CHALMERS | UNIVERSITY OF GOTHENBURG

&?%'f%O
UNIVERSITY OF TECHNOLOGY
55

Lecture 2: Quality Attributesand ~ ° =
Measurement e A

Gregory Gay] \ P
DIT636/DAT560 - January 21, 2026 N P

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

When is Software Ready for Release?

When you can argue that it shows sufficient quallity.

* Requires choosing quality attributes.
« ... specifying measurements and thresholds.

o ... different measurements and thresholds for different
functionality and execution scenarios.

* Assessed through Verification and Validation.

6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Today’s Goals

* Discuss quality attributes
« Dependability, availability, performance, scalability.

 Discuss measurement of these attributes
* How we build evidence that the system is “good enough”.
« How to assess whether each attribute is met.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Software Quality

« We all want high-quality software.
 We don't all agree on the definition of quality.

* Quality encompasses what and how.
 How dependable it is.

- But also...
* How quickly it runs.
* How available its services are.
How easily it scales to more users.

* Hard to measure and assess objectively.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Quality Attributes

* Describe desired properties of the system.

* Developers prioritize attributes and design system
that meets chosen thresholds.

* Most relevant for this course: dependability

 Ability to consistently offer correct functionality, even
under unforeseen or unsafe conditions.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Quality Attributes
e Availability

 Ability to carry out a task when needed, to minimize
“downtime”, and to recover from failures.
e Performance
 Ability to meet timing requirements. When events occur,
the system must respond quickly.
e Scalability
 Ability to maintain dependability and performance as the
number of concurrent requests grows.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Quality Measurement

* Quality is always measured situationally.
* Not quality of the whole system, but of one “aspect”
« Aclass, sub-system, API| endpoint, user-facing function, ...

« Relative to a usage profile.
« Expected interaction patterns.

\} CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Improving Quality

* |mproved when faults in the
most frequently-used parts of
the software are removed.

o X% of faults 1= X% improvement
In quality.
“Removing 60% of faults led to
3% reliability improvement.”
« Removing faults with serious
consequences is top priority.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Quality Economics

 May be cheaper to accept a certain leave of quality
and pay for failure costs.

« Depends on social/political factors and risks.
« Reputation versus cost.

» Risks of failure.
» Health risks or equipment failure risk requires high quality.
« Minor annoyances can be tolerated.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Quality Attribute:
Dependability

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Dimensions of Dependability

* The goal of dependability is to establish four things
about the system:

« That it is correct.
« Thatitis reliable.

- That it is safe. —
« Thatis is robust. ’))
S

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Correctness

 Aprogram is correct if it is always consistent with
its specification.
« Depends on “completeness” of requirements.

« Easy to show with a weak specification.
« Often impossible with a detailed specification.

» Rarely provably achieved.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Reliability

« Statistical approximation of correctness.

* The likelihood of correct behavior from some period of
observed behavior.

« Time period, number of executions

« Even if we cannot prove correctness, we can show that
the system almost always works.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Dependence on Specifications

» Correctness and reliability:

« Success relative to complexity of the specification.
* Hard to meaningfully prove anything for full spec.

« Severity of a failure is not considered.
 Some failures are worse than others.

« Safety focuses on a hazard specification.
 Robustness focuses on unspecified behaviors.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Safety

« Safety is the ability to correctly handle hazards.
* Known undesirable situations.
* Generally serious problems.

* Relies on a specification of hazards.
 Defines each hazard, how it will be avoided or handled.

* Prove that the hazard is avoided.
« Subset of correctness, easier to prove.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Robustness

« Software that is “correct” may fail when the
assumptions of its design are violated.
* How it fails matters.

e Software that “gracefully” fails is robust.

« Design the software to counteract unforeseen issues or
perform graceful degradation of services.

« Look at how a program could fail and handle those situations.
« Cannot be proved, but is a goal to aspire to.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Examples - ATM

« We verify different situations where money is withdrawn ($
> balance, $ < balance, $ = balance, 0, ...)

e Reliability

* Athief may attach a “skimmer” to steal bank card details.
We added a sensor and code to detect this.

e Safety

 If the network connection is lost, we display an error
screen and prevent any further actions from being taken.

e Robusthess

) CHALMERS | UNIVERSITY OF GOTHENBURG

Dependability Property Relations

_ Robust, but not safe. Catastrophic failures
Reliable, but not correct. could occur, but measures have been put in
Catastrophic failures can occur. place to potentially prevent issues.

Reliable

Correct, but not safe. Safe, but not correct. Hazards
Specification is inadequate avoided, but other failures can occur.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Assessing Dependability

 When is the system dependable enough?
« Correctness hard to prove.

« Robustness/Safety important, but do not demonstrate
normal dependability.

* Reliability is the basis for arguing
dependability.
« Can be measured.
« Can be demonstrated through testing.
« Can reflect normal and abnormal usage.

{81)) UNIVERSITY OF GOTHENBURG

/o wenve 99.9%

.7
Quality Attribute: Availability

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Availability

 Ability to recover from - or work around - failures.
« After a failure occurs, ensure the system can recover.

« System is seen as more reliable if failures can be
corrected or masked before they affect the user.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Availability

* Failures can be prevented, tolerated, or repaired.

How are failures detected?

How frequently do failures occur?

What happens when a failure occurs?

How long can the system be out of operation?
When can failures occur safely?

Can failures be prevented?

What notifications are required when failure occurs?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Availability Considerations

« System has “recovered” when the failure is no
longer observable.

« Hard to define.
« Stuxnet caused problems for months.
« How does that impact availability?

« Software can remain partially available more
easily than hardware.

 If code containing fault is executed, but system is able to
recover, there was no failure.

{81)) UNIVERSITY OF GOTHENBURG

Measuring Reliability and Availability

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

How to Measure Reliability

« Hardware metrics often aren’t suitable for software.

« Based on component failures and the need to repair or
replace a component once it has failed.

* Design is assumed to be correct.

e Software failures are generally design failures.
« System often available despite failure.

« Metrics consider failure rates, uptime, and time
between failures.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Measurement 1: Time Available

* (uptime) / (total time observed)
« Takes repair and restart time into account.
* Does not consider incorrect computations.
* Only crashes.
« Keep an eye on digits of precision:
* 0.9 = down for 144 minutes a day.
* 0.99 =14 4 minutes

e 0.999 = 84 seconds
 0.9999 = 8.4 seconds

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Metric 2: Probability of Failure on Demand (POFOD)

o (# failures) / (# requests)
« Likelihood that a request will fail
« POFOD = 0.001 means that 1 out of 1000 requests fail.

« Used when every failure is serious.
* Independent of frequency of requests.

« 1/1000 sounds risky, but if only one failure in whole
lifetime, may be good.

(!
®

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Metric 3: Rate of Occurrence of Fault (ROCOF)

« (# failures) / (chosen period of time)

* Frequency of failures.

« Often given as “X failures per Y seconds/minutes/hours”
You choose'Y.
Often normalized to failures per minute, hour, day.

* Appropriate when requests are made on a regular
basis (such as a shop).

(!
®

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Metric 4: Mean Time Between Failures (MTBF)

 Average time between failures.
* Only considers time where system operating.

« Requires time of each failure and time when system
resumed service.

« Used for systems with long user sessions, where
crashes can cause major issues.
« E.g., saving requires resource consumption.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Measuring Availability

 How you avoid, ignore, or recover from failures.

« Avoid:.
« Measure reliability when that failure could occur.
* Ignore:

* Induce failure, then measure subsequent reliability.
« Compare to reliability when the failure did not occur.

* Recover:
« Measure time that it takes to return to normal operation.
« Measure effects of failure on operation (e.g., like in “ignore”)

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break!

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Reliability Metrics

Time Available: (uptime) / (total time observed)
POFQOD: (# failures) / (# requests)

ROCOF: (# failures) / (period of time)

MTBF: Average time between failures

CHALMERS | UNIVERSITY OF GOTHENBURG

Activity

Recorded the following data:

* There were 1200 requests.
« 60 of those requests resulted in failures.
« 56 failures resulted in incorrect computations.
* 4 failures resulted in crashes.
« Uptime and downtime (caused by crashes):

0 4 8 12 16 20 24
i

| || || || |

Crash 1 (4:00): Down for 60 minutes
Crash 2 (8:00): Down for 15 minutes
Crash 3 (10:00): Down for 30 minutes
Crash 4 (16:00): Down for 60 minutes

«,‘ CHALMERS | @}; UNIVERSITY OF GOTHENBURG
Activity
1. What is the Time Available?

a. Total Time Observed =
24 * 60 =
1440 minutes
b. Uptime =
Total Time Obverved - Downtime
1440 - (60 + 15+ 30 + 60) =
1275 minutes
c. Time Available = Uptime / Total Time Observed =
1275/ 1440 =
88.54%

, CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG
Activit

2. What is the POFOD?
a. POFOD = (# failures) / (# requests) =
60 /1200 =
0.05

3. What is the ROCOF in failures per hour?
a. ROCOF = (# failures) / (number of hours) =
60/24 =
2.5 failures per hour

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Activity
4. What is the MTBF (only crashes)?

a. We need the uptime between each crash.
1 (0:00 - 4:00): 240 minutes
2 (5:00 - 8:00): 180 minutes
3 (8:15 - 10:00): 105 minutes
4 (10:30 - 16:00): 330 minutes
b. Take the average: (240 + 180 + 105 + 330) / 4 = 213.75 minutes

0 4 8 12 16 20 24

| || I || |

Crash 1 (4:00): Down for 60 minutes
Crash 2 (8:00): Down for 15 minutes
Crash 3 (10:00): Down for 30 minutes
Crash 4 (16:00): Down for 60 minutes

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity

5. If we were interested in assessing availability,
what are some ways that we could do so?
 Pick failures we are interested in, show that they are
avoided, ignored, recovered from.
* Avoid: See if failure occurred.

« Ignored: After failure occurs, is it likely to recur? Are other failures
more likely to occur?

« Recovered: How long was system down? Afterwards, is there an
effect on reliability?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity

5. If we were interested in assessing availability,
what are some ways that we could do so?

* Are crash 1 and 4 caused by the same failure?
« Did crash 2 lead to crash 37

0 4 8 12 16 20 24

| || I ||

Crash 1 (4:00): Down for 60 minutes
Crash 2 (8:00): Down for 15 minutes
Crash 3 (10:00): Down for 30 minutes
Crash 4 (16:00): Down for 60 minutes

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

_— MODE __

Quality Attributes:
Performance and "
Scalability

Water-resistant W
CHRONOGRAPH \O
1/100 SEC ™
Fastime 28LW

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Performance

e Ability to meet timing requirements.
* When events occur, how fast does the system respond?
« Captures performance-per-user and across-users.
« Captures variance in performance.

 Driving factor in software design.
« Often at expense of other quality attributes.
« All systems have performance requirements.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Scalability

e Ability to maintain performance or reliability
despite increasing number of requests.

« Horizontal scalability (“scaling out”)

« Adding more resources to logical units.
Adding another server to a cluster.

« Vertical scalability (“scaling up”)

« Adding more resources to a physical unit.
Adding memory to a single computer.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Scalability

 How can we effectively utilize additional resources?

* Requires that additional resources:
« Result in performance improvement.
 Did not require undue effort to add.

» Did not lower reliability.

* The system must be designed to scale
* (i.e., designed for concurrency).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Measuring Performance and Scalability

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Performance Measurements

« Latency: The time between the arrival of the stimulus and
the system’s response to it.

 Response Jitter: The allowable variation in latency.

 Throughput: Usually number of transactions the system
can process in a unit of time.

* Processing Deadlines: Points where processing must
have reached a particular stage.

 Number of events not processed because the system
was too busy to respond.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Measurements - Latency

* Time it takes to complete an interaction.

» Affected by the the system and its environment.
« The user’s hardware, the network, system’s hardware.

« Measured probabilistically (“... 95% of the time”)

* “Under load of 350 updates per minute, 90% of ‘open account’
requests should complete within 10 seconds. 99% should
complete within 12 seconds”

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Measurements - Response Jitter

 Response time is non-deterministic.
 [f controlled, this is OK.

10s +- 1s, great!
10s +- 10 minutes, bad!

o Jitter defines how much variation is allowed.

« Ex: “All writes to the database must be completed within
an interval of 120 to 150 ms.”

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Measurements - Throughput

* The workload a system can handle in a time period.
 Measures performance across all users.
« Shorter the processing time, higher the throughput.

* As load increases (and throughput rises), response time
for individual transactions tends to increase.

With 10 concurrent users, request takes 2s.
« With 100 users, request takes 4s.

,‘ CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Measurements - Throughput

« Throughput goals can conflict with latency goals.

* For example:

* When there are 10 users, each user can perform 20 requests per
minute (throughput: 200/m).

* When there are 100 users, each can perform 12 per minute
(throughput is 1200/m but at a cost for individual user).

* i.e., performance is worse with more concurrent users.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Measurements - Event Deadlines

« Some tasks must take place as scheduled.
 If times are missed, the system will fail.
 Can place deadlines on event completion.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Which response measure should we use?

 We want every user’s transaction on the shop to
complete quickly.
e Latency

« Can our shop handle Black Friday traffic?

« Throughput - make sure all requests are handled in a
short period of time.

« May prioritize completing the batch over individual users
in this situation.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Which response measure should we use?

* The user must sign with BankID and confirmation
must be returned within 60 seconds.

« Deadline - there is an absolute deadline for BankID
processing to complete.

« Ensure that inventory database updates are
properly synchronized.

o Jitter - Imposes minimum and maximum timeframe on
updates.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Assessing Scalability

« Scalability measures impact of adding or removing
resources on performance or reliability.

« Response measures reflect:
« Changes to performance.
« Changes to reliability or availability.
* Load assigned to existing and new resources.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Key Points

* Dependability is one of the most important software

characteristics.
« Aim for correctness, reliability, safety, robustness.

« Often assessed using reliability.

 Reliability depends on the pattern of usage of the
software. Different users will interact differently.

 Reliability measured using ROCOF, POFOD, Time
Available, MTBF

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Key Points

* Availability is the ability of the system to avoid,
ignore, or recover from a failure.

* Performance is about management of resources in
the face of demand to achieve acceptable timing.
« Usually measured in terms of throughput and latency.

« Scalability is the ability to “grow” the system to
process an increasing number of requests.
« While still meeting performance requirements.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

* Quality Scenarios
« No exercise session this week.

e Form your teams!
» Deadline: January 25
« Assignment 0 on Canvas

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

