CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Lecture 7: System (Integration) °~ -
Testing and Test Automation i

Gregory Gay
DIT636/DAT560 - February 9, 2026) '

oo

i) CHALMERS | (8} UNIVERSITY OF GOTHENBURG

Testing Stages

* We interact with systems
through interfaces.
« APIls, GUIs, CLlIs

« Systems built from subsystems.
» With their own interfaces.

« Subsystems built from units.
« Communication via method calls.
 Set of methods is an interface.

{8%)) UNIVERSITY OF GOTHENBURG

Testing Stages

e System-level Testing
* Tests whole system or independent
subsystems through an interface.

* Integrates lower-level components
* (Subsystem-level) Does unit collaboration
work correctly?
« (System-level) Does subsystem
collaboration work correctly?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Unit vs System Testing

* Unit tests focus on a single class.
« Simple functionality, more freedom.
 Few method calls.

« System tests bring many classes together.
« Focus on testing through an interface.

* One interface call triggers many internal calls.
Slower test execution.

« May have complex input and setup.

6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

System Testing

e System components are
expected to interact.
« Usually this is planned!

« Sometimes unplanned
Interactions break the system.

 We should select tests that
thoroughly test component
integrations.

UNIVERSITY OF GOTHENBURG

 Fire Control activates
sprinklers when fire
detected.

 Flood Control cuts
water supply when
water detected on floor.

* |Interaction means
building burns down.

(&%) UNIVERSITY OF GOTHENBURG

WordPress Plug-Ins

[:weather:]

S AT~ -

A/ ND T
VWWORD
Y Y\JIA\LJ

1) 8-) 31 ...

$

@OO®
YOO
[NENECORD)
OOV

Today's weather: [:weath™

Weather and
emoji plug-ins
tested
iIndependently.

Their interaction
results in
unexpected
behavior.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Interface Types

« Parameter Interfaces
« Data passed from through method parameters.
« Subsystem may have interface class that calls into

underlying classes.
* Procedural Interfaces

 Interface surfaces a set of functions that can be called by
other components or users (API, CLI, GUI).

* Integrates lower-level components and controls access.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Interface Types

« Shared Memory Interfaces

* Ablock of memory is shared between (sub)systems.
« Data placed by one (sub)system and retrieved by another.

« Common if system architected around data repository.

 Message-Passing Interfaces

* One (sub)system requests a service by passing a
message to another.

« Areturn message indicates the results.
« Common in parallel systems, client-server systems.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Interface Errors

* |nterface Misuse
« Malformed data, order, number of parameters.

* Interface Misunderstanding
* Incorrect assumptions made about called component.
* Abinary search called with an unordered array.

* Timing Errors

* Producer of data and consumer of data access data in
the wrong order.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

How to Write System Tests

* As before: choices, representative values, etc.

* If targeting internal code, unit tests can call
methods from multiple classes.

* |If targeting a dedicated interface:
« Postman (REST)
« Selenium (web browser)
« Bash or Powershell scripts (command line)
« Espresso (Android)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Differences from Unit Testing

« Test design is more “conceptual’.

« Based on high-level functionality, not directly traced to
low-level code elements.

« Choices may be tied to multiple code classes.

* Dependencies outside of codebase.

« May need wrapper code for external dependencies to
Invoke In test cases that invoke internal code.

 More complex setup and teardown.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

System Testing and Requirements

» Tests can be written early in the project.
« Can create tests using the requirements.
* Does not require a detailed design.

* Creating tests supports requirement refinement.
 Tests can be made concrete once code is built.

{#%6) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Example: Shopping

« Final price of each item
IS calculated as:

* (price * quantity)

» Delivery costs:

e 1-3: %5
e 4-10:%12.5
« 10+: %20

 |[fanitemis from
electronics category,
$7.5 extra.

%) CHALMERS | (@8})) UNIVERSITY OF GOTHENBURG

Example: Shopping

* ShoppingCart, “Price
Rules” can be tested
during unit testing.

e FinalPriceCalculator
could be unit tested,
but...

« Should be target of
iIntegration testing.

(&6) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Example: Shopping

Choice: Shopping cart
 Empty, 1, 2+ items

Choice: Per-item quantities
¢ 1,2+

Choice: Total quantity
« 1-3items, 4-10, 10+

Choice: Electronics
 Yes, no

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

User Journeys

* A"business facing” test, designed to simulate a
typical user’s journey through the system.

« Auser’s entire interaction with a system to achieve some
goal - one path in a use case.

* |nvokes multiple functions in one test.
« Typical in late stages of system, exploratory testing.
* Also used to demonstrate system to stakeholders.

g‘_o-&_ﬁ RN
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Example: Advertising

« Use case: a user wants to create
an event and invite appropriate
members to it.

* One test case:

« Create an event.

« Sort the list of members, filtering by
location, age, and gender.

« Send a message to those users with
an invitation to the event.

oo

JANY R
6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Example: Advertising

e Set up database of members.

 Login.

« Create an event.

« Sort the list of members, filtering by location, age, and gender.
« Send a message to those users with an invitation to the event.
» Check correctness of each step.

* Reset database contents.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Best Practices

* |Implement separate, reusable setup and teardown.

* Pre-testing setup run before executing the first test.
 Restore to this state in teardown of each test.

« Setup run before each test case with a common setup.
« Simplifies each test case.
- Easier to maintain.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Best Practices

 Run each test in a clean environment.
* Resetting database or internal memory.
* Logging out of accounts.
« Stopping and restarting system.

« Balance risk against cost of a full restart.

« Can implement a “reset” function in test code.
* Do not leave in production system.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Test Automation

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Executing Tests

 How do you run test cases on the program?

« System level: could run code and check results by hand.
e Limit how often you do this.

 Humans are slow, expensive, and error-prone.
 Exception - exploratory and acceptance testing.
* Test design requires effort and creativity.
« Test execution should not.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Automation

« Development of software to separate repetitive
tasks from creative aspects of testing.

« Control over how and when tests are executed.

« Control environment and preconditions/setup.
« Automatic comparison of predicted and actual output.
« Automatic hands-free re-execution of tests.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

©
i =

Testing Requires Writing Code
 The component to be tested must be isolated and
driven using method or interface calls.

« Untested dependencies must be mocked with
reliable substitutions.

* The deployment environment must be simulated by
a controllable harness.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Scaffolding

« Test scaffolding is a set of programs written to
support test automation.
* Not part of the product, often temporary

 Allows for:
« Testing before all components complete.
« Testing independent components.
« Control over testing environment.

CHALMERS | NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

e Simulates the execution environment.
e Can control network conditions,
environmental factors,
operating systems.

Harness

\ Ganials-endonmnant

Y

Driver

<
Program UnitJ Stubs

Provide functionality

e [emplates that provide functionality

T . Produces actualfputput " .
Initializes objects [and allow testing in isglation

Initializes parameter variables utput | Oracl
- . N racie
Performs the test Comparison

Inputs commands

A

Performs any necessary
cleanup steps.

Produces expected output
v

FGSU|t e | Checks the correspondence between the produced and
i expected output and renders a test verdict.

28

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Scaffolding

 Mock objects and drivers are written as
replacements for other parts of the system.
« May be required if pieces of the system do not exist.

« Scaffolding allows control over test execution and
greater observability to judge test results.
« Simulate dependencies and test components in isolation.
 Ability to set up specialized testing scenarios.

 Ability to replace part of the program with a version more
suited to testing.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Unit Testing - Object Mocking

WeatherData

Unit may depend on unfinished (or
untested) components. Can mock | winispeed

windDirection

those components. oressure Thermometer 4~

lastReadingTime

« Same interface as real component,

but hand-created simulation. collect()
. summarize(time) >
« Can be used to simulate abnormal shutdown()
operation or rare events. Mock_Thermometer | restart()
« EXx. Place exact data in database :her_ide?tifier
needed to hit special outcome. SMperarire
shutdown() | 9
restart() return 98;
¥

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Mocking Example

« Declare a mock object:
LinkedList mList = mock(LinkedList.class);

« Specify method behavior:
when(mList.get(0)).thenReturn(“first”);

« Returns “first”: mList.get(9);
 Returns null: mList.get(99);
» Because behavior for “99” is not specified.

when(mList.get(anyInt()).thenReturn(“element”);

e mList.get(Q), mList.get(99) both return
“element’, as all input are specified.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Mocking Within a Test)/

@test

public void temperatureTest(){
Thermometer mockTherm = mock(Thermometer.class);
when(mockTherm.get()).thenReturn(98);
WeatherData wData = new WeatherData();
wData.collect(mockTherm);
assertEquals(98, wData.temperature);

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Build Systems

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Build Systems

* Building, running tests, packaging and distributing
are very common, effort-intensive tasks.
« Building and deploying should be as easy as possible.

* Build systems ease process by automating as
much as possible.
* Repetitive tasks can be automated and run at-will.

%) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

Build Systems

* Allow control over code compilation, test execution,
executable packaging, and deployment.

« Script defines actions that can be automatically
iInvoked at any time.

* Many frameworks for build scripting.

* Most popular for Java: Ant, Maven, Gradle.
« Gradle very common for Android projects.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Build Lifecycle

Validate -+ Compile Test - Package —~ Verify — Install —~ Deploy

« Validate the project is correct and all necessary information
Is available

« Compile the source code of the project.

« Test the source code using a suitable unit testing framework.
* Unit tests and subsystem integration tests.

» Take the compiled code and package it in its distributable
format, such as a JAR.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Build Lifecycle

Validate -+ Compile Test - Package —~ Verify — Install —~ Deploy

* Verify - run system tests.
« System tests require a packaged executable.

 This is also when tests of non-functional criteria like
performance are executed.

 Install the package for use as a dependency in
other projects locally.

* Deploy the package to production environment.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Apache Ant

« Simple build system for Java.

« Build scripts define targets that can be executed on
command.
« Correspond to lifecycle phases or other automated tasks.
» Targets can trigger other targets.
 Build scripts written in XML.

Platform neutral, But can invoke platform-specific commands.
 Human and machine readable.
» Created automatically by many IDEs (Eclipse).

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

A Basic Build Script

<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
<target name = "info">
<echo>Hello World - Welcome to Apache Ant!</echo>
</target>
</project>

 File typically named build.xml, and placed in the base
directory of the project.
 Build script requires project element and at least one target.
* Project defines a name and a default target.

« This target prints project information.
e Echo prints information to the terminal.

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Targets

<target name = "deploy" depends = "package"> </target>
<target name = "package" depends = "clean,compile"> </target>
<target name = "clean" > </target>

<target name = "compile" > </target>

« Atarget is a collection of tasks you want to run in a
single unit.
» Targets can depend on other targets.

« Dependencies denoted using the depends attribute.
« deploy will call package, which will call clean and compile.

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Targets

<target name = "deploy" depends = "package"> </target>
<target name = "package" depends = "clean,compile"> </target>
<target name = "clean” > </target>

<target name = "compile" > </target>

* Target attributes:
 name defines the name of the target (required)
 depends lists dependencies of the target.
* description is used to describe the target.
e if and unless allow execution of the target to depend on

a conditional attribute.
« Execute target if attribute is true, or execute unless true.

(@%)) UNIVERSITY OF GOTHENBURG

Executing targets

<?xml version = "1.8"?> Buildfile: build.xml
<project name = "Hello World Project” default = "info"> T [echo] Hello World - Welcome to Apache
<target name = "info"> Ant!
<echo>Hello World - Welcome to Apache Ant!</echo> BUILD SUCCESSFUL
</target> Total time: © seconds
</project>

* In the command line, invoke:
* ant <target name>

 If no target is supplied, the default will be executed.

* In this case, ant and ant info give same result because
info is default target.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Properties

« XML does not natively allow variable declaration.
* Instead, create property elements, which can be referred

to by name.
<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
<property name = "sitename" value = "http://cse.sc.edu"/>
<target name = "info">

<echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
</target>

</project>

CHALMERS | UNIVERSITY OF GOTHENBURG

Properties

<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
<property name = "sitename" value = "http://cse.sc.edu"/>
<target name = "info">
<echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
</target>
</project>

* Properties have a name and a value.
« Property value is referred to as ${property name}.

* Ant pre-defines ant.version, ant.file (location of the build
file), ant.project.name, ant.project.default-target.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Property Files

« Can define static properties in a file.

* Allows reuse of build file in different environments
(development, testing, production).

* Allows easy lookup of property values.
« Called build.properties and stored in the same
directory as build script.

» Lists one property per line: <name> = <value>
e Comments can be added using # <comment>

UNIVERSITY OF TECHNOLOGY

CHALMERS | UNIVERSITY OF GOTHENBURG

Property Files

* build.xml

<?xml version = "1.0"?>
<project name "Hello World Project" default = "info">
<property file = "build.properties"/>

<target name = "info">
<echo>You are at ${sitename}, version ${buildversion}.</echo>
</target>
</project>

* build.properties
The Site Name

sitename = http://cse.sc.edu
buildversion = 3.3.2

CHALMERS | UNIVERSITY OF GOTHENBURG

Conditions ° Property value determined by and/or.

And requires that each property is true.
« foo.txt and bar.txt must exist.

<target name = "myTarget" depends =))
"myTarget.check" if = « (available checks for file existence)
pyTarget.run’> ... </targety * Or requires that 1+ properties true.
<target name = "myTarget.check"> .
<condition property = « Calling myTarget.check creates property
"myTarget.run®> (myTarget.run), true if both files present.
<and:available file - « When myTarget called, it will run only if
"foo.txt"/> myTarget.run is true.
<available file =
"bar.txt"/>
</and>
</condition>
</target>

{8%)) UNIVERSITY OF GOTHENBURG

Ant Utilities

* Fileset generates list of files matching criteria for
iInclusion or exclusion.
* ™ means that the file can be in any subdirectory.
« * allows partial file name matches.

<fileset dir = "${src}" casesensitive = "yes">
<include name RE/* Java'/>

<exclude name = "**/*Stub*"/>
</fileset>

&) CHALMERS |) UNIVERSITY OF GOTHENBURG

Ant Utilities

e Path is used to represent a classpath.
« pathelement is used to add items or other paths to the path.

<path id = "build.classpath.jar">

<pathelement path = "${env.J2EE_HOME}/j2ee.jar"/>

<fileset dir = "1lib"> <include name = "**/* jar"/> </fileset>
</path>

CHALMERS | UNIVERSITY OF GOTHENBURG

Building a Project

<project name = "Hello-World" basedir = "." default = "build">

<property name = "src.dir" value = "src"/>
<property name = "build.dir" value = "target"/>
<path id = "master-classpath">
<fileset dir = "${src.dir}/1ib"> <include name = "*.jar"/> </fileset>
<pathelement path = "${build.dir}"/>
</path>
</project>

* Properties src.dir and build.dir define where the source files
are stored and where the built classes are deployed.

« Path master-classpath includes all JAR files in the lib folder
and all files in the build.dir folder.

CHALMERS | UNIVERSITY OF GOTHENBURG

Bmldlng a Project

<project name = "Hello-World" basedir = "." default = "build">
<target name = "clean" description = "Clean output directories">
<delete>
<fileset dir = "${build.dir}">
<include name = "**/*.class"/>
</fileset>
</delete>
</target>
</project>

* The clean target is used to prepare for the build process by
cleaning up any remnants of previous builds.
« In this case, it deletes all compiled files (.class)

« May also remove JAR files or other temporary artifacts that will be
regenerated by the build.

CHALMERS | UNIVERSITY OF GOTHENBURG

Building a Project

<project name = "Hello-World" basedir = "." default = "build">
<target name = "build" description = "Compile source tree java files">
<mkdir dir = "${build.dir}"/>

<javac destdir = "${build.dir}" source = "1.8" target = "1.8">
<src path = "${src.dir}"/>
<classpath refid = "master-classpath"/>
</javac>
</target>

</project>

* The build target will create the build directory, compile the
source code (using javac), and place the class files in the
build directory.

« Can specify which java version to target (1.8).

« Must reference the classpath to use during compilation.

CHALMERS | UNIVERSITY OF GOTHENBURG

Creating a JAR File

« The jar command creates executable from compiled classes.

<target name = "package">
<jar destfile = "lib/util.jar" basedir = "${build.dir}/classes™
includes = "app/util/**" excludes = "**/Test.class">
<manifest><attribute name = "Main-Class" value = "com.util.Util"/></manifest>
</jar>
</target>

» destfile is the location to place the JAR file.
« basedir is the base directory of included files.
* includes defines the files to include in the JAR.
« excludes prevents certain files from being added.
« The manifest declares metadata about the JAR.
« Attribute Main-Class makes the JAR executable.

y CHALMERS | UNIVERSITY OF GOTHENBURG

Running Unit Tests
* JUnit tests run using the junit command.

<target name = "test">
<junit haltonfailure = "true" haltonerror = "false"
printsummary = "true" timeout = "5000">
<test name = "com.utils.UtilsTest"/>
</junit>
</target>

* test entries list the test classes to execute.
* haltonfailure / haltonerror will stop execution if tests fail/errors occur.

e printsummary displays number of tests run, number of failures/errors,
time elapsed.

« timeout will stop and issue error if the time limit is exceeded.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* During system testing, we focus on interactions.
Test by calling methods or through an interface.

If thoroughly unit tested, failures due to interaction faults.
« Mistaken assumptions, malformed calls.

Tests can focus on one “high-level” function or model full
user journeys.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

» Test automation can lower cost and improve the
quality of testing.
« Automation involves creating drivers, harnesses,

stubs, and oracles.
« Test cases written as executable code.
« Additional support code (mocking, interface manipulation,
wrappers for external dependencies) to enable testing.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« Testing is not all that can be automated.
* Project compilation, installation, deployment, etc.

* Project build automation:

* Automating the entire compilation, testing, and

deployment process.
« Antis an XML-based tool for automating build process.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

* Exploratory Testing

* Exercise Session: Unit Testing
* (Follow instructions linked on Canvas to set up IDE)

* Assignment 2 due Feb 15.

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

