
Lecture 7: System (Integration)
Testing and Test Automation

Gregory Gay
DIT636/DAT560 - February 9, 2026

Testing Stages
• We interact with systems

through interfaces.
• APIs, GUIs, CLIs

• Systems built from subsystems.
• With their own interfaces.

• Subsystems built from units.
• Communication via method calls.
• Set of methods is an interface.

2

API GUI CLI

API

API

Testing Stages
• System-level Testing

• Tests whole system or independent
subsystems through an interface.

• Integrates lower-level components
• (Subsystem-level) Does unit collaboration

work correctly?
• (System-level) Does subsystem

collaboration work correctly?

3

API GUI CLI

API

API

4

Unit vs System Testing
• Unit tests focus on a single class.

• Simple functionality, more freedom.
• Few method calls.

• System tests bring many classes together.
• Focus on testing through an interface.
• One interface call triggers many internal calls.

• Slower test execution.
• May have complex input and setup.

System Testing
• System components are

expected to interact.
• Usually this is planned!
• Sometimes unplanned

interactions break the system.
• We should select tests that

thoroughly test component
integrations.

5

6

Fire and Flood Control
• Fire Control activates

sprinklers when fire
detected.

• Flood Control cuts
water supply when
water detected on floor.

• Interaction means
building burns down.

7

WordPress Plug-Ins
• Weather and

emoji plug-ins
tested
independently.

• Their interaction
results in
unexpected
behavior.

8

Component Interactions

Interface Types
• Parameter Interfaces

• Data passed from through method parameters.
• Subsystem may have interface class that calls into

underlying classes.

• Procedural Interfaces
• Interface surfaces a set of functions that can be called by

other components or users (API, CLI, GUI).
• Integrates lower-level components and controls access.

9

Interface Types
• Shared Memory Interfaces

• A block of memory is shared between (sub)systems.
• Data placed by one (sub)system and retrieved by another.

• Common if system architected around data repository.

• Message-Passing Interfaces
• One (sub)system requests a service by passing a

message to another.
• A return message indicates the results.

• Common in parallel systems, client-server systems.
10

Interface Errors
• Interface Misuse

• Malformed data, order, number of parameters.

• Interface Misunderstanding
• Incorrect assumptions made about called component.
• A binary search called with an unordered array.

• Timing Errors
• Producer of data and consumer of data access data in

the wrong order.

11

12

How to Write System Tests
• As before: choices, representative values, etc.
• If targeting internal code, unit tests can call

methods from multiple classes.
• If targeting a dedicated interface:

• Postman (REST)
• Selenium (web browser)
• Bash or Powershell scripts (command line)
• Espresso (Android)

13

Differences from Unit Testing
• Test design is more “conceptual”.

• Based on high-level functionality, not directly traced to
low-level code elements.

• Choices may be tied to multiple code classes.

• Dependencies outside of codebase.
• May need wrapper code for external dependencies to

invoke in test cases that invoke internal code.

• More complex setup and teardown.

14

System Testing and Requirements
• Tests can be written early in the project.

• Can create tests using the requirements.
• Does not require a detailed design.

• Creating tests supports requirement refinement.
• Tests can be made concrete once code is built.

15

Example: Shopping
• Final price of each item

is calculated as:
• (price * quantity)

• Delivery costs:
• 1-3: $5
• 4-10: $12.5
• 10+: $20
• If an item is from

electronics category,
$7.5 extra.

Delivery
Price

Electronics
Charge

Final
Price

Calculator

Shopping
Cart

Price For
Items

16

Example: Shopping
• ShoppingCart, “Price

Rules” can be tested
during unit testing.

• FinalPriceCalculator
could be unit tested,
but…
• Should be target of

integration testing.

Delivery
Price

Electronics
Charge

Final
Price

Calculator

Shopping
Cart

Price For
Items

17

Example: Shopping
• Choice: Shopping cart

• Empty, 1, 2+ items
• Choice: Per-item quantities

• 1, 2+
• Choice: Total quantity

• 1-3 items, 4-10, 10+
• Choice: Electronics

• Yes, no

Delivery
Price

Electronics
Charge

Final
Price

Calculator

Shopping
Cart

Price For
Items

18

User Journeys
• A “business facing” test, designed to simulate a

typical user’s journey through the system.
• A user’s entire interaction with a system to achieve some

goal - one path in a use case.
• Invokes multiple functions in one test.

• Typical in late stages of system, exploratory testing.
• Also used to demonstrate system to stakeholders.

19

Example: Advertising
• Use case: a user wants to create

an event and invite appropriate
members to it.

• One test case:
• Create an event.
• Sort the list of members, filtering by

location, age, and gender.
• Send a message to those users with

an invitation to the event.

Message Board
● Events

○ Create
○ Edit
○ Delete

● Get Members
○ Filters

● Messages
○ Compose

Message

20

Example: Advertising
• Set up database of members.
• Log in.
• Create an event.
• Sort the list of members, filtering by location, age, and gender.
• Send a message to those users with an invitation to the event.
• Check correctness of each step.
• Reset database contents.

21

Best Practices
• Implement separate, reusable setup and teardown.

• Pre-testing setup run before executing the first test.
• Restore to this state in teardown of each test.

• Setup run before each test case with a common setup.
• Simplifies each test case.
• Easier to maintain.

22

Best Practices
• Run each test in a clean environment.

• Resetting database or internal memory.
• Logging out of accounts.
• Stopping and restarting system.

• Balance risk against cost of a full restart.
• Can implement a “reset” function in test code.

• Do not leave in production system.

23

Test Automation

Executing Tests
• How do you run test cases on the program?

• System level: could run code and check results by hand.
• Limit how often you do this.

• Humans are slow, expensive, and error-prone.
• Exception - exploratory and acceptance testing.

• Test design requires effort and creativity.
• Test execution should not.

24

Test Automation
• Development of software to separate repetitive

tasks from creative aspects of testing.
• Control over how and when tests are executed.

• Control environment and preconditions/setup.
• Automatic comparison of predicted and actual output.
• Automatic hands-free re-execution of tests.

25

Testing Requires Writing Code
• The component to be tested must be isolated and
driven using method or interface calls.

• Untested dependencies must be mocked with
reliable substitutions.

• The deployment environment must be simulated by
a controllable harness.

26

Test Scaffolding
• Test scaffolding is a set of programs written to

support test automation.
• Not part of the product, often temporary

• Allows for:
• Testing before all components complete.
• Testing independent components.
• Control over testing environment.

27

Test Scaffolding

● Initializes objects
● Initializes parameter variables
● Performs the test
● Performs any necessary

cleanup steps.

● Simulates the execution environment.
● Can control network conditions,

environmental factors,
operating systems.

● Templates that provide functionality
and allow testing in isolation

● Checks the correspondence between the produced and
expected output and renders a test verdict.

28

Scaffolding
• Mock objects and drivers are written as

replacements for other parts of the system.
• May be required if pieces of the system do not exist.

• Scaffolding allows control over test execution and
greater observability to judge test results.
• Simulate dependencies and test components in isolation.
• Ability to set up specialized testing scenarios.
• Ability to replace part of the program with a version more

suited to testing.

29

Unit Testing - Object Mocking
Unit may depend on unfinished (or
untested) components. Can mock
those components.

• Same interface as real component,
but hand-created simulation.

• Can be used to simulate abnormal
operation or rare events.

• Ex. Place exact data in database
needed to hit special outcome.

WeatherData

temperature
windSpeed
windDirection
pressure
lastReadingTime

collect()
summarize(time)

Thermometer

ther_identifier
temperature

get()
shutdown()
restart()Mock_Thermometer

ther_identifier
temperature

get()
shutdown()
restart()

get(){
return 98;

}

30

Mocking Example
• Declare a mock object:

LinkedList mList = mock(LinkedList.class);

• Specify method behavior:
when(mList.get(0)).thenReturn(“first”);

• Returns “first”: mList.get(0);
• Returns null: mList.get(99);

• Because behavior for “99” is not specified.
when(mList.get(anyInt()).thenReturn(“element”);

• mList.get(0), mList.get(99) both return
“element”, as all input are specified.

31

Mocking Within a Test
@test

public void temperatureTest(){

 Thermometer mockTherm = mock(Thermometer.class);

 when(mockTherm.get()).thenReturn(98);

 WeatherData wData = new WeatherData();

 wData.collect(mockTherm);

 assertEquals(98, wData.temperature);

}

32

33

Let’s take a break.

34

Build Systems

Build Systems
• Building, running tests, packaging and distributing

are very common, effort-intensive tasks.
• Building and deploying should be as easy as possible.

• Build systems ease process by automating as
much as possible.
• Repetitive tasks can be automated and run at-will.

35

Build Systems
• Allow control over code compilation, test execution,

executable packaging, and deployment.
• Script defines actions that can be automatically

invoked at any time.
• Many frameworks for build scripting.

• Most popular for Java: Ant, Maven, Gradle.
• Gradle very common for Android projects.

36

Build Lifecycle

• Validate the project is correct and all necessary information
is available

• Compile the source code of the project.
• Test the source code using a suitable unit testing framework.

• Unit tests and subsystem integration tests.
• Take the compiled code and package it in its distributable

format, such as a JAR.

37

Validate Compile Test Package Verify Install Deploy

Build Lifecycle

• Verify - run system tests.
• System tests require a packaged executable.
• This is also when tests of non-functional criteria like

performance are executed.

• Install the package for use as a dependency in
other projects locally.

• Deploy the package to production environment.

38

Validate Compile Test Package Verify Install Deploy

Apache Ant
• Simple build system for Java.
• Build scripts define targets that can be executed on

command.
• Correspond to lifecycle phases or other automated tasks.
• Targets can trigger other targets.
• Build scripts written in XML.

• Platform neutral, But can invoke platform-specific commands.
• Human and machine readable.
• Created automatically by many IDEs (Eclipse).

39

A Basic Build Script

• File typically named build.xml, and placed in the base
directory of the project.

• Build script requires project element and at least one target.
• Project defines a name and a default target.
• This target prints project information.

• Echo prints information to the terminal.
40

<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
 <target name = "info">
 <echo>Hello World - Welcome to Apache Ant!</echo>
 </target>
</project>

Targets

• A target is a collection of tasks you want to run in a
single unit.
• Targets can depend on other targets.
• Dependencies denoted using the depends attribute.

• deploy will call package, which will call clean and compile.

41

<target name = "deploy" depends = "package"> </target>
<target name = "package" depends = "clean,compile"> </target>
<target name = "clean" > </target>
<target name = "compile" > </target>

Targets

• Target attributes:
• name defines the name of the target (required)
• depends lists dependencies of the target.
• description is used to describe the target.
• if and unless allow execution of the target to depend on

a conditional attribute.
• Execute target if attribute is true, or execute unless true.

42

<target name = "deploy" depends = "package"> </target>
<target name = "package" depends = "clean,compile"> </target>
<target name = "clean" > </target>
<target name = "compile" > </target>

Executing targets

• In the command line, invoke:
• ant <target name>

• If no target is supplied, the default will be executed.
• In this case, ant and ant info give same result because

info is default target.

43

<?xml version = "1.0"?>

<project name = "Hello World Project" default = "info">
 <target name = "info">
 <echo>Hello World - Welcome to Apache Ant!</echo>
 </target>
</project>

>> ant

Buildfile: build.xml

info: [echo] Hello World - Welcome to Apache

Ant!

BUILD SUCCESSFUL

Total time: 0 seconds

Properties
• XML does not natively allow variable declaration.

• Instead, create property elements, which can be referred
to by name.

<?xml version = "1.0"?>

<project name = "Hello World Project" default = "info">
 <property name = "sitename" value = "http://cse.sc.edu"/>
 <target name = "info">
 <echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
 </target>
</project>

44

Properties
<?xml version = "1.0"?>

<project name = "Hello World Project" default = "info">
 <property name = "sitename" value = "http://cse.sc.edu"/>
 <target name = "info">
 <echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
 </target>
</project>

• Properties have a name and a value.
• Property value is referred to as ${property name}.
• Ant pre-defines ant.version, ant.file (location of the build

file), ant.project.name, ant.project.default-target.

45

Property Files
• Can define static properties in a file.

• Allows reuse of build file in different environments
(development, testing, production).

• Allows easy lookup of property values.
• Called build.properties and stored in the same

directory as build script.
• Lists one property per line: <name> = <value>
• Comments can be added using # <comment>

46

Property Files
• build.xml
<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
 <property file = "build.properties"/>
 <target name = "info">
 <echo>You are at ${sitename}, version ${buildversion}.</echo>
 </target>
</project>

• build.properties
The Site Name

sitename = http://cse.sc.edu

buildversion = 3.3.2

47

Conditions • Property value determined by and/or.
• And requires that each property is true.

• foo.txt and bar.txt must exist.
• (available checks for file existence)

• Or requires that 1+ properties true.
• Calling myTarget.check creates property

(myTarget.run), true if both files present.
• When myTarget called, it will run only if

myTarget.run is true.

48

<target name = "myTarget" depends =

"myTarget.check" if =
"myTarget.run"> </target>
<target name = "myTarget.check">
 <condition property =
"myTarget.run">
 <and>
 <available file =
"foo.txt"/>
 <available file =
"bar.txt"/>
 </and>
 </condition>
</target>

Ant Utilities
• Fileset generates list of files matching criteria for

inclusion or exclusion.
• ** means that the file can be in any subdirectory.
• * allows partial file name matches.

<fileset dir = "${src}" casesensitive = "yes">
 <include name = "**/*.java"/>
 <exclude name = "**/*Stub*"/>
</fileset>

49

Ant Utilities

• Path is used to represent a classpath.
• pathelement is used to add items or other paths to the path.

<path id = "build.classpath.jar">
 <pathelement path = "${env.J2EE_HOME}/j2ee.jar"/>
 <fileset dir = "lib"> <include name = "**/*.jar"/> </fileset>
</path>

50

Building a Project
<project name = "Hello-World" basedir = "." default = "build">
 <property name = "src.dir" value = "src"/>
 <property name = "build.dir" value = "target"/>
 <path id = "master-classpath">
 <fileset dir = "${src.dir}/lib"> <include name = "*.jar"/> </fileset>
 <pathelement path = "${build.dir}"/>
 </path>
</project>

• Properties src.dir and build.dir define where the source files
are stored and where the built classes are deployed.

• Path master-classpath includes all JAR files in the lib folder
and all files in the build.dir folder.

51

Building a Project
<project name = "Hello-World" basedir = "." default = "build">

 <target name = "clean" description = "Clean output directories">
 <delete>
 <fileset dir = "${build.dir}">
 <include name = "**/*.class"/>
 </fileset>
 </delete>
 </target>
</project>

• The clean target is used to prepare for the build process by
cleaning up any remnants of previous builds.

• In this case, it deletes all compiled files (.class)
• May also remove JAR files or other temporary artifacts that will be

regenerated by the build.
52

Building a Project
<project name = "Hello-World" basedir = "." default = "build">

 <target name = "build" description = "Compile source tree java files">
 <mkdir dir = "${build.dir}"/>
 <javac destdir = "${build.dir}" source = "1.8" target = "1.8">
 <src path = "${src.dir}"/>
 <classpath refid = "master-classpath"/>
 </javac>
 </target>

</project>

• The build target will create the build directory, compile the
source code (using javac), and place the class files in the
build directory.

• Can specify which java version to target (1.8).
• Must reference the classpath to use during compilation.

53

Creating a JAR File
• The jar command creates executable from compiled classes.

<target name = "package">
 <jar destfile = "lib/util.jar" basedir = "${build.dir}/classes"
 includes = "app/util/**" excludes = "**/Test.class">
 <manifest><attribute name = "Main-Class" value = "com.util.Util"/></manifest>
</jar>
</target>

• destfile is the location to place the JAR file.
• basedir is the base directory of included files.
• includes defines the files to include in the JAR.
• excludes prevents certain files from being added.
• The manifest declares metadata about the JAR.

• Attribute Main-Class makes the JAR executable.
54

Running Unit Tests
• JUnit tests run using the junit command.
<target name = "test">

 <junit haltonfailure = "true" haltonerror = "false"
 printsummary = "true" timeout = "5000">
 <test name = "com.utils.UtilsTest"/>
 </junit>
</target>

• test entries list the test classes to execute.
• haltonfailure / haltonerror will stop execution if tests fail/errors occur.
• printsummary displays number of tests run, number of failures/errors,

time elapsed.
• timeout will stop and issue error if the time limit is exceeded.

55

56

We Have Learned
• During system testing, we focus on interactions.

• Test by calling methods or through an interface.
• If thoroughly unit tested, failures due to interaction faults.

• Mistaken assumptions, malformed calls.
• Tests can focus on one “high-level” function or model full

user journeys.

We Have Learned
• Test automation can lower cost and improve the

quality of testing.
• Automation involves creating drivers, harnesses,

stubs, and oracles.
• Test cases written as executable code.
• Additional support code (mocking, interface manipulation,

wrappers for external dependencies) to enable testing.

57

We Have Learned
• Testing is not all that can be automated.

• Project compilation, installation, deployment, etc.
• Project build automation:

• Automating the entire compilation, testing, and
deployment process.

• Ant is an XML-based tool for automating build process.

58

59

Next Time
• Exploratory Testing
• Exercise Session: Unit Testing

• (Follow instructions linked on Canvas to set up IDE)

• Assignment 2 due Feb 15.

