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Testing Stages

* We interact with systems
through interfaces.
« APIls, GUIs, CLlIs

« Systems built from subsystems.
»  With their own interfaces.

« Subsystems built from units.
« Communication via method calls.
 Set of methods is an interface.
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Testing Stages

e System-level Testing
* Tests whole system or independent
subsystems through an interface.

* Integrates lower-level components
* (Subsystem-level) Does unit collaboration
work correctly?
« (System-level) Does subsystem
collaboration work correctly?
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Unit vs System Testing

* Unit tests focus on a single class.
« Simple functionality, more freedom.
 Few method calls.

« System tests bring many classes together.
« Focus on testing through an interface.

* One interface call triggers many internal calls.
Slower test execution.

« May have complex input and setup.
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System Testing

e System components are
expected to interact.
« Usually this is planned!

« Sometimes unplanned
Interactions break the system.

 We should select tests that
thoroughly test component
integrations.
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 Fire Control activates
sprinklers when fire
detected.

 Flood Control cuts
water supply when
water detected on floor.

* |Interaction means
building burns down.
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WordPress Plug-Ins
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Weather and
emoji plug-ins
tested
iIndependently.

Their interaction
results in
unexpected
behavior.
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Interface Types

« Parameter Interfaces
« Data passed from through method parameters.
« Subsystem may have interface class that calls into

underlying classes.
* Procedural Interfaces

 Interface surfaces a set of functions that can be called by
other components or users (API, CLI, GUI).

* Integrates lower-level components and controls access.
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Interface Types

« Shared Memory Interfaces

* Ablock of memory is shared between (sub)systems.
« Data placed by one (sub)system and retrieved by another.

« Common if system architected around data repository.

 Message-Passing Interfaces

* One (sub)system requests a service by passing a
message to another.

« Areturn message indicates the results.
« Common in parallel systems, client-server systems.
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Interface Errors

* |nterface Misuse
« Malformed data, order, number of parameters.

* Interface Misunderstanding
* Incorrect assumptions made about called component.
* Abinary search called with an unordered array.

* Timing Errors

* Producer of data and consumer of data access data in
the wrong order.
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How to Write System Tests

* As before: choices, representative values, etc.

* If targeting internal code, unit tests can call
methods from multiple classes.

* |If targeting a dedicated interface:
« Postman (REST)
« Selenium (web browser)
« Bash or Powershell scripts (command line)
« Espresso (Android)
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Differences from Unit Testing

« Test design is more “conceptual’.

« Based on high-level functionality, not directly traced to
low-level code elements.

« Choices may be tied to multiple code classes.

* Dependencies outside of codebase.

« May need wrapper code for external dependencies to
Invoke In test cases that invoke internal code.

 More complex setup and teardown.
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System Testing and Requirements

» Tests can be written early in the project.
« Can create tests using the requirements.
* Does not require a detailed design.

* Creating tests supports requirement refinement.
 Tests can be made concrete once code is built.
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Example: Shopping

« Final price of each item
IS calculated as:

* (price * quantity)

» Delivery costs:

e 1-3: %5
e 4-10:%12.5
« 10+: %20

 |[fanitemis from
electronics category,
$7.5 extra.
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Example: Shopping

* ShoppingCart, “Price
Rules” can be tested
during unit testing.

e FinalPriceCalculator
could be unit tested,
but...

« Should be target of
iIntegration testing.
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Example: Shopping

Choice: Shopping cart
 Empty, 1, 2+ items

Choice: Per-item quantities
¢ 1,2+

Choice: Total quantity
« 1-3items, 4-10, 10+

Choice: Electronics
 Yes, no
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User Journeys

* A"business facing” test, designed to simulate a
typical user’s journey through the system.

« Auser’s entire interaction with a system to achieve some
goal - one path in a use case.

* |nvokes multiple functions in one test.
« Typical in late stages of system, exploratory testing.
* Also used to demonstrate system to stakeholders.
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Example: Advertising

« Use case: a user wants to create
an event and invite appropriate
members to it.

* One test case:

« Create an event.

« Sort the list of members, filtering by
location, age, and gender.

« Send a message to those users with
an invitation to the event.
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Example: Advertising

e Set up database of members.

 Login.

« Create an event.

« Sort the list of members, filtering by location, age, and gender.
« Send a message to those users with an invitation to the event.
» Check correctness of each step.

* Reset database contents.
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Best Practices

* |Implement separate, reusable setup and teardown.

* Pre-testing setup run before executing the first test.
 Restore to this state in teardown of each test.

« Setup run before each test case with a common setup.
« Simplifies each test case.
- Easier to maintain.
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Best Practices

 Run each test in a clean environment.
* Resetting database or internal memory.
* Logging out of accounts.
« Stopping and restarting system.

« Balance risk against cost of a full restart.

« Can implement a “reset” function in test code.
* Do not leave in production system.
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Test Automation
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Executing Tests

 How do you run test cases on the program?

« System level: could run code and check results by hand.
e Limit how often you do this.

 Humans are slow, expensive, and error-prone.
 Exception - exploratory and acceptance testing.
* Test design requires effort and creativity.
« Test execution should not.
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Test Automation

« Development of software to separate repetitive
tasks from creative aspects of testing.

« Control over how and when tests are executed.

« Control environment and preconditions/setup.
« Automatic comparison of predicted and actual output.
« Automatic hands-free re-execution of tests.
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Testing Requires Writing Code
 The component to be tested must be isolated and
driven using method or interface calls.

« Untested dependencies must be mocked with
reliable substitutions.

* The deployment environment must be simulated by
a controllable harness.
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Test Scaffolding

« Test scaffolding is a set of programs written to
support test automation.
* Not part of the product, often temporary

 Allows for:
« Testing before all components complete.
« Testing independent components.
« Control over testing environment.
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e Simulates the execution environment.
e Can control network conditions,
environmental factors,
operating systems.

Harness

\ Ganials-endonmnant
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Scaffolding

 Mock objects and drivers are written as
replacements for other parts of the system.
« May be required if pieces of the system do not exist.

« Scaffolding allows control over test execution and
greater observability to judge test results.
« Simulate dependencies and test components in isolation.
 Ability to set up specialized testing scenarios.

 Ability to replace part of the program with a version more
suited to testing.
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Unit Testing - Object Mocking

WeatherData

Unit may depend on unfinished (or
untested) components. Can mock | winispeed

windDirection

those components. oressure Thermometer 4~

lastReadingTime

« Same interface as real component,

but hand-created simulation. collect()
. summarize(time) >
« Can be used to simulate abnormal shutdown()
operation or rare events. Mock_Thermometer | restart()
« EXx. Place exact data in database :her_ide?tifier
needed to hit special outcome. SMperarire
shutdown() | 9
restart() return 98;
¥
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Mocking Example

« Declare a mock object:
LinkedList mList = mock(LinkedList.class);

« Specify method behavior:
when(mList.get(0)).thenReturn(“first”);

« Returns “first”: mList.get(9);
 Returns null: mList.get(99);
» Because behavior for “99” is not specified.

when(mList.get(anyInt()).thenReturn(“element”);

e mList.get(Q), mList.get(99) both return
“element’, as all input are specified.
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Mocking Within a Test )/

@test

public void temperatureTest(){
Thermometer mockTherm = mock(Thermometer.class);
when(mockTherm.get()).thenReturn(98);
WeatherData wData = new WeatherData();
wData.collect(mockTherm);
assertEquals(98, wData.temperature);
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Let’s take a break.
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Build Systems




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Build Systems

* Building, running tests, packaging and distributing
are very common, effort-intensive tasks.
« Building and deploying should be as easy as possible.

* Build systems ease process by automating as
much as possible.
* Repetitive tasks can be automated and run at-will.
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Build Systems

* Allow control over code compilation, test execution,
executable packaging, and deployment.

« Script defines actions that can be automatically
iInvoked at any time.

* Many frameworks for build scripting.

* Most popular for Java: Ant, Maven, Gradle.
« Gradle very common for Android projects.
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Build Lifecycle

Validate -+ Compile Test - Package —~ Verify — Install —~ Deploy

« Validate the project is correct and all necessary information
Is available

« Compile the source code of the project.

« Test the source code using a suitable unit testing framework.
* Unit tests and subsystem integration tests.

» Take the compiled code and package it in its distributable
format, such as a JAR.
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Build Lifecycle

Validate -+ Compile Test - Package —~ Verify — Install —~ Deploy

* Verify - run system tests.
« System tests require a packaged executable.

 This is also when tests of non-functional criteria like
performance are executed.

 Install the package for use as a dependency in
other projects locally.

* Deploy the package to production environment.
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Apache Ant

« Simple build system for Java.

« Build scripts define targets that can be executed on
command.
« Correspond to lifecycle phases or other automated tasks.
» Targets can trigger other targets.
 Build scripts written in XML.

Platform neutral, But can invoke platform-specific commands.
 Human and machine readable.
» Created automatically by many IDEs (Eclipse).
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A Basic Build Script

<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
<target name = "info">
<echo>Hello World - Welcome to Apache Ant!</echo>
</target>
</project>

 File typically named build.xml, and placed in the base
directory of the project.
 Build script requires project element and at least one target.
* Project defines a name and a default target.

« This target prints project information.
e Echo prints information to the terminal.
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Targets

<target name = "deploy" depends = "package"> .... </target>
<target name = "package" depends = "clean,compile"> .... </target>
<target name = "clean" > .... </target>

<target name = "compile" > .... </target>

« Atarget is a collection of tasks you want to run in a
single unit.
» Targets can depend on other targets.

« Dependencies denoted using the depends attribute.
« deploy will call package, which will call clean and compile.



CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Targets

<target name = "deploy" depends = "package"> .... </target>
<target name = "package" depends = "clean,compile"> .... </target>
<target name = "clean” > .... </target>

<target name = "compile" > .... </target>

* Target attributes:
 name defines the name of the target (required)
 depends lists dependencies of the target.
* description is used to describe the target.
e if and unless allow execution of the target to depend on

a conditional attribute.
« Execute target if attribute is true, or execute unless true.
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Executing targets

<?xml version = "1.8"?> Buildfile: build.xml
<project name = "Hello World Project” default = "info"> T [echo] Hello World - Welcome to Apache
<target name = "info"> Ant!
<echo>Hello World - Welcome to Apache Ant!</echo> BUILD SUCCESSFUL
</target> Total time: © seconds
</project>

* In the command line, invoke:
* ant <target name>

 If no target is supplied, the default will be executed.

* In this case, ant and ant info give same result because
info is default target.
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Properties

« XML does not natively allow variable declaration.
* Instead, create property elements, which can be referred

to by name.
<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
<property name = "sitename" value = "http://cse.sc.edu"/>
<target name = "info">

<echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
</target>

</project>
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Properties

<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
<property name = "sitename" value = "http://cse.sc.edu"/>
<target name = "info">
<echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
</target>
</project>

* Properties have a name and a value.
« Property value is referred to as ${property name}.

* Ant pre-defines ant.version, ant.file (location of the build
file), ant.project.name, ant.project.default-target.
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Property Files

« Can define static properties in a file.

* Allows reuse of build file in different environments
(development, testing, production).

* Allows easy lookup of property values.
« Called build.properties and stored in the same
directory as build script.

» Lists one property per line: <name> = <value>
e Comments can be added using # <comment>
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Property Files

* build.xml

<?xml version = "1.0"?>
<project name "Hello World Project" default = "info">
<property file = "build.properties"/>

<target name = "info">
<echo>You are at ${sitename}, version ${buildversion}.</echo>
</target>
</project>

* build.properties
# The Site Name

sitename = http://cse.sc.edu
buildversion = 3.3.2
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Conditions ° Property value determined by and/or.

And requires that each property is true.
« foo.txt and bar.txt must exist.

<target name = "myTarget" depends = ) )
"myTarget.check" if = « (available checks for file existence)
pyTarget.run’> ... </targety * Or requires that 1+ properties true.
<target name = "myTarget.check"> .
<condition property = « Calling myTarget.check creates property
"myTarget.run®> (myTarget.run), true if both files present.
<and:available file - «  When myTarget called, it will run only if
"foo.txt"/> myTarget.run is true.
<available file =
"bar.txt"/>
</and>
</condition>
</target>
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Ant Utilities

* Fileset generates list of files matching criteria for
iInclusion or exclusion.
* ™ means that the file can be in any subdirectory.
« * allows partial file name matches.

<fileset dir = "${src}" casesensitive = "yes">
<include name RE/* Java'/>

<exclude name = "**/*Stub*"/>
</fileset>
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Ant Utilities

e Path is used to represent a classpath.
« pathelement is used to add items or other paths to the path.

<path id = "build.classpath.jar">

<pathelement path = "${env.J2EE_HOME}/j2ee.jar"/>

<fileset dir = "1lib"> <include name = "**/* jar"/> </fileset>
</path>
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Building a Project

<project name = "Hello-World" basedir = "." default = "build">

<property name = "src.dir" value = "src"/>
<property name = "build.dir" value = "target"/>
<path id = "master-classpath">
<fileset dir = "${src.dir}/1ib"> <include name = "*.jar"/> </fileset>
<pathelement path = "${build.dir}"/>
</path>
</project>

* Properties src.dir and build.dir define where the source files
are stored and where the built classes are deployed.

« Path master-classpath includes all JAR files in the lib folder
and all files in the build.dir folder.
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Bmldlng a Project

<project name = "Hello-World" basedir = "." default = "build">
<target name = "clean" description = "Clean output directories">
<delete>
<fileset dir = "${build.dir}">
<include name = "**/*.class"/>
</fileset>
</delete>
</target>
</project>

* The clean target is used to prepare for the build process by
cleaning up any remnants of previous builds.
« In this case, it deletes all compiled files (.class)

« May also remove JAR files or other temporary artifacts that will be
regenerated by the build.
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Building a Project

<project name = "Hello-World" basedir = "." default = "build">
<target name = "build" description = "Compile source tree java files">
<mkdir dir = "${build.dir}"/>

<javac destdir = "${build.dir}" source = "1.8" target = "1.8">
<src path = "${src.dir}"/>
<classpath refid = "master-classpath"/>
</javac>
</target>

</project>

* The build target will create the build directory, compile the
source code (using javac), and place the class files in the
build directory.

« Can specify which java version to target (1.8).

« Must reference the classpath to use during compilation.
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Creating a JAR File

« The jar command creates executable from compiled classes.

<target name = "package">
<jar destfile = "lib/util.jar" basedir = "${build.dir}/classes™
includes = "app/util/**" excludes = "**/Test.class">
<manifest><attribute name = "Main-Class" value = "com.util.Util"/></manifest>
</jar>
</target>

» destfile is the location to place the JAR file.
« basedir is the base directory of included files.
* includes defines the files to include in the JAR.
« excludes prevents certain files from being added.
« The manifest declares metadata about the JAR.
« Attribute Main-Class makes the JAR executable.
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Running Unit Tests
* JUnit tests run using the junit command.

<target name = "test">
<junit haltonfailure = "true" haltonerror = "false"
printsummary = "true" timeout = "5000">
<test name = "com.utils.UtilsTest"/>
</junit>
</target>

* test entries list the test classes to execute.
* haltonfailure / haltonerror will stop execution if tests fail/errors occur.

e printsummary displays number of tests run, number of failures/errors,
time elapsed.

« timeout will stop and issue error if the time limit is exceeded.
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We Have Learned

* During system testing, we focus on interactions.
Test by calling methods or through an interface.

If thoroughly unit tested, failures due to interaction faults.
« Mistaken assumptions, malformed calls.

Tests can focus on one “high-level” function or model full
user journeys.
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We Have Learned

» Test automation can lower cost and improve the
quality of testing.
« Automation involves creating drivers, harnesses,

stubs, and oracles.
« Test cases written as executable code.
« Additional support code (mocking, interface manipulation,
wrappers for external dependencies) to enable testing.
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We Have Learned

« Testing is not all that can be automated.
* Project compilation, installation, deployment, etc.

* Project build automation:

* Automating the entire compilation, testing, and

deployment process.
« Antis an XML-based tool for automating build process.
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Next Time

* Exploratory Testing

* Exercise Session: Unit Testing
* (Follow instructions linked on Canvas to set up IDE)

* Assignment 2 due Feb 15.
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