CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Lecture 9: Test Adequacy and S Wl /
Structural Testing g A

Gregory Gay
DIT636/DAT560 - February 16, 2026 °* '

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Will Cover

« Test Adequacy Criteria

« Structural Testing:

« Use structural coverage to judge tests, create new tests.
« Statement, Branch, Condition, Path Coverage

Every developer must answer:
Are our tests are any good?

More importantly... Are they good
enough to stop writing new tests?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Have We Done a Good Job?

. November 2020
What we want _ November2020 _
« We've found all the faults. O I o
What we (usually) get: i

* We compiled and it worked.

* We run out of time or budget.
* (Inadequate testing).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Adequacy Criteria

Can we compromise between
the impossible and the inadequate?

* Measure “good testing”

* Test adequacy criteria “score” tests by measuring
completion of test obligations.
« Checklists of properties that must be met by test cases.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

(In)Adequacy Criteria

 Criteria identify inadequacies in the tests.

* |f no test reaches a statement, test suite is inadequate for
finding faults in that statement.

 |If we plant a fake fault and no test exposes it, our tests
are inadequate at detecting that fault.

» Tests may still miss faults, but maximizing criteria
shows that tests at least meet certain goals.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Adequacy Criteria

* Adequacy Criteria based on coverage of factors
correlated to finding faults (hopefully).
« Exercising elements of source code (structural testing).
« Detection of planted faults (mutation testing)

* Widely used in industry - easy to understand, cheap
to calculate, offer a checklist.
« Enable tracking of “testing completion”
 Can be measured in IDEs.

CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

Use of Criteria Test Inputs
- :
« Measure adequacy of existing tests
« Create additional tests to cover missed —;‘:—
obligations. ¥
« Create tests directly M
« Choose specific obligations, create l
tests to cover those. Uncovered
» Targets for automated test generation. G°:"S
New Test
Inputs

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Structural Testing

CHALMERS |) UNIVERSITY OF GOTHENBURG

Structural Testing

* The structure of software is
valuable information.

* Prescribe how code elements
should be executed, and measure

coverage of execution.
» |f-statements, Boolean expressions,
loops, switches, paths between
statements...

int[] flipSome(int[] A, int N, int X)

{

int i=0;
while (i<N and A[i] < X)
{
if (A[i] < @)
A[i] = - A[i];
i++;
}

return A;

The basic idea:

You can’t find all of the
faults without exercising all
of the code.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Structural Testing - Motivation

* Requirements-based tests should execute most
code, but will rarely execute all of it.
« Helper functions.
« Error-handling code.
* Requirements missing outcomes.

« Covers gaps left by functional testing.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Harder to make verification argument.
« May not map directly to requirements.

Does not expose missing functionality.

Useful for supplementing functional tests.
« Functional tests good at exposing conceptual faults.
« Structural tests good at exposing coding mistakes.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Control and Data Flow

 We need to understand how system executes.

« (Conditional statements result in branches in execution,
jumping between blocks of code.

« Control flow: how control passes through code.
» Which code is executed, and when.

« Data flow: how data passes through code.
« How variables are used in different expressions.

{81)) UNIVERSITY OF GOTHENBURG

Control-Flow Graphs

« Directed graph representing
flow of control.
* Nodes represent blocks of
sequential statements.
« Edges connect nodes in the
sequence they are executed.
« Multiple edges indicate
conditional statements. | return(1) '

;{," 4 T & T “"’&
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Control Flow: If-then-else

if (x==1) {
y=45;

} else {
y=23456;

}

/* continue */

aounnph wWNR

} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Loop

1
2
3
4

while (1 < x) {
X--5

}

/* continue */

’ J} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

¥z

Case

switch (test) {
case 1 :
case 2 : ...
case 3 :

}

/* continue */

o phwWNDbNERER

{8%)) UNIVERSITY OF GOTHENBURG

Basic Blocks

Node contains a “basic block”.

» Set of sequential instructions
with one entry and exit.

* One line of code might be
broken up into instructions

(e.g., loop setup is really three
instructions).

for(int i=0; i < 10; i++){
sum += 1i;

}

CHALMERS UNIVERSITY OF GOTHENBURG

NIVERSITY OF TECHNOLOGY

Control Flow Graph Example

. public static String collapseNewlines(String argSt){
char last = argStr.charAt(e);
StringBuffer argBuf = new StringBuffer();

char ch = argStr.charAt(cldx);

1
2
3
4.,
5. for(int cldx = @; cldx < argStr.length(); cldx++){
6
7 if (ch !'= “\n’ || last != “\n’){

8

9

argBuf.append(ch);
. last = ch;
10. {
11. }
12,
13. return argBuf.toString();
14. }

1-3

l

int cldx = 0;

cldx <
argStr.length();

8-9

4

cldx++;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Structural Coverage Criteria

 Criteria based on exercising:

« Statements (nodes of CFG)
« Branches (edges of CFG)

« Conditions

« Paths

... and many more

 Measurements used as adequacy criteria

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Statement Coverage

« Most intuitive criteria. Did we execute every
statement at least once?
e Cover each node of the CFG.

« The idea: a fault in a statement cannot be revealed
unless we execute the statement.

« Coverage = Number of Statements Covered
Number of Total Statements

{8%)) UNIVERSITY OF GOTHENBURG

Statement Coverage

int[] flipSome(int[] A, int N, int X)

{

if (A[i] < 0) False

{
int i=0; ‘\
while (i<N and A[i] <X)

True

~ A[i] = - A[i]; y True
Yoo Alll = - ALIL
return A; return A ¥
} > j++

Can cover in one test: [-1], 1, 10

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

A Note on Test Suite Size

« Coverage not correlated to test suite size.
« Some tests might not cover new code.

 However, larger suites often find more faults.
* They exercise the code more thoroughly.

 How code is executed often more important than
whether it was executed.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Suite Size

 Design small targeted tests, not long tests.
 |If test targets few obligations, it is easier to debug.

 |f a test covers many obligations, harder to understand
the purpose, harder to locate and fix faults.

« EXxception - if cost to execute each test is high.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Branch Coverage

* Do tests execute all outcomes of control-diverging
statements (loop, if, switch)?
e Cover each edge of the CFG.

» Helps identify faults in determining which block is
executed next.

« Coverage = Number of Branches Covered

Number of Total Branches

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Subsumption

* Criterion A subsumes Criterion B if, for every

program P, every test suite satisfying A also
satisfies B on P.

* If we satisfy A, we have satisfied B.

* Branch coverage subsumes statement coverage.
« Covering all edges in CFG requires covering all nodes.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Subsumption

« Shouldn’t we always choose the stronger metric?

* Not always...
» Typically requires more obligations.
* (so0, you have to come up with more tests)

« Or tougher obligations.
« (making it harder to come up with the tests).

 May end up with unsatisfiable obligations.
« (no test can cover these obligations)

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Branch Coverage]

int[] flipSome(int[] A, int N, int X)
{ h
int i=0;
while (i<N and A[i] <X) r

{
if (A[i] < @)
A[i] = - A[i]; True
i++; False S — _ ATiT-
} Al = - Al
return A; return A ¥
} ®] j++

e ([-1], 1, 10) leaves one edge uncovered.
e ([-1,1], 2, 10) achieves Branch Coverage.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Decisions and Conditions

A decision is a Boolean expression.
« Often part of control-flow branching:
e if ((a & b) || !'c) { ...
« But not always:
e Boolean x = ((a & b) || !'c);

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Decisions and Conditions

A decision is a Boolean expression.

 Made up of conditions
« Connected with Boolean operators (and, or, xor, not):
 Boolean variables: Boolean b = false;
« Subexpressions that evaluate to true/false involving (<, >, <=, >=,
==,and !=): Boolean x = (y < 12);

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Decision Coverage

* Branch Coverage covers a subset of decisions.

« Branching decisions that decide how control is routed
through the program.

* Decision coverage requires that all decisions
evaluate to all outcomes.

* Coverage = Number of Decisions Covered
Number of Total Decisions

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Basic Condition Coverage

Several coverage metrics examine the individual
conditions that make up a decision.

|dentify faults in decision statements, e.g.:
(a==11]| b==-1) shouldbe (a == -1 || b == -1)

Most basic form: make each condition T/F.

Coverage = Number of Truth Values for All Conditions
2x Number of Conditions

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Basic Condition Coverage

« Make each condition both True and False

Test Case A B
(A and B) | True False
2 False True

* Does not require covering both outcomes.

* Does not subsume branch or decision coverage.
* (In this case, false outcome for both tests)

UNIVERSITY OF GOTHENBURG

int[] flipSome(int[] A, int N, int X)

{
int i=0;
while (i<N and A[i] <X)
{
if (A[i] < @)
A[i] = - A[i];
14+; False i1 = . A[il:
} Ali] = - All;
return A; return A L
} > j++

o ([-1,1],2,10)

O Negative value in array
o Positive value (but < X)

e ([11],1,10)
o Positive, but > X
e Both eventually cause i < N to be false.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Compound Condition Coverage

« Evaluate every combination of the conditions

(A and B)

Test Case A B
1 True True
2 True False
3 False True
4 False False

« Subsumes branch and decision coverage.

* All outcomes are now tried.

« Can be expensive in practice.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Compound Condition Coverage

 Requires many test cases.

Test Case B C D
1 True True True True
2 True True True False
3 True True False True
(A a n d 4 True True False False
5 True False True True
6 True False True False
(B a n d 7 True False False True
8 True False False False
9 False True True True
(C a n d 10 False True True False
11 False True False True
12 False True False False
D 13 False False True True
14 False False True False
15 False False False True
16 False False False False

48) CHALMERS |

Short-Circuit Evaluation

* In many languages, if the first condition determines
the result of the entire decision, then fewer tests are

required.
If A is false, B is never evaluated.

(A and B)

(&%) UNIVERSITY OF GOTHENBURG

Test Case A B
1 True True
2 True False
3 False

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Modified Condition/Decision Coverage(MC/DC)

* Requires:
 Each condition evaluates to true/false
« Each decision evaluates to true/false
« Each condition shown to independently affect outcome
of each decision it appears in.

Test Case A B (A and B)
1 True
° Tests 1, 3 show independent impact of A.
2 False e Tests 1, 2 show independent impact of B.
° Test 4 adds nothing and can be skipped.
3 rue False
4 —Lalco Ealse lialse

) UNIVERSITY OF GOTHENBURG

Activity

Draw the CFG and write tests that provide statement, branch,
and basic condition coverage over the following code:

public int search(String[] A, String what){
int index = 0;
if ((A.length == 1) && (A[@] == what)){
return 0;
} else if (A.length == 0){
return -1;
} else if (A.length > 1){
while(index < A.length){
if (A[index] == what){
return index;
} else
index++;
}

}
}

return -1;

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Activity - Control Flow Graph

index=0

False
A.length

>1

(A.length ==1)
&& (A[0] = what)

return -1;

False Fal

return -1;

True False

return 0;

index++;

True return index;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity - Possible Solution

index=0

N

‘%\‘A

my

True
True

|
return 0; return -1;

1: [“Bob”, “Jane”], “Jane”
2: [“BOb”, “Jane”], “Spot”
3:[1, “Bob”

4. [“Bob”], “Bob”

5. [“Bob”], “Spot”

_eturn -1;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Loop Boundary Coverage

* Focus on problems related to loops.

* For each loop, write tests that:
« Skip the loop entirely.
« Take exactly one pass through the loop.
» Take two or more passes through the loop.

{8%)) UNIVERSITY OF GOTHENBURG

Nested Loops

« Often, loops are nested within other loops.
« For each level, execute 0, 1, 2+ times

* |n addition:

« Test innermost loop first with outer loops executed
minimum number of times.

« Move one loops out, keep the inner loop at “typical”
iteration numbers, and test this layer as you did the
previous layer.

« Continue until the outermost loop tested.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Concatenated Loops

* One loop executes. Next line of code starts a new
loop. These are generally independent.

v

- If not, follow a similar strategy to nested loops. g

« Start with bottom loop, hold higher loops at minimal iterations 5
§

« Work up towards the top, holding lower loops at “typical”
iteration numbers.

I
5 ‘\\\‘/’7‘
: /\\ k\/

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Why These Loop Strategies?

 If proving correctness, we establish preconditions,
postconditions, and invariants that are true on each

execution of loop.
* The loop executes zero times when the postconditions
are true in advance.

* The loop invariant is true on loop entry (one), then each
loop iteration maintains the invariant (many).
« (invariant and !(loop condition) implies postconditions are met)

* Loop testing strategies echo these cases.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity: Binary Search
For the binary-search code:
1. Draw the control-flow graph for the method.

2. Develop a test suite that achieves loop boundary
coverage (executes while loop 0, 1, 2+ times).

{81)) UNIVERSITY OF GOTHENBURG

Activity: Binary Search

5 Tests that execute the loop:

e Otimes key=1,T=[1]

e 1time key=2,T=[1, 2]

o 2+times key=3,T=][1,2 3]

21

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Infeasibility Problem

Sometimes, no test can satisfy an obligation.

* Impossible combinations of conditions.

* Error-handling for problems that can’t really occur.
 Dead code.

%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

The Infeasibility Problem

« Stronger criteria call for potentially infeasible
combinations of elements.

(a > 0 && a < 10)

 |tis not possible for both conditions to be false.
* A would negative and greater than 10

* Loop boundary coverage
« Maybe a loop can’t be skipped.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Infeasibility Problem

« Adequacy “scores” based on coverage.
* 95% branch coverage, 80% MC/DC coverage, etc.
« Stop once a threshold is reached.
« Unsatisfactory - obligations are not equally important.

« Manual justification for omitting each impossible
test obligation.
* Helps refine code and testing efforts.
* ... but very time-consuming.

Power,
Cost

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* Test adequacy “measures” how good our tests are.
« Covering obligations removes inadequacies from suites.

* Code structure is used in many adequacy criteria.
« Based on statements, branches, conditions, loops, etc.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

* Next class: Path-based coverage and data-flow
 Wednesday, 15:15-17:00

« Exercise Session: Structural Coverage
« TODAY, 13:15-15:00

« Homework - Assignment 3 due March 1st.

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

