
Lecture 6: Test Design
and Unit Testing

Gregory Gay
DIT636/DAT560 - February 4, 2026

2

Today’s Goals
• More on test design

• More practice
• Using constraints to limit representative value selection.

• Unit testing

3

More on Test Design
(Adding Constraints)

Creating Functional Tests
Identify Testing Targets

Identify Choices

Identify Representative
Input Values

Generate Test Case
Specifications

Generate Test
Cases

Identify function(s) that can be tested in (relative) isolation.

Identify controllable aspects of the input and environment
that determine the outcome of that function.

Identify options for each choice that lead
to different function outcomes.

Select a value for all choices to
form abstract test case “recipe”.

Replace
representative

values with
concrete values.

4

Identify Choices

• Examine parameters of function.
• Direct input, environmental parameters (i.e., databases),

and configuration options.
• Identify characteristics of each parameter.

• What aspects influence outcome? (choices)

5

Example - Set Functions
● Small function library related to Sets:

○ POST /insert/SET_ID {“object”: VALUE}
■ Returns { “result”: VALUE (“OK” if success or error)}

○ GET /find/SET_ID {“object”: VALUE}
■ Returns { “result”: VALUE (TRUE or FALSE)}

○ GET /delete/SET_ID {“object”: VALUE}
■ Returns { “result”: VALUE (“OK” if success or error)}

● We want to write tests for these three functions.

6

7

Example - Set Functions
POST /insert/SET_ID {“object”: VALUE}

• What are our choices?

Identify Testing Targets

Identify Choices

● Parameter: Set ID
○ Choice 1: How many items are in

the set? (performance may degrade
with larger sets)

● Parameter: Object
○ Choice 2: Is obj already in the set?
○ Choice 3: Is the object valid? (e.g.,

not null)?

// Set up the existing set, either empty or
with items.
POST /insert/ {“set”: […]}

// Insert an object
POST /insert/SET_ID {“object”: VALUE}

// Check the result
pm.test(“Insertion”, function() {
 var jsonData = pm.response.json();
 pm.expect(jsonData.result).to.eql(VALUE);});

Identify Representative Values
• Many values can be selected for each choice.
• Partition values into equivalence classes.

• Sets of interchangeable values.
• Consider all outcomes of function.
• Consider logical ranges or groupings.

• A test specification is a selection of values for
all choices.

• Concrete test case replaces equivalence class with
a concrete value.

8

9

Example - Set Functions
POST /insert/SET_ID {“object”: VALUE}

Parameter: Set ID

• Choice: How many items are in the set?
• Representative Values:

• Empty Set
• Set with 1 item
• Set with 10 items
• Set with 10000 items

Identify Representative
Input Values

Parameter: object

• Choice: Is the object already in the set?

• Representative Values:

• obj already in set

• obj not in set

• Choice: Is the object valid?

• Representative Values:

• Valid obj

• Null obj

10

Test Specifications
• Test specification = selection

a values for each choice.
• May end up with thousands of

test specifications.
• Many specifications may be

redundant or illegal.
• Identify constraints to limit

selection of values.

11

Example - Set Functions
POST /insert/SET_ID
{“object”: VALUE}

• (4 * 2 * 2) = 16 specifications
• Each can become 1+ tests.
• Use constraints to remove

impossible combinations.

Generate Test Case
Specifications

Set Size Obj in Set Obj Status Outcome

Empty Yes Valid No change

Empty Yes Null Error

Empty No Valid Obj added to Set

Empty No Null Error

1 item Yes Valid No change

1 item Yes Null Error

1 item No Valid Obj added to Set

1 item No Null Error

10 items Yes Valid No change

10 items Yes Null Error

10 items No Valid Obj added to Set

10 items No Null Error

Set Size Obj in Set Obj Status Outcome

10000 Yes Valid No change (may be slowdown)

10000 Yes Null Error

10000 No Valid Obj added to Set(may be slowdown)

10000 No Null Error (may be slowdown)

Constraints Between Choices
• IF

• Establishes constraint between representative values for two
different choices.

• A representative value for Choice 1 can only used if a certain
value is used (or not used) for Choice 2.

12

Choice 1:
● A
● B
● C

Choice 2:
● X
● Y
● Z

if Choice 1 = B

Constraints Between Choices
• ERROR

• Selected representative value leads to an abnormal
outcome/error/exception regardless of values selected for other
choices.

• Only need one test specification with “Choice 1 = C”

13

Choice 1:
● A
● B
● C

Choice 2:
● X
● Y
● Z

if Choice 1 = B

ERROR

Constraints Between Choices
• SINGLE

• Corner cases that should give a “normal” outcome.
• Only a single test with this representative value is needed.

14

Choice 1:
● A
● B
● C

Choice 2:
● X
● Y
● Z

if Choice 1 = B

ERROR SINGLE

15

Test Specifications
• Before: 3 * 3 = 9 specifications (all combinations of Choice 1 and Choice 2)
• After: 5 specifications

• A, X
• B, X
• B, Y,
• C, (any)
• (A or B), Z

Choice 1:
● A
● B
● C

Choice 2:
● X
● Y
● Z

if Choice 1 = B

ERROR SINGLE

Example - Substring
substr(string str, int index)
Choice: Str length Choice: index
length = 0 value < 0
length = 1 value = 0
length >= 2 value = 1
Choice: Str contents value > 1
contains letters and numbers
contains special characters
empty

if “Str length” != 0

ERROR

16

SINGLEif “Str length” != 0

if “Str length” = 0

17

Example - Set Functions
POST /insert/SET_ID {“object”: VALUE}

Parameter: set

• Choice: How many items are in the set?
• Representative Values:

• Empty Set
• Set with 1 item
• Set with 10 items
• Set with 10000 items

Identify Constraints

Parameter: obj

• Choice: Is the object already in the set?

• Representative Values:

• obj already in set

• obj not in set

• Choice: Is the object valid?

• Representative Values:

• Valid obj

• Null obj

if “how many”
!= empty

error

single
single

18

Example - Set Functions
POST /insert/SET_ID
{“object”: VALUE}

Apply Constraints
Set Size Obj in Set Obj Status Outcome

Empty Yes Valid No change

Empty Yes Null Error

Empty No Valid Obj added to Set

Empty No Null Error

1 item Yes Valid No change

1 item Yes Null Error

1 item No Valid Obj added to Set

1 item No Null Error

10 items Yes Valid No change

10 items Yes Null Error

10 items No Valid Obj added to Set

10 items No Null Error

Set Size Obj in Set Obj Status Outcome

10000 Yes Valid No change (may be slowdown)

10000 Yes Null Error (may be slowdown)

10000 No Valid Obj added to Set(may be slowdown)

10000 No Null Error (may be slowdown)

(4 * 2 * 2) = 16 specifications
Can’t already be in empty set, - 2
error (null), - 6 single (10, 10000), - 2

19

Example - Set Functions

POST /insert/SETID
{“object”: VALUE}

• From 16 -> 6 specifications
• Each can become 1+ tests.
• Can further constrain if

needed.

Apply Constraints

Set Size Obj in Set Obj Status Outcome

Empty No Valid Obj added to Set

Empty No Null Error

1 item Yes Valid No change

1 item No Valid Obj added to Set

10 items No Valid Obj added to Set

10000 No Valid Obj added to Set(may be slowdown)

20

Example - Set Functions
POST /insert/SET_ID {“object”: VALUE}

Create Test Cases

// Set up empty set.
POST /insert/ {“set”: []}
// Insert a valid object
POST /insert/SET_ID {“object”: “Test”}
// Check the result
pm.test(“Valid Insert”, function() {
 var jsonData = pm.response.json();
pm.expect(jsonData.result).to.eql(“OK”);
});

Set Size Obj in Set Obj Status Outcome

Empty No Valid Obj added to Set

Set Size Obj in Set Obj Status Outcome

Empty No Null Error

// Set up empty set.
POST /insert/ {“set”: []}
// Insert a null object
POST /insert/SET_ID {“object”: null}
// Check the result
pm.test(“Null Insert”, function() {
 var jsonData = pm.response.json();
pm.expect(jsonData.result).to.eql(“Null object
cannot be inserted into set”);});

Activity - find service
find(pattern,filename)

• Finds instances of a pattern in a file
• find(“john”,myFile)

• Finds all instances of john in the file
• find(“john smith”,myFile)

• Finds all instances of john smith in the file
• find(““john” smith”,myFile)

• Finds all instances of “john” smith in the file

21

Activity - find Service
• Parameters: pattern, file
• What can we vary for each?

• What can we control about the pattern? Or the file?
• What values can we choose for each choice?

• File name:
• File exists with that name
• File does not exist with that name

• What constraints can we apply between choice
values? (if, single, error)

22

Example - find Service
Pattern:

• Pattern size:
• Empty
• single character
• many characters
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

23

File:
● File name:

○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on any single line line:
○ One
○ more than one

(22*33*41) = 108 test specifications

ERROR and SINGLE Constraints

24

• Pattern size:
• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

24

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[error]

[error]

[error]

[single]

[single]

4 (error) + 2 (single) + (12*23*31) = 30
[error]

IF Constraints

25

• Pattern size:
• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

25

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[error]

[error]

[error]

[single]

[single]

4 (error) + 2 (single) + (13*23) (quoted = true) +
(14*22) (quoted = false) = 18[error]

[if quoting =
proper]
[if quoting =
proper]

26

Let’s take a break.

27

Unit Testing

Testing Stages
• We interact with systems

through interfaces.
• APIs, GUIs, CLIs

• Systems built from subsystems.
• With their own interfaces.

• Subsystems built from units.
• Communication via method calls.

28

API GUI CLI

API

API

Testing Stages
• Unit Testing

• Methods of a single class
• System-level Testing

• System (Integration) Testing
• (Subsystem-level) Collected units
• (System-level) High-level interfaces

• Exploratory Testing
• Ad-hoc GUI testing method

29

API GUI CLI

API

API

Unit Testing
• Testing the smallest “unit” that can be tested.

• Often, a class and its methods.

• Tested in isolation from all other units.
• Mock the results from other classes.

• Test input = method calls.
• Test oracle = assertions on output/class variables.

30

Unit Testing
• For a unit, tests should:

• Test all “jobs” associated with the unit.
• Individual methods belonging to a class.
• Sequences of methods that can interact.

• Set and check class variables.
• Examine how variables change after

method calls.
• Put the variables into all possible states

(types of values).

31

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Unit Testing - Account

32

Unit tests should cover:
● Set and check class variables.

○ Can any methods change name,
personnummer, balance?

○ Does changing those create problems?

● Each “job” performed by the class.
○ Single methods or method sequences.

■ Vary the order methods are called.
○ Each outcome of each “job” (error

handling, return conditions).

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Unit Testing - Account

33

Some tests we might want to write:
• Execute constructor, verify fields.
• Check the name, change the name,

make sure changed name is in place.
• Check that personnummer is correct.
• Check the balance, withdraw money,

verify that new balance is correct.
• Check the balance, deposit money,

verify that new balance is correct.

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Unit Testing - Account

34

Some potential error cases:
• Withdraw more than is in balance.
• Withdraw a negative amount.
• Deposit a negative amount.
• Withdraw/Deposit a small amount

(potential rounding error)
• Change name to a null reference.
• Can we set an “malformed” name?

• (i.e., are there any rules on a valid name?)

Account

- name
- personnummer
- balance

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Test Case Components
• Test Input

• Any required input data.

• Expected Output (Test Oracle)
• What should happen, i.e., values or exceptions.

• Initialization
• Any steps that must be taken before test execution.

• Test Steps
• Interactions (e.g., method calls), and output comparisons.

• Tear Down
• Steps that must be taken after execution to prepare for the next test.

35

Writing a Unit Test
JUnit is a Java-based toolkit
for writing executable tests.
• Choose a target from the

code base.
• Write a “testing class”

containing a series of unit
tests centered around
testing that target.

public class Calculator {

 public int evaluate (String

expression) {

 int sum = 0;

 for (String summand:

expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

36

JUnit Test Skeleton
@Test annotation defines a single test:

@Test

public void test<Feature or Method Name>_<Testing Context>() {

//Define Inputs

try{ //Try to get output.

}catch(Exception error){

fail("Why did it fail?");

}

//Compare expected and actual values through assertions or through
 //if-statements/fail commands

}

37

Type of scenario, and expectation on outcome.
I.e., testEvaluate_GoodInput() or testEvaluate_NullInput()

Writing JUnit Tests

public class Calculator {

 public int evaluate (String

expression) {

 int sum = 0;

 for (String summand:

expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class CalculatorTest {

 @Test

 void testEvaluate_Valid_ShouldPass(){

 Calculator calculator = new Calculator();

 int sum = calculator.evaluate("1+2+3");

 assertEquals(6, sum);

 }

}

Convention - name the test class
after the class it is testing.

Each test is denoted with keyword
@test.

Initialization

Test Steps Input
Oracle

38

Test Fixtures - Shared Initialization
@BeforeEach annotation defines a common test
initialization method:
@BeforeEach

public void setUp() throws Exception

{

this.registration = new Registration();

this.registration.setUser(“ggay”);

}

39

Test Fixtures - Teardown Method
@AfterEach annotation defines a common test tear
down method:
@AfterEach

public void tearDown() throws Exception

{

this.registration.logout();

this.registration = null;

}

40

More Test Fixtures
• @BeforeAll defines

initialization to take
place before any
tests are run.

• @AfterAll defines
tear down after all
tests are done.

@BeforeAll

 public static void setUpClass() {

myManagedResource = new

ManagedResource();

 }

 @AfterAll

 public static void tearDownClass()

throws IOException {

 myManagedResource.close();

 myManagedResource = null;

 }

41

Assertions
Assertions are a "language" of testing - constraints that
you place on the output.

• assertEquals, assertArrayEquals
• assertFalse, assertTrue
• assertNull, assertNotNull
• assertSame,assertNotSame

42

assertEquals
@Test

public void testAssertEquals() {

 assertEquals("text", "text", "failure -

strings are not equal");

}

@Test

public void testAssertArrayEquals() {

 byte[] expected = "trial".getBytes();

 byte[] actual = "trial".getBytes();

 assertArrayEquals(expected, actual,

"failure - byte arrays not same");

}

● Compares two items for
equality.

● For user-defined classes,
relies on .equals method.
○ Compare field-by-field
○ assertEquals(studentA.getName(),

studentB.getName())
rather than
assertEquals(studentA, studentB)

● assertArrayEquals
compares arrays of items.

43

assertFalse, assertTrue
@Test

public void testAssertFalse() {

 assertFalse((getGrade(studentA,

“DIT635”).equals(“A”), "failure - should be

false");

}

@Test

public void testAssertTrue() {

assertTrue((getOwed(studentA) > 0),

"failure - should be true");

}

● Take in a string and a
boolean expression.

● Evaluates the expression
and issues pass/fail based
on outcome.

● Used to check
conformance of solution to
expected properties.

44

assertSame, assertNotSame
@Test

public void testAssertNotSame() {

 assertNotSame(studentA, new Object(),

"should not be same Object");

}

@Test

public void testAssertSame() {

 Student studentB = studentA;

 assertSame(studentA, studentB, "should be

same");

}

● Checks whether two
objects are clones.

● Are these variables aliases
for the same object?
○ assertEquals uses

.equals().
○ assertSame uses ==

45

assertNull, assertNotNull
@Test

public void testAssertNotNull() {

 assertNotNull(new Object(), "should

not be null");

}

@Test

public void testAssertNull() {

 assertNull(null, "should be null");

}

● Take in an object and
checks whether it is
null/not null.

● Can be used to help
diagnose and void null
pointer exceptions.

46

Grouping Assertions
@Test

void groupedAssertions() {

 Person person = Account.getHolder();

 assertAll("person",

 () -> assertEquals("John",

person.getFirstName()),

 () -> assertEquals("Doe",

person.getLastName()));

}

● Grouped assertions are
executed.
○ Failures are reported

together.
○ Preferred way to

compare fields of two
data structures.

47

Testing Exceptions
@Test

void exceptionTesting() {

 Throwable exception =

 assertThrows(

 IndexOutOfBoundsException.class,

 () -> { new ArrayList<Object>().get(0);}

);

 assertEquals("Index:0, Size:0",

 exception.getMessage());

}

48

● When testing error
handling, we expect
exceptions to be thrown.
○ assertThrows checks

whether the code block
throws the expected
exception.

○ assertEquals can be
used to check the
contents of the stack
trace.

Testing Performance
@Test

void timeoutExceeded() {

 assertTimeout(ofMillis(10),

 () -> { Order.process(); });

}

@Test

void timeoutNotExceededWithMethod() {

 String greeting =

 assertTimeout(ofMinutes(2),

 AssertionsDemo::greeting);

 assertEquals("Hello, World!", greeting);

}
49

● assertTimeout can be
used to impose a time
limit on an action.
○ Time limit stated using

ofMilis(..), ofSeconds(..),
ofMinutes(..)

○ Result of action can be captured as
well, allowing checking of result
correctness.

Unit Testing - Account

50

• Withdraw money, verify balance.

@Test

public void testWithdraw_normal() {

 // Setup

 Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);

 // Test Steps

 double toWithdraw = 16.0; //Input

 account.withdraw(toWithdraw);

 double actual = account.getBalance();

 double expectedBalance = 32.5; // Oracle

 assertEquals(expected, actual); // Oracle

}

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Unit Testing - Account

51

• Withdraw more than is in balance.
• (should throw an exception with

appropriate error message)
@Test

public void testWithdraw_moreThanBalance() {

 // Setup

 Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);

 // Test Steps

 double toWithdraw = 100.0; //Input

 Throwable exception = assertThrows(

 () -> { account.withdraw(toWithdraw); });

 assertEquals(“Amount 100.00 is greater than balance 48.50”,

 exception.getMessage()); // Oracle

}

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Unit Testing - Account

52

• Withdraw a negative amount.
• (should throw an exception with

appropriate error message)
@Test

public void testWithdraw_negative() {

 // Setup

 Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);

 // Test Steps

 double toWithdraw = -2.5; //Input

 Throwable exception = assertThrows(

 () -> { account.withdraw(toWithdraw); });

 assertEquals(“Cannot withdraw a negative amount: -2.50”,

 exception.getMessage()); // Oracle

}

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Best Practices
• If code is non-deterministic, tests should give deterministic results.

public long calculateTime(){
 long time = 0;
 long before = System.currentTimeMillis();
 veryComplexFunction();
 long after = System.currentTimeMillis();
 time = after - before;
 return time;

}

• Tests for this method should not specify exact time, but properties
of a “good” execution.

• The time should be positive, not negative or 0.
• A range on the allowed times.

53

Best Practices
• Test only one unit at a time.

• Each scenario in a separate test case.
• Helps in isolating and fixing faults.

• Do not use unnecessary assertions.
• Specify how code should work, not a list of observations.
• Generally, each unit test performs one assertion

• Or all assertions are related.

54

Best Practices
• Make each test independent of all others.

• Use @BeforeEach and @AfterEach to set up state and clear state
before the next test case.

• Create unit tests to target exceptions.
• If an exception should be thrown based on certain input, make

sure the exception is thrown.

55

We Have Learned
• Constraints can be used in functional test design

to limit test specifications we create.
• Error, single, if

• Unit testing focuses on individual classes in
isolation from the rest of the system.
• Input = method calls
• Oracle = assertions

56

Next Time
• Exercise Session: Functional test design
• Next class: System testing and test automation

• Assignment 1 - Feb 8
• Assignment 2 - Feb 15

• Any questions?

57

