CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Gregory Gay
DIT636/DAT560 - January 28, 2026

{8%)) UNIVERSITY OF GOTHENBURG

Verification

* Ensure that the implementation conforms to a specification.
« Under the examined conditions, does the software work as expected?

* Proper V&V produces dependable software.
 Testing is the primary verification activity.

{81)) UNIVERSITY OF GOTHENBURG

We Will Cover

* What is testing?
« Definitions and components of a test case
« Testing stages
* Planning considerations

\} CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Software Testing

* Experimental investigation of
system quality.

« Based on sequences of stimuli and
observations.
« Stimuli that the system must react to.
« Observations of system reactions.
* Verdicts on correctness.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Bugs? What are Those?

* Bug is an overloaded term.

* Does it refer to the bad
behavior observed?

* |s it the source code
mistake that led to that
behavior?

* Both?

UNIVERSITY OF GOTHENBURG

Faults and Failures

e Failure

* An execution that yields an
incorrect result.

15 current.Cantidades = [];

 Problem that caused failure. T

s.asserc("Cantidades”, [1);
current.WIPs. indexOf (WIP);

12 if(ArrivalTine != current.ArrivalTime) (
13 current.Arrivallime = ArrivalTime;

22 if (indice =K).f
° Istake, omission, misuse . T
) J

28 current.Cantidades[indice] +

30 string Cantidad = string. fromum(current.Cantidades[indice]);

] 31 string query:
32
[] 3346 (Cantidad == "1%) {
, 34 query = concat("insert into "flexsim'. JamonesOutput' ('ArrivalTime’, WIP", Cantidad’, PT", WIP')values ('", Arriv,

n 37 query = concat("update "flexsim'. JamonesOutput' set Cantidad = '", Cantidad, "' where WIP = '", WIP, "' and Arriv
38}
38
40 dbopen ("flexsin”, "select * from JamonesOutput®, 0);

[

41 dbsqlquery (query) ;
42 dbclose ()

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Software Testing

* The main purpose of testing is to remove faults:
“Testing is the process of trying to discover every
conceivable fault or weakness in a work product”

- Glenford Myers

» Tests must reflect normal and abnormal usage.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Testing Scenarios

 Verification:
« Demonstrate that software meets the specification.
+ Tests tend to reflect “normal” usage.

« Robustness:

 Show that software can handle abnormal situations.

« Tests tend to reflect extreme usage or hazards.
« Large volume of data, null data, malformed data, attacks.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Axiom of Testing

“Testing can be used to show the
presence of bugs, but never their
absence.”

- Dijkstra

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

What Goes in a Test Case?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Suite and Test Case

A test suite is a collection of test cases.
» Executed together.
« Each test case should be independent.

* May have multiple suites in one project.
Different types of tests, different resource/time needs.

Suite

C
E Case

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Anatomy of a Test Case

if O_= Expetest(ipputs
then... P@lg\g “stimulate” the J;Q&’F Oracle

] How we check the correctness of the
else... Fall resulting observation.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Anatomy of a Test Case

* |nitialization
* Any steps that must be taken before test execution.

« Test Steps

 |nteractions with the system, and comparisons between
oracle and actual values.

« Tear Down
* Any steps that must be taken after test execution.

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Test Input

* |nteractions with a software feature.
* Invoke a function through an interface.

 Method Call

- API Call

3 --version
ersion 4.3.46(1)-release (x86_64-pc-linux-gnu)
opyright (C) 2013 Free Software Foundation, Inc.
i GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.

h redistribute it.

t sends a request ver sends a response
H i e software; you are free to change and
® n eraC Ion 0 WARRANTY, to the extent permitted by law.
chris@ubuntu:

 GUI Interaction

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Test Input

* Environment manipulation

« Database with particular records

« Simulated network environment

« Create/delete files

« Available CPU/memory/disc space
* Timing

- Before/at/after deadline

« Varying frequency/volume of input

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Execution

e Human-driven
« Exploratory testing, alpha/beta testing

e Automated

» Tests written as code
« Testing frameworks (JUnit)
« Frameworks for manipulating interfaces (Selenium)

« Capture/replay tools
« Re-execute Ul-based tests (SWTBot for Java)

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Sources of Test Input

Functional Testing
(Black Box)

The sort function shall output
an array of integers, sorted in
ascending order from
smallest to largest.

Y

— Test
Cases

Structural Testing
(White Box)

public int[] sort (int[] unsorted){
if (unsorted[x] <= unsorted[y]) {

}

- Test
Cases

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Sources of Input

 Functional (Black Box) Test Design
« Use documentation of system behavior to design tests.
* Requirements, comments, user manuals, intuition.
« Reflects what code should do, not what it currently does.
« Treated as a “black box”: input -> code -> output
« Normal form of test design.
« Complemented by structural testing.

« Tests can be designed before code is written.
* (test-driven development)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Sources of Input

e Structural (White Box) Test Design

* |nput chosen to exercise code in specific way.
« Oracles still based on requirements.

« Usually based on adequacy criteria:
* Checklists based on program elements.
 Branch Coverage - All conditional statements evaluate to true/false.

 Fill in the gaps in functional test design.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Oracle

« Comparison of observations to expectations.
« Expected output, timing, speed, energy use, ...

« Calculate a pass or a fail verdict.
« Can be specific to one test or more general.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Oracle Components

 Oracle Information
« Embedded information used to judge the correctness of
the implementation, given the inputs.
 Oracle Procedure

 Code that uses information and observations to calculate
a verdict.

if (actual value != expected value) { fail
(...)5 }

assertEquals(actual value, expected value);

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Expected-Value Oracles

* Simplest oracle - what exactly should happen?

int expected = 7;
int actual = max(3, 7);
assertEquals(expected, actual);

* QOracle written for a single test case, not reusable.

CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

Property-Based Oracles

@Test

° Asse rt p ro pe rtl eS public void propertiesOfSort (String[] input) {
about results to judge
CO rre Ctn eSS . String[] sorted = quickSort(input);

assert(sorted.size >= 1, "This array can’t be empty.")

for (int item = 1; item < sorted.length; item++)
 Can be reused, but ntitem =it B!
assert(sorted[item] > sorted[item - 1], “Items

IeSS preCISe than should be sorted in ascending order”);
“expected output” :

 Know less about any
one |/O pair.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Implicit Oracles

* General failures:
« Crashes and exceptions.
« Buffer overruns.
« Deadlock.
 Memory leaks.
« EXxcessive energy usage or downloads.
* Infinite loops.

« Failures that do not require expected output.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Testing Stages

oo

i) CHALMERS | (8} UNIVERSITY OF GOTHENBURG

Testing Stages

* We interact with systems
through interfaces.
« APIls, GUIs, CLlIs

« Systems built from subsystems.
» With their own interfaces.

« Subsystems built from units.
« Communication via method calls.

s o

JANY GER)
6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Testing Stages
* Unit Testing

« Methods of a single class

e System-level Testing

 System (Integration) Testing

* (Subsystem-level) Collected units

« (System-level) High-level interfaces
 Exploratory Testing

« Ad-hoc GUI testing method

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Testing Stages

 Acceptance Testing/
AB Testing

» Give product to a set of users to
check whether it meets their needs.
« Alpha/Beta Testing - End-users, generally on their own machine.

* Acceptance Testing - Formal customers, in a controlled
environment, formal acceptance criteria

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Automation vs Human-Driven

« Unit/System Testing heavily use automation.
« Tests written as code.
« Executed repeatedly, often on check-in.

« Exploratory/Acceptance Testing often human-driven
« Based on scenarios, without pre-planned input.
« Some tool support, but not often repeated exactly.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break.

%) CHALMERS | UNIVERSITY OF GOTHENBURG

The V-Model of Development

~
Acceptance
Requirements _ __ ____------ . - N o Operation and
L -~ P Test Plan o .
Elicitation _’ N Maintenance
\ - < System and A hRN .
System A f E;.‘E:t’flt:nry b "o Acceptance
Specification ’ J N Testing
/
~
\ : ,’/ Subsystem | b System and /
Archlte_ctural }‘ - Test Plan IR Exploratory
2L 4 h Testing
/
\ Detailed L/ Subsystem /
s Design Testing

A/
[Unit Test Plan]‘ - \ Unit Development /

~~~~~ »l and Testing




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Unit Testing

Testing the smallest “unit” that can be tested.
 QOften, a class and its methods.

Tested in isolation from all other units.
« Mock the results from other classes.

Test input = method calls.
Test oracle = assertions on output/class variables.




#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

System (Integration) Testing

 After testing units, test their integration.
* |ntegrate units in one subsystem.
* |Integrate subsystems.

« Test input through a defined interface.

« Subsystems: “Top-Level” Class, API
« System: API, GUI, CLI, ...




(&86) CHALMERS | ({8})) UNIVERSITY OF GOTHENBURG

il UNI

System Testing

Subsystem made up classes
of A, B, and C. We have
performed unit testing...

« Classes work together to
perform subsystem functions.

« Tests applied to the interface of
the subsystem they form.

 Errors in combined behavior not
caught by unit testing.




#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

GUI Testing

» Tests designed to reflect end-to-end user journeys.
* From opening to closing.
« Often based on scenarios.

* GUI Testing

« Deliberate tests, specific input.
* May be automated or human-executed.

* Exploratory Testing

* Open-ended, human-driven exploration.



#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Exploratory Testing

 Tests not created in advance.

» Testers check the system on-the-fly.

» Testing as a thinking idea.
« About discovery, investigation, and role-playing.
« Tests end-to-end journeys through app.
» Test design and execution done concurrently.




#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Exploratory Testing

» Tester write down ideas to give direction, then
create tests while using system.
* Requires minimal planning.
» Choose next action based on current state.

* Can find subtle faults missed by formal testing.

« Allows tester to better learn system functionality, and
identify new ways of using features.




;{," 4 T & T “"’&
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Testing Percentages

« Unit tests verify behavior

of a single class.
« 70% of your tests. ity

o System tests verify class [ecuontime ]
interactions. Debugging
« 20% of your tests.
« GUl/exploratory tests - ﬂ

verify end-to-end - .

Jou n eyS . # of tests
* 10% of your tests.




«;-o-‘i‘, :‘fmnn,%&
;? CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

T («"

Testing
» 70/20/10 recommended. s

« Unit tests execute quickly, I ﬂ

relatively simple. - .

# of tests

« System tests more complex, require more setup,
slower to execute.

« Ul tests very slow, may require humans.

+ Well-tested units reduce likelihood of integration
Issues, making high levels of testing easier.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Acceptance Testing

Once the system is internally tested, it should be
placed in the hands of users for feedback.

« Users must ultimately approve the system.
« Many faults only emerge in the wild.

» Alternative operating environments.

* More eyes on the system.

« Wide variety of usage types.



,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Acceptance Testing Types
* Alpha Testing

« A small group of users work closely with development
team to test the software.
* Beta Testing
* Arelease of the software is made available to a larger
group of interested users.
* Formal Acceptance Testing

« Customers decide whether or not the system is ready to
be released.



CHALMERS | @8§) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Test Plans




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Plans

* Plan for how we will test the system.
 What is being tested (units, subsystems, features).
 When it will be tested (required stage of completion).
 How it will be tested (what scenarios do we run?).
 Where we are testing it (types of environments).
 Why we are testing it (what purpose do tests serve?).

* Who will be responsible for writing test cases (assign
responsibility to team members).



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Why Make a Test Plan?

* Guides development team.
* Rulebook for planning test cases.

* Helps people outside the team understand the
testing process.

« Documents rationale for scope of testing, how we
judge results, why we chose a strategy.
« Can be reused when making decisions in future projects.




6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Analyze the Product

* Must understand the product before you can test it.
« What are the needs of the users?
* Who will use the product?

« What will it be used for?
 What are the dependencies of the product?

* Review requirements and documentation.
* |nterview stakeholders and developers.
* Perform a product walkthrough (if code is running).

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



TN
g6} CHALMERS | @8§) yNIVERSITY OF GOTHENBURG

Analyze the Product
* B ankin g Website R L R R i i

What features do we =
want to see? @

» Account creation,
deletion,
manipulation.

* Fund transfers

* Fund withdrawal

» Check deposit
¢ ...7

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



(8%)) UNIVERSITY OF GOTHENBURG

Develop the Test Strategy

* Document defining:
« Test Objectives (and how to achieve them)
« Testing Effort and Cost

Step 2. | Step 2.2 Step 2.3 Step 2.4

LEIE Identify Do.cument Create Test
Segpe Of Testing Type R Logistics
Testing gyP Issues g

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Testing Scope

« What are you planning to test?
« Software, hardware, middleware, ...

 ...AND... What are you NOT going to test?

« Gives project members a clear understanding about what
you are responsible for.

e Must take into account:
« Requirements, budget, skills of your testing team

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



AR

g6} CHALMERS | @8§) yNIVERSITY OF GOTHENBURG

Testing Scope

« Example: Banking website
« Requirements specified for
functionality and external interface.
e These are in-scope.
* No requirements were specified for
database or client hardware.

* We might decide these are
out-of-scope.

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



g6) CHALMERS | (6% UNIVERSITY OF GOTHENBURG | s LS. VA :
it UNIVERSITY OF TECHNOLOGY N / / ( ANV ; :

Identify Testing Types

 Which should
we apply?
 Consider the
project
domain.
 Which can we
skip or limit to

save money?

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Create Test Logistics

« \WWho will write and execute test cases?

« What types of testers do you need?
« Skills needed for the targeted domain

* What is the budget for testing?
 How many people can you hire to test?
* When will each testing activity occur?

* When to design and when to execute tests.

« Pair with appropriate stage of development.
* Unit development -> unit testing -> system testing -> ...

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Define Test Objectives

* What are the goals of the testing process?
« What features, system elements need to be tested?
« What quality attributes do we need to demonstrate?

* For each feature or quality, what scenarios do we want to
walk through?

* Does not include a list of specific tests

« But, at a high level, should detail scenarios we plan to
examine by writing one or more test cases.



,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Define Test Criteria

 When have we completed our testing objectives?

* For qualities, set appropriate thresholds.
« Availability, ROCOF, throughput, etc.

» For functionality, commonly defined using:
 Run Rate: Number of Tests Created / Number Specified
 Pass Rate: Number of Passing Tests / Number Executed
« Often aim for 100% run rate and a high pass rate (> 95%)

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Resource Planning

* Summarize resources that you have.
« Allows estimation and adjustment of testing scope,
objectives, and exit criteria.

« Human Resources: Managers, testers, developers
who assist in testing, system administration.

« System Resources: Servers, testing tools, network
resources, physical hardware.

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Plan Test Environment

* Where will you execute test cases?

Software and hardware execution environment

» Often defined as part of continuous integration.
* Need to account for:

Requirements on both server and client-side.
Different networking conditions (bandwidth, load).
Different client or server-side hardware.

Different numbers of concurrent users.



6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Schedule Estimation

* Break testing plans into individual tasks, each with
an effort estimation (in person-hours)
« Create test specification, 170 person-hours
* Write unit tests, 80 person-hours
* Write API tests, 50 person-hours

« Perform test execution, 1 person-hour (per suite
execution)

« Write test report, 10 person-hours

Slides derived from https://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* What is testing?

* Testing terminology and definitions.
* Input, oracles
* Faults, failures

« Testing stages include unit testing, system testing,
exploratory/GUI testing, and acceptance testing.

» Test planning needs to consider resources, time,
scope, environment.



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

e Exercise session this afternoon:
* Quality scenarios

* Next week: Test Design and Unit Testing
« Start thinking about Assignment 1




UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY



