
Lecture 5: Test Case Design

Gregory Gay
DIT636/DAT560 - February 2, 2026

2

Sources of Test Input

The sort function should yield
an array of integers, sorted in
ascending order from
smallest to largest.

Test
CasesTest

CasesTest
CasesTest

CasesTest
Cases

Functional Testing
(Black Box)

public int[] sort (int[] unsorted){
 …
 if (unsorted[x] <= unsorted[y]) {
 …
 }
 …
}

Test
CasesTest

CasesTest
CasesTest

CasesTest
Cases

Structural Testing
(White Box)

True

False

Sources of Input
• Functional (Black Box) Test Design

• Use documentation of system behavior to design tests.
• Requirements, comments, user manuals, intuition.

• Reflects what code should do, not what it currently does.
• Treated as a “black box”: input -> code -> output

• Normal form of test design.
• Complemented by structural testing.

• Tests can be designed before code is written.
• (test-driven development)

3

Sources of Input
• Structural (White Box) Test Design

• Input chosen to exercise code in specific way.
• Oracles still based on requirements.

• Usually based on adequacy criteria:
• Checklists based on program elements.
• Branch Coverage - All conditional statements evaluate to true/false.

• Fill in the gaps in functional test design.

4

5

Today’s Goals
• Introduce API testing, using Postman
• Process for functional test case design.

• Identify testing targets.
• For each testing target, identify choices.
• For each choice, identify representative values.
• Generate test specifications.
• Instantiate concrete test cases.

6

Creating API Tests
with Postman

7

Postman
• Testing framework for systems with a REST API.

• REST: interface with endpoints we can interact with.
• At an endpoint, we can send HTTPS request to:

• GET information
• DELETE information
• POST information into a new resource (i.e., create a new entry)
• PUT information in a resource (i.e., update an existing entry)

• Can create requests and tests using Postman.

Writing Tests in Postman

8

● Each tab is a request.
● The request defines test input.

○ GET/POST/PUT/DELETE
○ Resource acted upon
○ Params, Authorization,

Headers, Body
● Post-response scripts tab

defines test oracles.
○ Write small JavaScript

methods to check correctness
of output.

Test Input

Test Oracle

9

Input - GET

Adapted from https://www.guru99.com/postman-tutorial.html

1. Select GET as the
request type.

2. Set the resource URL.
3. Click “Send”
4. The response status is

indicated.
5. The body contains the

returned information.

https://www.guru99.com/postman-tutorial.html

10

Input - POST
1. Set request to POST.
2. Set the endpoint URL.
3. Select the “Body” tab.

1. Click “raw” (raw text), “binary”
(file/executable), etc.

2. Select data format (JSON,
XML, etc.)

Add user data
in proper JSON
format.

Adapted from https://www.guru99.com/postman-tutorial.html

https://www.guru99.com/postman-tutorial.html

11

Output - POST
1. Click Send to

send request.
2. Response

status is
indicated (201,
data created)

3. Body indicates
record “11”
was created.

Adapted from https://www.guru99.com/postman-tutorial.html

https://www.guru99.com/postman-tutorial.html

12

Creating Test Oracles
• Post-response scripts tab allows creation of

JavaScript blocks used to verify results.
• These are test oracles.
• Embed expectations on results and code to compare

expected and actual values.

• Use pm.test library to create assertions on output.
• https://learning.postman.com/docs/writing-scripts/script-re

ferences/test-examples/ (many example scripts!)

https://learning.postman.com/docs/writing-scripts/script-references/test-examples/
https://learning.postman.com/docs/writing-scripts/script-references/test-examples/

13

Oracle Example - Status Check

Adapted from https://www.guru99.com/postman-tutorial.html

• Create test in post-response scripts tab.
• Snippets offer pre-built test oracles.
• Ex. “status code must be 200”

https://www.guru99.com/postman-tutorial.html

14

Example - Expected Value
• Snippets “JSON

value check”,
“Contains String”

• Inserts generic test body.
• Change test name,

variable to check (name),
value to check (check for
name “Sven Svensson”,
specific course “DIT010”).

Adapted from https://www.guru99.com/postman-tutorial.html

https://www.guru99.com/postman-tutorial.html

15

Test Execution Results

• All three tests should pass.
• Status and test names indicated in GUI.

16

Creating Functional Test Cases

Creating Functional Tests
Identify Testing Targets

Identify Choices

Identify Representative
Input Values

Generate Test Case
Specifications

Generate Test
Cases

Identify function(s) that can be tested in (relative) isolation.

Identify controllable aspects of the input and environment
that determine the outcome of that function.

Identify options for each choice that lead
to different function outcomes.

Select a value for all choices to
form abstract test case “recipe”.

Replace
representative

values with
concrete values.

17

Independently Testable Functionality
• Well-defined function(s) that can be tested in

(relative) isolation.
• Based on the “verbs” - what can we do with this system?
• Functionality offered by an interface.
• Depends on the level of testing.

• Web Forum: Sorted user list can be accessed.
• System testing: Test through the web interface, examine the complete

page loaded by the function (member list, page layout, etc.).
• Unit testing: Test functions of a class (e.g., sorting function alone).

18

Identify Testing Targets

Identify Choices
• What choices do we make when invoking target?

• Anything we control that can change the outcome.
• What are the input parameters to that feature?
• What configuration choices can we make?
• Are there environmental factors we can vary?

• Networking environment, file existence, file content, database
connection, database contents, disk utilization, …

19

Identify Choices

Ex: Register for Website
• From the input parameters:

• First Name, Last Name,
Username, E-Mail Address,
Password, Short Bio

• Other environmental factors:
• Is there a database

connection?
• Is this user already in the

database?

20

Identify Choices

Parameter Characteristics
• Identify choices by understanding how parameters

are used by the function.
• Type information is helpful.

• firstName is string, database contains UserRecords.

• … but context is important.
• Reject registration if in database.
• … or database is full.
• … or database connection down.

21

Identify Choices

Parameter Context
• Input parameter can be split into multiple “choices”

based on context.
• A database affects User Registration, but there is more

than one choice.
• Choice: Is there a database connection?
• Choice: Is there already a record for the user?
• Choice: How full is the database storage?

22

Identify Choices

23

Ex: Binary Search
Boolean binarySearch(String[] array, String toFind)

● Choice: How many items are in the array?
○ (Empty array might behave differently than one with

several items)
○ (Could also provide a null pointer instead of a real

array)
● Choice: Is the array sorted?

○ (Binary search assumes the array is sorted)

● Choice: Is the string in
the array?

○ (Different function
outcomes)

Identify Choices

Example
Class Registration System
What are some independently testable functions?

• Register for class
• Drop class
• Transfer credits from another university
• Apply for degree

24

Identify Testing Targets

Example - Register for a Class
Input: Route: /registrations/, Method: POST,

Input: { “studentID”: VALUE, “courseID”: VALUE }

Output: Status Code: (201 if registration OK, 200 for input-based errors, others

for other errors), JSON message: { “result”: VALUE } (“OK”, error messages)

Example Oracle: pm.test(“Normal Case”, function() {

 pm.response.to.have.status(201);

 var jsonData = pm.response.json();

 pm.expect(jsonData.result).to.eql(“OK”);

 });

25

Identify Choices

Input: Route: /registrations/, Method: POST,

Input: { “studentID”: VALUE, “courseID”: VALUE }

Example Oracle: pm.test(“Normal Case”, function() {

 pm.response.to.have.status(201);

 var jsonData = pm.response.json();

 pm.expect(jsonData.result).to.eql(“OK”);

 });

What are the choices we make when we design a test case?

• Does student meet prerequisites?
• Does the course exist?
• What else influences the outcome?

26

Identify Choices

Example - Register for a Class
• During setup, we can influence a student’s record

and the course records.
• These are “inputs” to consider.

• How are they used?
• Has a student already taken the course?
• Do they meet the prerequisites?
• Does a course exist?
• What are the prerequisites of a course.

27

Identify Choices

28

Example - Register for a Class
• Parameter: studentID

• Choice: Validity of Student ID
• Choice: Courses Student Has Taken Previously

• Parameter: courseID
• Choice: Validity of Course ID
• Choice: Prerequisites of Course ID

Identify Choices

29

Let’s take a break.

Identifying Representative Values

• We know the functions.
• We have choices for each.
• Representative values are the

options for each choice.

Test Input Data

Test Output Results

Program

30

Identify Representative
Input Values

31

Ex: Binary Search
Boolean binarySearch(String[] array, String toFind)

● Choice: How many items are in the array?
● Choice: Is the array sorted?

○ Yes
○ No

● Choice: Is the string in
the array?

○ Yes
○ No

Identify Choices

● Choice: How many items are in the array?
○ Null pointer
○ 0
○ 1
○ 2
○ 3
○ 4
○ 5
○ …
○ 1000000000000

Ex: Register for Website
• “Value of X” are choices.

• X = first name, username, etc.

• What are the representative
values for each choice?
• First name could be any string!

32

Identify Choices

Exhaustive Testing
Take the arithmetic
function for the calculator:
add(int a, int b)

• How long would it take
to exhaustively test this
function?

Test Input Data

Test Output Results

Program

232 possible integer values
for each parameter.
= 232 x 232 = 264
combinations = 1013 tests.

1 test per nanosecond
= 105 tests per second
= 1010 seconds
or… about 600 years!

33

Identify Representative
Input Values

Not all Inputs are Created Equal
• Many inputs lead to

same outcome.
• Some inputs better at

revealing faults.
• We can’t know which in

advance.
• Tests with different input

better than tests with
similar input.

Test Input Data

Test Output Results

Program

I

O

34

Identify Representative
Input Values

Input Partitioning

35

Identify Representative
Input Values

• Consider possible values
for a variable.

• Faults sparse in space of
all inputs, but dense in
parts where they appear.

• Similar input to failing
input also likely to fail.

• Try input from partitions,
hit dense fault space.

Equivalence Class
• Divide the input domain into equivalence classes.

• Inputs from a group interchangeable (trigger same
outcome, result in the same behavior, etc.).

• If one input reveals a fault, others in this class (probably)
will too. In one input does not reveal a fault, the other
ones (probably) will not either.

• Partitioning based on intuition, experience, and
common sense.

36

Identify Representative
Input Values

Choosing Input Partitions
• What are the function outcomes?
• Ranges of numbers or values.
• Membership in a logical group.
• Time-dependent equivalence classes.
• Equivalent operating environments.
• Data structures.
• Partition boundary conditions.

37

Identify Representative
Input Values

Function Outcomes
• Look at the outcomes and group input by the

outcomes they trigger.
Boolean binarySearch(String[] array, String toFind)

38

Identify Representative
Input Values

● Choice: How many items are in the array?
○ Null pointer
○ 0
○ 1
○ 2
○ 3
○ 4
○ 5
○ …
○ 1000000000000

● Choice: How many items are in the array?
○ Null pointer (could lead to exception)
○ 0 (could lead to exception/warning)
○ 1+ (normal outcomes)

Data Type
• Try values commonly misused, based on data type.

• Ex: Integer
• Basic Split: < 0, 0, >0
• If conversions take place from String -> Integer, use a

non-numeric string.

• Also split based on how variable is used.
• Integer intended to be 5-digit:

• < 10000, 10000-99999, >= 100000

39

Identify Representative
Input Values

Data Type
• Data structures prone to

certain types of errors.
• For arrays or lists:

• Only a single value.
• Different sizes and number filled.
• Order of elements: access first,

middle, and last elements.

40

Identify Representative
Input Values

Data Type
Boolean binarySearch(String[] array, String toFind)

41

Identify Representative
Input Values

● Choice: How many items are in the array?
○ Null pointer (could lead to exception)
○ 0 (could lead to exception/warning)
○ 1 (single item collections often misused)
○ 2+, # items == array size (normal outcomes)
○ 2+, # items < array size (could be issues if array is not full)

Operating Environments
• Environment may affect behavior of the program.
• Environmental factors can be partitioned.

• Available memory may affect the program.
• Processor speed and architecture.
• Client-Server Environment

• No clients, some clients, many clients
• Network latency
• Communication protocols (SSH vs HTTPS)

42

Identify Representative
Input Values

Timing Partitions
• Timing and duration of input

can be as important as value.
• Timing often implicit input.

• Trigger an electrical pulse 5ms
before a deadline, 1ms before the
deadline, exactly at the deadline,
and 1ms after the deadline.

• Close program before, during, and
after the program is writing to (or
reading from) a disc.

43

Identify Representative
Input Values

44

Quality Considerations
• Input partitions likely to affect quality goals.

• Performance: Input likely to lead to performance issues.
• Ex: Remove resources, large input that will take awhile to process

• Security: Input that attacker could apply.
• Ex: Code injection in XML input.

Quality Considerations
Boolean binarySearch(String[] array, String toFind)

45

Identify Representative
Input Values

● Choice: How many items are in the array?
○ Null pointer (could lead to exception)
○ 0 (could lead to exception/warning)
○ 1 (single item collections often misused)
○ 2+, # items == array size (normal outcomes)
○ 2+, # items < array size (could be issues if array is not full)
○ 10000 (could lead to performance issues)

Input Partition Example
What are the input partitions for:
max(int a, int b) returns (int c)

We could consider a or b in isolation:
a < 0, a = 0, a > 0

Consider combinations of a and b that change outcome:
a > b, a < b, a = b

46

Identify Representative
Input Values

47

Example - Register for a Class
Parameter: studentID
• Validity of Student ID

• Active Student
• Inactive Student
• Non-Existent Student

• Courses Student Has
Taken Previously
• Matches Prerequisites
• Does Not Match

Prerequisites

Identify Representative
Input Values

Parameter: courseID
• Validity of Course ID

• Existing Course
• Non-Existent Course

• Prerequisites of Course ID
• Only Courses Taken By Student
• Only Courses Not Taken By

Student
• Some Courses Taken by Student

Revisit the Roadmap

Identify Representative
Values

Generate Test Case
Specifications

Generate Test
Cases

For each choice:
1. Partition options into

representative values.
2. Choose a value for each

choice to form a test
specification.

3. Assign concrete values to
create test cases.

48

Basic Test Specification
// Set Up

 POST /studentRecords/VALUE, { … “status”: VALUE, “coursesTaken”: [VALUES]}

 POST /courses/VALUE, { … “prerequisites”: [VALUES] }

// Attempt to register for a course

 POST /registrations/, { “studentID”: VALUE, “courseID”: VALUE }

// Check the result of registration

 pm.test(“Normal Case”, function() {

 pm.response.to.have.status(VALUE);

 var jsonData = pm.response.json();

 pm.expect(jsonData.result).to.eql(VALUE);

 });

49

Generate Test Case
Specifications

50

Forming Specification
Test Specifications:

• Active, Matches, Existing, Only Taken
• Active, Does Not Match, Existing, Only Not Taken
• Active, Does Not Match, Existing, Some Taken
• Active, - , Non-Existing, -
• Inactive, Matches, Existing, Only Taken
• Inactive, Does Not Match, Existing, Only Not Taken
• Inactive, Does Not Match, Existing Some Taken
• Inactive, - , Non-Existing, -
• Non-Existing, -, Existing, -
• Non-Existing, -, Non-Existing, -
• …

Generate Test Case
Specifications

Parameter: courseID
• Validity of Course ID

• Existing Course
• Non-Existent Course

• Prerequisites of Course ID
• Only Courses Taken By Student
• Only Courses Not Taken By Student
• Some Courses Taken by Student

Parameter: studentID
• Validity of Student ID

• Active Student
• Inactive Student
• Non-Existent Student

• Courses Student Has Taken
Previously

• Matches Prerequisites
• Does Not Match Prerequisites

Specifications: 3 * 2 * 2 * 3 = 36 - Illegal Combinations

Generate Test Cases
// Set Up

 POST /studentRecords/ggay, {“status”: active, “coursesTaken”: [“DIT050”, “DIT360”]}

 POST /courses/DIT636, { … “prerequisites”: [“DIT360”] }

// Attempt to register for a course

 POST /registrations/, { “studentID”: ggay, “courseID”: DIT636}

// Check the result of registration

 pm.test(“Normal Case”, function() {

 pm.response.to.have.status(201);

 var jsonData = pm.response.json();

 pm.expect(jsonData.result).to.eql(“OK”);

 });

 // Attempt to register for a course

 Boolean outcome = registerForCourse(ggay, TDA594);

51

Generate Test
Cases

Specification:
Active, Matches, Existing, Only Taken

● Fill in concrete values that
match the representative
values classes.

● Can create MANY concrete
tests for each specification.

Boundary Values

• Errors tend to occur at
the boundary of a
partition.

• Remember to select
inputs from those
boundaries.

52

Generate Test
Cases

Boundary Values
Choose test case values at the boundary (and typical)
values for each partition.
• If an input is intended to be a 5-digit integer between

10000 and 99999, you want partitions:
<10000, 10000-99999, >100000

0 5000 9999

10000 50000 99999

100000 150000 max int

53

Generate Test
Cases

54

Example - Message Board Creation
createMessageBoard (String name, String
description, Boolean public)

• Returns true if board created, false otherwise.
• User requesting must be an admin, board must not exist,

name and description must not contain banned words.
• Exception can be thrown if error.
• Connects to user database, JSON of existing boards,

JSON of banned words.

55

Example - Message Board Creation
• Choice: User

• Admin
• Not an Admin

• Choice: Board Name
• Valid, does not exist
• Exists already
• Contains banned word
• Blank string
• Null

• Choice: Description
• Contains banned word
• Does not contain banned

word
• Blank string
• Null

• Choice: Public
• Public
• Private
• Null

We Have Learned
• Process to create functional tests:

• Identify testing targets.
• Identify choices that influence function outcome.
• Partition choices into representative values.
• Form specifications by choosing a value for each choice.
• Turn specifications into concrete test cases.

56

Next Time
• Next Time: Test Case Design and Unit Testing
• Exercise Session: Test Case Design

• Assignment 1 - Due Feb 5
• Based on Lectures 1-3

• Assignment 2 - Due Feb 15
• Lectures 4-6

57

