%

o
& Q
7

”.@8}}
e/
2

'Pq‘ .6‘

1891

CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Lecture 6: Test Design Wl /
and Unit Testing ‘ <

Gregory Gay
DIT636/DAT560 - February 4, 2026)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Today’s Goals

* More on test design
* More practice
» Using constraints to limit representative value selection.

* Unit testing

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

More on Test Design
(Adding Constraints)

%6} CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Creating Functional Tests

[Identify Testing Targets] |dentify function(s) that can be tested in (relative) isolation.

. . Identify controllable aspects of the input and environment
Identify Choices] that determine the outcome of that function.

Identify Representative
Input Values

|

Identify options for each choice that lead
to different function outcomes.

Generate Test Case] Select a value for all choices to

Specifications

form abstract test case “recipe”.

Generate Test] Replace
Cases representative
values with
concrete values.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Identify Choices

« Examine parameters of function.
* Direct input, environmental parameters (i.e., databases),
and configuration options.

 ldentify characteristics of each parameter.
« What aspects influence outcome? (choices)

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Example - Set Functions

e Small function library related to Sets:
o POST /insert/SET _ID {“object”: VALUE}
m Returns { “result”: VALUE (“OK” if success or error)}

o GET /find/SET_ID {“object”: VALUE}
m Returns { “result”: VALUE (TRUE or FALSE)}
o GET /delete/SET_ID {“object”: VALUE}

m Returns { “result”: VALUE (“OK” if success or error)}

e \We want to write tests for these three functions.

{81)) UNIVERSITY OF GOTHENBURG

Example - Se-t FunCtions [Identify Testing Targets]
POST /insert/SET_ID {“object”: VALUE}

 \What are our choices? [P —]
// Set up the existing set, either empty or
with items. e Parameter: Set ID
POST /insert/ {“set”: [...]} o Choice 1: How many items are in

// Insert an object th.e set? (performance may degrade
POST /insert/SET_ID {“object”: VALUE} with larger sets)
/) check th " e Parameter: Object
ec e resu . . .
pm. test(“Insertion”, function() { o Choice 2: Is obj already in the set?

var jsonData = pm.response.json(); o Choice 3: Is the object valid? (e.g.,
pm.expect(jsonData.result).to.eql(VALUE);}); not null)?

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Identify Representative Values

« Many values can be selected for each choice.

« Partition values into equivalence classes.
« Sets of interchangeable values.
« Consider all outcomes of function.
« Consider logical ranges or groupings.

« Atest specification is a selection of values for
all choices.

« Concrete test case replaces equivalence class with
a concrete value.

&%) CHALMERS NIVERSITY OF GOTHENBURG

Exa m p I e - S Et F U n Cti O nS [Identify Representative]

Input Values

POST /insert/SET_ID {“object”: VALUE}

Parameter: object

Parameter: Set ID « Choice: Is the object already in the set?

* Choice: How many items are in the set?
* Representative Values:
 Empty Set
« Set with 1 item * objnotin set
« Setwith 10 items
« Set with 10000 items

* Representative Values:

* obj already in set

» Choice: Is the object valid?
* Representative Values:

- Valid obj
* Null obj

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Specifications

» Test specification = selection
a values for each choice.

« May end up with thousands of
test specifications.

« Many specifications may be
redundant or illegal.

e lIdentify constraints to limit
selection of values.

CHALMERS

UNIVERSITY OF TECHNOLOGY

NIVERSITY OF GOTHENBURG

Examp

le - Set Functions [Srrerecse)

POST /insert/SET_ID
{“object”: VALUE}

« (47*2*2)= 16 specifications
« Each can become 1+ tests.

« Use constraints to remove
Impossible combinations.

Set Size Obj in Set Obj Status Outcome
Empty Yes Valid No change
Empty Yes Null Error

Empty No Valid Obj added to Set
Empty No Null Error

1 item Yes Valid No change
1item Yes Null Error

1 item No Valid Obj added to Set
1 item No Null Error

10 items Yes Valid No change

10 items Yes Null Error

10 items No Valid Obj added to Set
10 items No Null Error

Set Size Obj in Set Obj Status Outcome

10000 Yes Valid No change (may be slowdown)
10000 Yes Null Error

10000 No Valid Obj added to Set(may be slowdown)
10000 No Null Error (may be slowdown)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Constraints Between Choices

» Establishes constraint between representative values for two
different choices.

« Arepresentative value for Choice 1 can only used if a certain
value is used (or not used) for Choice 2.

Choice 1: Choice 2:

o A o X

e B ® Y [ifChoice1=B)
o C o /

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Constraints Between Choices
« ERROR

» Selected representative value leads to an abnormal
outcome/error/exception regardless of values selected for other
choices.

* Only need one test specification with “Choice 1 = C”

Choice 1: Choice 2:

o A o X

e B ® Y [ifChoice1=B)
e C [ERROR | o /

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Constraints Between Choices
« SINGLE

» Corner cases that should give a “normal” outcome.
* Only a single test with this representative value is needed.

Choice 1: Choice 2:

o A o X

e B e Y [ifChoice1=B |
e C [ERROR | e / [SINGLE |

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Test Specifications

« Before: 3 * 3 =9 specifications (all combinations of Choice 1 and Choice 2)
« After: 5 specifications

e A X
B, X
 B,Y,
* C, (any)
« (AorB),Z
Choice 1: Choice 2:
o A o X
e B ® Y [ifChoice1=B)
e C [ERROR | e /7 |[SINGLE |

{8%)) UNIVERSITY OF GOTHENBURG

Example - Substring

substr (string str, 1nt index)

Choice: Str length Choice: index
length =0 value <0 [ERROR |
length = 1 value = 0

length >= 2 value =1

Choice: Str contents value > 1

contains letters and numbers [if*Striength’ =0 |

contains special characters [if“Strlength”!=0 | [SINGLE

empty | if “Strlength”=0 |

&%) CHALMERS NIVERSITY OF GOTHENBURG

Example - SEt FunCtionS [Identify Constraints
POST /insert/SET_ID {“object”: VALUE}

Parameter: obj

—

Parameter: set « Choice: Is the object already in the set?

« Choice: How many items are in the set? . Representative Values:

* Representative Values: i already t [if “how many”
« Empty Set ORI Already N S empty
« Set with 1 item * objnotin set

* Setwith 10 items « Choice: Is the object valid?
« Set with 10000 items

* Representative Values:
« Valid obj

* Nullobj ((Efer)
IR

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example - Set Functions [asycemsmine

Set Size Obj in Set Obj Status Outcome
°
B B B POST t/SET _1ID
inser
CITPty L1 E——] rror “ b 3 t,, ° VALU E
object”:
Empty No Valid Obj added to Set
Empty No Null Error
1 item Yes Valid No change
i V3 " -
1 item No Valid Obj added to Set
i o " o
Set Size Obj in Set Obj Status Outcome
b S — S ——rie) b —
TOU00 (i B (o B (00010 B A1\ oL (oo (o)1) E—
it G S —— i — =
SSae S el — ey)
10 items No Valid Obj added to Set
10000 No Valid Obj added to Set(may be slowdown)
Amibounn A L =
ZNaTATATaY b Dot i el St ———

AN
i) CHALMERS | @}; UNIVERSITY OF GOTHENBURG

Example - Set Functions [Apply Constraints]

SetSize | ObjinSet | ObjStatus | Outcome POST / i nse r‘t / S E T I D
Empty No Valid Obj added to Set { “O bj ec -t B3 . VA L U E }

Empty No Null Error

 From 16 -> 6 specifications
1 item No Valid Obj added to Set ° EaCh can become 1+ teStS

10items | No Valid Obj added to Set ° Ca N fu rth er con Stra i N if
needed.

10000 No Valid Obj added to Set(may be slowdown)

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Example - Set Functions

[Create Test Cases]

POST /insert/SET_ID {“object”: VALUE}

Set Size

Obj in Set

Obj Status

Outcome

Empty

No

Valid

Obj added to Set

Set Size

Obj in Set Obj Status Outcome

// Set up empty set.

POST /insert/ {“set”: []}
// Insert a valid object

POST /insert/SET_ID {“object”: “Test”}

// Check the result

pm.test(“Valid Insert”, function() {

var jsonData = pm.response.json();

Empty

No Null Error

pm.expect(jsonData.result).to.eql(“0K”);

s

// Set up empty set.
POST /insert/ {“set”: []}
// Insert a null object
POST /insert/SET_ID {“object”: null}
// Check the result
pm.test(“Null Insert”, function() {
var jsonData = pm.response.json();
pm.expect(jsonData.result).to.eql(“Null object
cannot be inserted into set”);});

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity - find service

find(pattern,filename)

* Finds instances of a pattern in a file
e find(“john”,myFile)
« Finds all instances of john in the file
e find(“john smith”,myFile)
« Finds all instances of john smith in the file

e find(““john” smith”,myFile)
 Finds all instances of “john” smith in the file

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity - find Service

« Parameters: pattern, file
* What can we vary for each?
« What can we control about the pattern? Or the file?

« \What values can we choose for each choice?

e File name:
* File exists with that name
File does not exist with that name

« What constraints can we apply between choice
values? (if, single, error)

) CHALMERS | UNIVERSITY OF GOTHENBURG

Example - find Service

Pattern:
* * — - - -
- (22*33*47) = 108 test specifications
« Pattern size:
Empty
« single character File:
« many characters e Filename:
* longer than any line in the file 2 E())(Iz;“en\?viftlrlmetﬁiir?\eame
* Quoting:
9 e Number of occurrence of pattern in file:
« pattern has no quotes o None
« pattern has proper quotes o exactly one
« pattern has improper quotes (only one) o more than one
. Embedded spaces: ° Pittergr?é:currences on any single line line:

 No spaces o more than one
 One space

» Several spaces

) CHALMERS \ UNIVERSITY OF GOTHENBURG

ERROR and SINGLE Constraints

4 (error) + 2 (single) + (12*23*3") = 30

« Pattern size:
[error] <+ Empty

 single character e File name:

. o Existing file name
many character o no file with this name [error]

[error] - longer than any line in the file e Number of occurrence of pattern in file:
Quoting: o None
« pattern has no quotes o exactly one [single]
- pattern has proper quotes o more than one
[error] * pattern has improper quotes (only one “) ° Patterg occurrences on target line:
o One
« Embedded spaces: o more thanone [single]

* No spaces
* One space
» Several spaces

) CHALMERS | UNIVERSITY OF GOTHENBURG

IF Constraints
4 (error) + 2 (single) + (13*23) (quoted = true) +

« Pattern size: 4xm2 _ _
lerror] - Empty (1**2°) (quoted = false) = 18
 single character e File name:

o Existing file name

* many character o no file with this name [error]

[error] - longer than any line in the file e Number of occurrence of pattern in file:
Quoting: o None
« pattern has no quotes o exactly one [single]
- pattern has proper quotes o more than one
[error] * pattern has improper quotes (only one “) ° Patterg occurrences on target line:
o One
« Embedded spaces: o more thanone [single]

* No spaces
[if quoting =
proper] One space

[if quoting= °* Several spaces
proper]

25 25

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Unit Testing

oo

i) CHALMERS | (8} UNIVERSITY OF GOTHENBURG

Testing Stages

* We interact with systems
through interfaces.
« APIls, GUIs, CLlIs

« Systems built from subsystems.
» With their own interfaces.

« Subsystems built from units.
« Communication via method calls.

s o

JANY GER)
6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Testing Stages
* Unit Testing

« Methods of a single class

e System-level Testing

 System (Integration) Testing

* (Subsystem-level) Collected units

« (System-level) High-level interfaces
 Exploratory Testing

« Ad-hoc GUI testing method

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Unit Testing

Testing the smallest “unit” that can be tested.
 QOften, a class and its methods.

Tested in isolation from all other units.
« Mock the results from other classes.

Test input = method calls.
Test oracle = assertions on output/class variables.

#%) CHALMERS |

) UNIVERSITY OF GOTHENBURG

Unit Testing

 For a unit, tests should:

« Test all “jobs” associated with the unit.

« Individual methods belonging to a class.
« Sequences of methods that can interact.

 Set and check class variables.

« Examine how variables change after
method calls.

« Put the variables into all possible states
(types of values).

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

{81)) UNIVERSITY OF GOTHENBURG

Unit Testing - Account

Unit tests should cover:

Account
" e Set and check class variables.
- personnummer o Can any methods change name,
- balance personnummer, balance?
Account (name, o Does changing those create problems?

personnummer, Balance)

e Each “job” performed by the class.

withdraw (double amount :
() o Single methods or method sequences.

deposit (double amount)

changeName(String name) m Vary the order methods are called.
getName() (1 »
getPersonnummer() o Each outcome of eac_h_ job” (error
getBalance() handling, return conditions).

_ CHALMERS |) UNIVERSITY OF GOTHENBURG

Unit Testing - Account

Some tests we might want to write:

Account
-~ name « Execute constructor, verify fields.
Naciechiiiing « Check the name, change the name,

make sure changed name is in place.

Account (name,

oersonnummer, Balance) » Check that personnummer is correct.
withdraw (double amount) ° CheCk the balanCe, WlthdraW money,
deposit (double amount) verify that new balance is correct.
changeName(String name) _

getName() « Check the balance, deposit money,
getPersonnummer()

getBalance() verify that new balance is correct.

_ CHALMERS | UNIVERSITY OF GOTHENBURG

Unit Testing - Account

Some potential error cases:

Account
name Withdraw more than is in balance.
- bersonnummer « Withdraw a negative amount.
- balance

« Deposit a negative amount.

Account (name, _ .
personnummer, Balance) « Withdraw/Deposit a small amount

ntial rounding error
withdraw (double amount) (pOte tial round ge O)

deposit (double amount) « Change name to a null reference.
changeName(String name)

getName() « Can we set an “malformed” name?
getPersonnummer()

getBalance() * (i.e., are there any rules on a valid name?)

AT

,‘ CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Test Case Components

« Test Input
* Any required input data.

« Expected Output (Test Oracle)

« What should happen, i.e., values or exceptions.
* Initialization
* Any steps that must be taken before test execution.

« Test Steps

* Interactions (e.g., method calls), and output comparisons.

« Tear Down
« Steps that must be taken after execution to prepare for the next test.

,‘ CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Writing a Unit Test

JUnit is a Java-based toolkit
for writing executable tests. _— ,
public int evaluate (String

* Choose a target from the expression) {
code base. int sum = 0;
- Write a “testing class” for (String summand:
containing a series of unit
sum += Integer.valueOf(summand);
tests centered around return sum:
testing that target. }

public class Calculator {

expression.split("\\+"))

UNIVERSITY OF GOTHENBURG

JUnit Test Skeleton

@Test annotation defines a single test:

Type of scenario, and expectation on outcome.
@Test l.e., testEvaluate_GoodInput() or testEvaluate_NullInput()

public void test<Feature or Method Name> <Testing Context>() {
//Define Inputs
try{ //Try to get output.

}catch(Exception error){
fail("Why did it fail?");
}

//Compare expected and actual values through assertions or through
//if-statements/fail commands

}

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Writing JUnit Tests

import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class Calculator

public class CalculatorTest {
@Test
void testEvaluate Valid_ ShouldPass(){

public

int sum = 0;
? Calculator calculator = new Calculator();

int sum = calculator.evaluate("1+2+3"); -
assertEquals(6, sum); -

for (String summand:

expression.split
sum += Integer.valueOf(summand); }

return sum; }

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Fixtures - Shared Initialization

@BeforeEach annotation defines a common test
Initialization method:

@BeforeEach

public void setUp() throws Exception

{

this.registration = new Registration();
this.registration.setUser(“ggay”);

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Fixtures - Teardown Method

@AfterEach annotation defines a common test tear
down method:

@AfterEach

public void tearDown() throws Exception

{

this.registration.logout();
this.registration = null;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

More Test Fixtures

@BeforeAll
° @Befor.eAll defines public static void setUpClass() {
initialization to take ransgediesource = e
ManagedResource();
place before any }

tests are run.
« @AfterAll defines @AfterAll

public static void tearDownClass()

tear down after all throws IOException {
tE;S;tS; are (i()f]EB. myManagedResource.close();
myManagedResource = null;
}

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Assertions

Assertions are a "language” of testing - constraints that
you place on the output.

e assertEquals, assertArrayEquals
e assertFalse, assertTrue

e assertNull, assertNotNull

e assertSame,assertNotSame

&%) CHALMERS NIVERSITY OF GOTHENBURG

assertEquals

fzzic void testAssertEquals() { ¢ CompareS tWO itemS fOI'
assertEquals("text", "text", "failure - equality.

strings are not equal"); e For user-defined classes,

} relies on .equals method.

aTest o Compare field-by-field

o assertEquals(studentA.getName(),
studentB.getName())
rather than

public void testAssertArrayEquals() {
byte[] expected = "trial".getBytes();

byte[] actual = "trial".getBytes(); assertEquals(studentA, studentB)
assertArrayEquals(expected, actual, PY assertArrayEquals
"failure - byte arrays not same");

} compares arrays of items.

{8%)) UNIVERSITY OF GOTHENBURG

assertFalse, assertTrue

@Test
public void testAssertFalse() {

e Takein a string and a

assertFalse((getGrade(studentA,

“DIT635”).equals(“A”), "failure - should be boolean expression.

false"); e Evaluates the expression
: and issues pass/fail based
@Test on outcome.

public void testAssertTrue() { PY Used tO CheCk

assertTrue((getOwed(studentA) > 9),

-failure - should be true"): conformance of solution to
} expected properties.

(&%) UNIVERSITY OF GOTHENBURG

assertSame, assertNotSame

@Test
public void testAssertNotSame() {

assertNotSame(studentA, new Object(), PY CheCkS Whether tWO
"should not be same Object"); .
) objects are clones.
e Are these variables aliases
@rest for the same object?
public void testAssertSame() {
o assertEquals uses

Student studentB = studentA;
assertSame(studentA, studentB, "should be _EB(]L]EBIE;()_

;""’"e"" o assertSame uses ==

(&%) UNIVERSITY OF GOTHENBURG

assertNull, assertNotNull

@Test
public void testAssertNotNull() {
assertNotNull(new Object(), "should

. e Take in an object and
not be null");

) checks whether it is
null/not null.

@Test e Can be used to help

public void testAssertNull() { dlagnose and VOld nu”

assertNull(null, "should be null"); pointer exceptions.

(&%) UNIVERSITY OF GOTHENBURG

Grouping Assertions

@Test

void groupedAssertions() {

Person person = Account.getHolder(); @ Grouped assertions are

assertAll("person", executed.
() -> assertEquals("John”, o Failures are reported
person.getFirstName()), together
() -> assertEquals("Doe",
person.getLastName())); © Preferred Way tO
} compare fields of two

data structures.

{8%)) UNIVERSITY OF GOTHENBURG

Testing Exceptions

@Test e \When testing error
void exceptionTesting() { hand“ng we eXpeCt

exceptions to be thrown.
IndexOutOfBoundsException.class, o assertThrows checks
() -> { new ArrayList<Object>().get(0);} whether the code block
Y throws the expected
exception.
exception.getMessage()); © assertEquaIs can be
} used to check the
contents of the stack
trace.

Throwable exception =

assertThrows (

assertEquals("Index:0, Size:0",

y CHALMERS | UNIVERSITY OF GOTHENBURG

Testing Performance

@Test
void timeoutExceeded() {
assertTimeout(ofMillis(10), e assertTimeout can be
() -> { Order.process(); }); used to impose a time
J limit on an action.
@Test

O Time limit stated using
ofMilis(..), ofSeconds(..),

String greeting = ofMinutes(..)

o Result of action can be captured as

well, allowing checking of result
AssertionsDemo: :greeting); correctness.

void timeoutNotExceededWithMethod() {
assertTimeout (ofMinutes(2),

assertEquals("Hello, World!", greeting);

¥

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Unit Testing - Account

« Withdraw money, verify balance.

Account
_name @Test
i g:{asro]ggummer public void testWithdraw_normal() {

// Setup

Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
// Test Steps

double toWithdraw = 16.0; //Input

Account (name,
personnummer, Balance)

withdraw (double amount) account.withdraw(toWithdraw);

deposit (double amount) double actual = account.getBalance();
changeName(String name) double expectedBalance = 32.5; // Oracle
getName() assertEquals(expected, actual); // Oracle
getPersonnummer() }

getBalance()

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Unit Testing - Account

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

 Withdraw more than is in balance.

* (should throw an exception with
appropriate error message)
@Test
public void testWithdraw_moreThanBalance() {
// Setup
Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
// Test Steps
double toWithdraw = 100.0; //Input
Throwable exception = assertThrows(
() -> { account.withdraw(toWithdraw); });
assertEquals(“Amount 100.00 is greater than balance 48.50”,
exception.getMessage()); // Oracle

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Unit Testing - Account

« Withdraw a negative amount.

Account
* (should throw an exception with
- name appropriate error message)
- personnummer @Test
- balance public void testWithdraw_negative() {
// Setup
Account (name’ Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
personnummer, Balance) // Test Steps

) double toWithdraw = -2.5; //Input
withdraw (double amount)

deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Throwable exception = assertThrows(
() -> { account.withdraw(toWithdraw); });
assertEquals(“Cannot withdraw a negative amount: -2.50”,

exception.getMessage()); // Oracle

CHALMERS | UNIVERSITY OF GOTHENBURG

Best Practices

 If code is non-deterministic, tests should give deterministic results.

public long calculateTime(){
long time = O;
long before = System.currentTimeMillis();

veryComplexFunction();
long after = System.currentTimeMillis();

time = after - before;
return time;

}
» Tests for this method should not specify exact time, but properties
of a “good” execution.
« The time should be positive, not negative or 0.
* Arange on the allowed times.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Best Practices

« Test only one unit at a time.
« Each scenario in a separate test case.
* Helps in isolating and fixing faults.

* Do not use unnecessary assertions.
« Specify how code should work, not a list of observations.

« Generally, each unit test performs one assertion
« Or all assertions are related.

,{1’_‘-‘ fmm.,%c
6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Best Practices

 Make each test independent of all others.

Use @BeforeEach and @AfterEach to set up state and clear state
before the next test case.

* Create unit tests to target exceptions.

 If an exception should be thrown based on certain input, make
sure the exception is thrown.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« Constraints can be used in functional test design
to limit test specifications we create.
« Error, single, if

« Unit testing focuses on individual classes in
iIsolation from the rest of the system.
* Input = method calls
* Oracle = assertions

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

Exercise Session: Functional test design
Next class: System testing and test automation

Assignment 1 - Feb 8
Assignment 2 - Feb 15

* Any questions?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

