Function

* fitness = branch distance + approach level

 Approach level

« Number of branching points we need to execute to get to the
target branching point.

 Branch distance
» |If other outcome is taken, how “close” was the target outcome?

 How much do we need to change program values to get the
outcome we wanted?
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Example - Branch Coverage

if(x < 10){ // Branch 1
// Do something.
telse if (x == 10){ // Branch 2

// Do something else.
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Other Common Fitness Functions

Number of methods called by test suite

Number of crashes or exceptions thrown
Diversity of input or output

Detection of planted faults

Amount of energy consumed

Amount of data downloaded/uploaded

... (anything that reflects what a good test is)
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Bloat Penalty

« Small penalty subtracted from fitness.
 Limits number of tests and number of actions.

ex. 10

bloat penalty(solution) = (num_test_cases/num_tests_penalty)

+ (average_test_length/length_test_penalty)
ex. 30

* Important not to penalize too heavily.
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The Metaheuristic

2
Z

Decides how to select and
revise solutions.

« Changes approach based on
past guesses.

* Fitness functions give feedback.

* Population mechanisms choose
new solutions and determine how
solutions evolve.
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The Metaheuristic

* Decides how to select and revise solutions.
« Small changes to single solution (local search).

» Large changes to many solutions (global search).
» Often based on natural phenomena.
%\ . (swarm behavior, evolution)
— « Trade-off between speed, complexity, and

understandability.
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How Long Do We Spend Searching?

 Exhaustive search not viable.

* Search can be bound by a search budget.
 Number of guesses.
« Time allotted to the search (number of minutes/seconds).
« Optimization problem:
» Best solution possible before running out of budget.
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Local Search

* Generate and score a single potential solution.
» Attempt to improve by looking at its neighborhood.

« Make small, incremental improvements.
* Very fast, efficient if good initial guess.

« Get “stuck” if bad guess.
« Often include reset strategies.
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Hill Climbing

e (Generate a random initial solution.

e Each generation (while budget remains):

o Attempt up to max_tries mutations to the solution.
m If a mutation results in a better solution, set this as the new solution.
m Keep track of the best mutation seen to date.

o If we run out of tries, reset to a new random initial solution.



NIVERSITY OF GOTHENBURG

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Add an action to
a test case

Mutation

[2, [18]],
[1, [26]],
[5, [0,
[4, 111

[-1, [246, 680, 2]],

« Small change to
current solution.

[l

[--]

[-1, [246, 680, 2]],
[2, [18]],
261

[5, 01

Delete an action
from a test case

[y

B |

* Impose one of (=
these changes = =
at a time:

Add a new test
case

[2, [18]],
[1, [26]],

Delete a test
case

[5, {11

[-1, [246, 680, 2]],

[-1, [246, 680, 2]],
[2, [18]],
[1, [26]],
[5, [

[...]

[...]
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Let’s take a break.
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—
Global Search  cmgass
e Generate multiple solutions.

e Evolve by examining whole
search space.

e Typically based on natural processes.
o Swarm patterns, foraging behavior, evolution.
o Models of how populations interact and change.
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Genetic Algorithm

e Over multiple generations, evolve a population.
o (Good solutions persist and reproduce.

o Bad solutions are filtered out. A oo »)4517@*
e Diversity is introduced by: . Mﬂﬂj‘
o Selecting the best solutions. L sl 'SWOOO”’W%]O.\\&‘
o Creating “offspring” through %@%@7\

mutation and crossover.
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Genetic Algorithm

« Create a random initial population.

« Start a new generation (while budget remains):
» Create new empty population.

* While space remains:
+ Select two “good” members of current population.

« At a small probability, replace these members with “children” combining genes
of members (crossover).

« At a small probability, mutate each member.
 Add members to new population.
* If no better solution is found for N generations, terminate early
(stagnation).
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Selection

« Rather than
searching for
“best” population

member:

 Select arandom
subset.

o (Calculate fithess
for each.

 Return best.

2o

N 0 N[ o N[
] [...] [l [ =] |l | Ll
| () [ (| I l [ [--] l

Select N (tournament size) members of the
| population at random.

(] T
o1 |
=

Identify the best solution in the subset.

=
29 |
(.. |
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Crossover

Select two “parent” test cases.

» Creates “child = A v omangme o
SOlUtle!S by T or cach tost case T \&‘ from Parent B.
combining tests Gy ™
from each parent. ’ ‘ e

2] [
T ‘
[...]

e

Return “children” that blend
elements of Parents A and B.
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1000 Generations of Evolution

100 25
* Genetic Algorithmrun =, 4 o
for 1000 generations g >
for BMICalc. & ;-
o Stagnation turned off. i e g
° H|gh|y variable until ~ % 200 400 600 800 s 200 400 600 800
200 generations, then Generation Generation
small changes 12
afterwards. s 1
i B
- l
‘o

200 400 600 800

Generation
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Examples of Generated Test Cases

def test_0():
cut = bmi_calculator.BMICalc(120,860,13)

cut.

classify_bmi_teens_and_children()

def test_2():

cut

cut.

cut

g bk el
cut.

= bmi_calculator.BMICalc(43,243,59)

classify_bmi_adults()

.height = 526

classify bmi_adults()
classify_bmi_adults()

def test_5():

cut

cut.

cut

cut.
cur.

cut

cut.

= bmi_calculator.BMICalc(374,343,1

age = 123

.classify bmi_adults()

age = 18
classify_bmi_teens_and_children()

.weight = 396

classify_bmi_teens_and_children()

7)

def test_7():

cut

= bmi_calculator.BMICalc(609,-1,94)

def test_11():

cut

cut.

= bmi_calculator.BMICalc(491,712,20)
classify_bmi_adults()

def test_17():

cut

cut.

cut

cut.

cut

= bmi_calculator.BMICalc (608,717, 6)
classify bmi_teens_and_children()

;age = 91

classify bmi_teens_and_children()

.classify bmi_teens_and_children()



* If looking for crashes, just run
generated input.

* |If you need to judge correctness,

add assertions.
e Suggested: general properties, rather
than specific expected output.
No: assertEquals(output, 2)
* Yes: assertTrue(output % 2 == 0)
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| Want to Try This Out!

* Python:
* https://agreg4cr.qithub.io/pdf/21ai4se.pdf
« https://qgithub.com/Greg4cr/PythonUnitTestGeneration

« Java: http://www.evosuite.org/

o C/C++: https://aflplus.plus/



https://greg4cr.github.io/pdf/21ai4se.pdf
https://github.com/Greg4cr/PythonUnitTestGeneration
http://www.evosuite.org/
https://aflplus.plus/
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Large Language Models
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Large Language Models
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Large Language Models

“The server brought me the bill” ——» for my three-course dinner.

“We sent an HTTP request to

) to update the database record.
the server
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Important Considerations

* Prompt Design
* The structure and information provided in the prompt.

e Model Selection
* Type of model.
« Closed vs open source, Local vs remote execution.

 Agentic Structure
* Tool use, memory, workflow.
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Prompt Engineering

« General principle: Clear context, better results.
* Information about the code-under-test.
» Expectations on the results.

« Basic Components:

{Role} - Persona the LLM should adopt.
{Context} - Details about the code-under-test.
{Instructions} - Instructions on test generation.
{Examples} - Examples of existing test cases.
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Basic Structure

You are a software test engineer, developing unit test
cases for a Python class.

{Context}

Create a unit test suite of Pytest-formatted test cases
for this class.

{Examples}
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Varying Context

« High-level description:
* The purpose of this Python class is to calculate the BMI value and
classification of adults, as well as teens and children.

» Description, method signatures:

» The purpose of this Python class is to calculate the BMI value and
classification of adults, as well as teens and children. This class has three
variables: height, weight, and age. It offers setter methods height(self, height),
age(self, age), and weight(self, weight). These methods check for negative
values. The class also offers the following methods: bmi_value(self),
classify_bmi_teens_and_children(self), and classify_bmi_adults(self)

» Description, code:

» The purpose of this Python class is to calculate the BMI value and

classification of adults, as well as teens and children. The code of the class is:

{code}
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Examples

« Can include examples

of human-written tests:

« Zero-Shot: No
examples provided.

e One-Shot: One

example test provided.

 Few-Shot: Multiple
examples provided.

Here is an example of an existing test case for the
class:

def test_ bmi_adult():
adult_age = 21
bmi_calc = bmi_calculator.BMICalc(160, 65, 21)
bmi_class = bmi_calc.classify _bmi_adults()
assert bmi_class == "Overweight"

This test checks the BMI classification of an adult
who is 160 cm tall, weights 65 kilograms, and is 21
years old.
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Demonstration
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Choosing an LLM
* Type of model:

 Instruction: Tuned for following directions and returning
results in a specified format.

« Chat: Tuned for conversations with a user (e.g., Q&A).

* Size (number of parameters)

* More generally yields better results, but much higher
computational cost.
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Choosing an LLM

 Open Source: Creators disclose contents of the
training data and how the model was tuned.

 MapNEO, OLMo

 Open Weight: Creators disclose how model was
tuned, but not training data.
 DeepSeek, Llama, Mistral

* Closed Source: Neither data or weights disclosed.
* OpenAl models
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Choosing an LLM

* Local execution: Model deployed locally.

 Remote execution: Model executed via API on
servers owned by model creator.

» Consider costs of both options.
* License/access vs hardware requirements

« Data privacy concerns with remote execution.

* OpenAl stores and uses your input data unless you pay
for a corporate license.
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Agents
* An agent pairs an LLM/prompt with:

 Tool access - LLM can access other programs, invoke
scripts, access data store.

 Memory - LLM stores intermediate reasoning for later.
« Debugging for developer.
« Improve future results by using earlier starting point.

« Common to split a task into sub-tasks completed by
cooperating agents.
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Agents e,

Tests
N Compiler
RAG
J
Code-Under- Test Generated
Test : Test Suite Test Verifier Test Repair
Designer ,
If tests fail to
compile

If tests compile

e RAG gives way to look up relevant items in project documentation.
o Reduces hallucinations

e Compiler can verify that tests are not broken.
o Can repair broken/hallucinated test code.
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Comparing Approaches
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Search-Based Test Generation

* Advantages:

« Does not require knowledge of the code.
Do not need similar training data.

« Can be implemented for any system, language, platform.
« Can be parallelized and is computationally efficient.
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Search-Based Test Generation

* Disadvantages:

« Lacks knowledge of the code.
« Random selection of input - “blind guessing”
* Improving coverage requires being guided to the right input.

« Tests are hard to understand.
* Input and method sequences that a human may not pick.
« Limited “rationale” for test case purpose.
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LLM-Based Test Generation

* Advantages:

e Can infer how the code works.
* (aslong as there is similar training data)
« Can be more coverage of program outcomes/behaviors.

« Tests closer to what a human would produce.
« [Each test has a single purpose.
« Understandable input and method sequences.

« (Can generate documentation and assertions.
 More complete test cases.
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LLM-Based Test Generation

* Disadvantages:

 Inferences from code may be incorrect.
« Code may not compile.
« Code may contain hallucinated functionality/methods.

« Tests may not correspond to actual implementation, just similar
training examples.

« Tests may assume faulty code is correct.
« Tests may achieve limited coverage.

« Limited ability to generate tests that expose
performance/quality issues.
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Summary

« Search-Based Test Generation

« Test creation as an optimization problem, based on
feedback from executing the code.

« (Generate -> Execute -> Evolve

 LLM-Based Test Generation

» Test creation based on textual analysis.
« Growing in prevalence, capability.
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Next Time

» Testing in Industry
« Guest lectures from Spotfire, TestScouts
« Attend! (Some students got internships last two years)

* Assignment 4 - Due March 8
* Assignment 5 - Due March 13
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