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ABSTRACT 
As a standard practice, general effort estimate models are 
calibrated from large cross-company datasets. However, many of 
the records within such datasets are taken from companies that 
have calibrated the model to match their own local practices. 
Locally calibrated models are a double-edged sword; they often 
improve estimate accuracy for that particular organization, but 
they also encourage the growth of local biases. Such biases 
remain present when projects from that firm are used in a new 
cross-company dataset. Over time, such biases compound, and the 
reliability and accuracy of a general model derived from the data 
will be affected by the increased level of heterogeneity. In this 
paper, we propose a statistical measure of the exact level of 
heterogeneity of a cross-company dataset. In experimental tests, 
we measure the heterogeneity of two COCOMO-based datasets 
and demonstrate that one is more homogeneous than the other. 
Such a measure has potentially important implications for both 
model maintainers and model users. Furthermore, a heterogeneity 
measure can be used to inform users of the appropriate data 
handling techniques. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management – cost estimation, 
time estimation 

General Terms 
Economics, Experimentation, Management 

Keywords 
Heterogeneous datasets, software effort estimation, parameter 
comparison, estimation model calibration. 

1. INTRODUCTION 
Obtaining an accurate estimate of software effort is of great value 
for project managers as well as other stakeholders. Such an 
estimate can be used to appropriately arrange various activities of 
software development, as well as to allocate the suitable amount 
of resources to these activities. However, obtaining an estimate 
that is both accurate and reliable is a difficult task. To address this 
problem, many different software effort estimation methods have 
been proposed. These methods tend to fall into three categories: 
expert-based, analogy-based, and model-based estimation. 

Model-based estimation, as the name implies, makes use of a 
mathematical model, such as COCOMO [3, 4], to produce effort 
estimates. This approach is also known as parametric estimation, 
as there are several variable parameters within the model that must 
be determined before that model is used. Initially, the values of 

these parameters are often supplied by experts or the model’s 
designers. The software engineering industry changes rapidly, and 
regardless of the model’s accuracy, the parameters used to 
estimate projects from the previous decade are unlikely to remain 
relevant to modern projects. The regular re-calibration of model 
parameters, either through a series of new expert judgments or 
through the use of an Ordinary Least Squares (OLS)-based 
method, ensures the reliability of a model’s estimates. 

The calibration of the general COCOMO model has met with 
several problems, the most major of which is the existence of 
counter-intuitive – that is, negative – regression coefficients [4, 5, 
6, 7]. Such coefficients make little logical or practical sense; a 
higher level of programmer capability (PCAP) leads to a decrease 
in the calculated project effort, but a negative coefficient indicates 
that higher PCAP, unreasonably, increases the effort level. 

To adapt a general COCOMO model calibrated from a cross-
company dataset to the local environment of a particular firm, it is 
advised to locally-calibrate the general model, which involves 
tuning the two constants representing the overall productivity of 
the firm [4, 5]. While the local model often provides more 
accurate estimates for that company in the short term, its long-
term use can be harmful. If local calibration is highly effective for 
a company, it logically follows that this company’s practices 
differ from the mainstream (that is, the average practices that can 
be summarized from the general model) by some significant 
amount. In other words, firms that benefit from local calibration 
demonstrate a local bias. These firms may grow content with the 
accurate estimates provided by their local models, and will be 
unlikely to change their practices. Over time, even if their models 
still provide accurate estimates, they will grow more unreliable. 

We propose an approach to measuring the heterogeneity of 
COCOMO datasets by comparing the calibrated parameters of a 
cross-company dataset with a derived version of that dataset 
where the effort values have been replaced with those given by 
locally-calibrated models. This is because we believe that the 
heterogeneity is aggregated into the estimate given by each local 
model. By this comparison, we can calculate a measure of the 
heterogeneity of the original dataset. 

2. Related Work 
There is a large body of work on comparing software effort 
estimation models derived from within-company datasets with 
those derived from cross-company datasets. Kitchenham et al. [1] 
systematically reviewed 10 such papers with the aim of deter-
mining under what circumstances estimation models derived from 
cross-company datasets are as good as those derived from within-
company datasets. It was only certain that models derived from 



within-company datasets were significantly better (that is, more 
accurate) than models derived from cross-company datasets when 
the within-company datasets were small (less than 20 projects) 
and leave-one-out cross validation was used. 

Jeffery et al. [2] compared the accuracy of estimation models 
derived from the ISBSG repository (a cross-company dataset) 
with those derived from the dataset of an Australian company 
called Megatec (a within-company dataset). They found that the 
model derived from the within-company dataset was significantly 
more accurate than the model derived from the cross-company 
dataset. Several papers have supported this conclusion [8, 9], 
while others have rejected it (see [1] for a complete list). 

Rather than pure model comparison, some authors have focused 
on the preliminary analysis of datasets used to build an estimation 
model. Kitchenham [11] proposed a procedure for analyzing un-
balanced datasets, and helped to explain the difficult situation that 
happened when COCOMO II was initially calibrated [5]. Based 
on forward pass residual analysis, the procedure identifies really 
significant factors, and then produces a better model. Another 
paper by Liu et al. [10] proposed a rather generic framework for 
preliminary analysis of cost estimation dataset. Using this frame-
work, analyst can systematically remove outliers and identify 
dominant variables. 

In order to improve the accuracy of estimation models derived 
from datasets with heterogeneous sources (such as the ISBSG 
database), Cuadrado-Gallego et al. [12] proposed an automated 
segmentation process that splits a single parametric model into a 
number of sub-models. However, the segmentation of a general 
model will dramatically decrease the maintainability of the 
general model over time, and lead to the lack of a common basis 
for comparing estimates produced by different model variants. 

We focus on the task of measuring the pure level of heterogeneity 
in a cross-company dataset and what implications such hetero-
geneity has for the life cycle management of cost models. Instead 
of comparing estimation accuracy, we compare calibrated para-
meters and come to a specific measurement. 

3. RESEARCH METHOD 
3.1 Overview 
We first take the cross-company dataset, called the original 
dataset, and filter out any unusable within-company subsets (those 
with less than three projects are too small to make use of). Using 
the slightly smaller original dataset, we build a second, derived, 
dataset as follows: 

(1) The original dataset consists of several disjoint subsets, each 
consisting of records from a single organization. We derive 
a local model for each of those subsets through calibrating 
the A and B constants by the OLS method. 

(2) For each project contained in a within-company dataset, we 
calculate its effort estimate using the local model for the 
organization that contributes the project. 

(3) Copy the original dataset, replacing the recorded actual 
effort with the model’s estimate. The derived dataset differs 
from the original dataset only in effort values. 

These two datasets (the original and derived datasets) form the 
basis of the subsequent heterogeneity comparison. We then repeat 
the following three steps in sequence for both datasets. 

(1) Randomly select about 90% of projects from the dataset. 
(2) Calibrate the parameters of a general model from selected 

projects by the OLS method. 
(3) Save all of the calibrated parameters as a new element of a 

predefined array. Each element is a set of values for all 
calibrated parameters. 

After a specified number of trials, we fill two arrays of value-sets 
for all of the calibrated parameters (one array per dataset). From 
another perspective, there are two arrays of values for each 
calibrated parameter. We regard each array as a random sample of 
the same calibrated parameter. In other words, we actually take a 
pair of random samples for each calibrated parameter. By means 
of the statistical test defined in Section 3.4, we determine whether 
or not the difference of two means of a calibrated parameter is 
equal to zero. The p-value of the statistical test is used as an 
indicator of the difference. 

Finally, we count the number of calibrated parameters whose p-
values are relatively large, compared with others. We use the 
proportion of calibrated parameters with small p-values as a 
positive indicator of the degree of heterogeneity. This provides a 
quantitative measure of the heterogeneity of a cross-company 
dataset. The foregoing process is applied to both NASA and USC 
datasets. Since it has a parameter that specifies the times of 
repetition, this parameter’s value is varied in order to test its effect 
on the results of our measurement. 

3.2 Datasets 
We examine two datasets in this paper, and explore their varying 
degrees of heterogeneity. The first is the NASA93 dataset from 
the National Aeronautics and Space Administration (NASA). The 
other is a subset of the COCOMO II dataset from the University 
of Southern California (USC). Both datasets use a variant of the 
COCOMO software effort estimation model. Both contain effort 
multipliers and the two COCOMO constants as variable para-
meters, but the NASA dataset lacks scale factors. Readers are 
referred to Boehm [3] and Boehm et al [4] for detailed definitions 
of these effort multipliers and scale factors. 

The software size is measured in KSLOC (thousand of logical line 
of code), and the development effort is measured in PM (Person 
Month). Table 1 compares some statistics for the software size 
and development effort of these two datasets. In this table, we see 
that the NASA dataset has less variety than the USC dataset. 

Table 1 Software size and development effort of NASA and 
USC datasets 

NASA USC NASA USC

Mean 94.02 130.9 624.41 711.03

S.D. 133.6 236.23 1135.93 1519.3

Min 0.9 2.6 8.4 6

Max 980 1292.8 8211 11400

Software Size Development Effort

 

Projects of the NASA dataset are contributed by several centers 
that are geographically distributed across the United States, and 
we treat each center as an individual company. Similarly, projects 
of the USC dataset are contributed by many organizations, and we 
treat each organization as an individual company. Thus, we divide 



each dataset into several disjoint subsets whose projects are 
contributed by the same company. Each whole dataset is, by 
definition, a cross-company dataset, and each such subset of it 
forms a within-company dataset. 

3.3 Data Preparation 
In the local COCOMO model, there are only two calibrated 
parameters: A and B. In order to calibrate them by the OLS 
method from a within-company dataset, there must be no less than 
three projects in the dataset. As we need to build a local model for 
each within-company dataset, we have to exclude those within-
company datasets whose sizes are less than three. Applying this 
filter to NASA and USC datasets, we excluded one within-
company dataset from the former, and two within-company data-
sets from the latter. As a result, 91 projects of the NASA dataset 
are distributed among 4 within-company datasets, and 158 pro-
jects of the USC dataset are distributed among 14 within-company 
datasets. Within-company datasets range in size from 3 to 39 for 
the NASA dataset, and from 3 to 48 for the USC dataset. 

3.4 Statistical Test 
As a result of repeatedly calibrating parameters, each of these 
parameters has two arrays of values (see Section 3.1). One array is 
from the original dataset, and the other is from the derived dataset. 
Each array can be regarded as a random sample of the same 
calibrated parameter and each of its elements as an observation of 
the sample. Based on these observations, we can calculate the 
sample mean and sample variance for hypothesis testing. 

We do not directly test the null hypothesis that the difference 
between two means of a calibrated parameter is equal to zero. 
Instead, we calculate the p-value of such a test, which is defined 
by the following equations. 
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Where x  and y  are the two sample means of a calibrated 

parameter, 
2
1s  and 

2
2s  are the two sample variances of a cali-

brated parameter, n  is the number of observations in a sample, 

Z  is a random variable of standard normal distribution, and 

PDFZ  denotes the Probability Distribution Function of Z . 

Note that these two samples are of equal size, because we specify 
the same number of trials for both datasets. That is, the sample 
size equals the times of repetition. We do not use the common t-
test, because it assumes that two distributions have the same 
variance, but we observe that the two sample variances are quite 
different. In the equation for z , we replace the variances of the 
two distributions with the sample variances respectively, simply 
because the former is not available and the latter is a good 
approximation. For our hypothesis, a lower p-value implies that 

the two means of a calibrated parameter are more probably 
different from a statistical perspective. 

3.5 Measure of Heterogeneity 
For each of the calibrated parameters, we calculate the p-values of 
the statistical test defined in the previous subsection. There are 
some calibrated parameters whose p-values are relatively smaller 
than others. We count the number of these small p-values and 
calculate their proportion with regard to total number of calibrated 
parameters. This proportion is proposed as a positive indicator for 
the degree of heterogeneity of a cross-company dataset. The larger 
the proportion is, the greater the heterogeneity. 

s
Heterogeneity

n
=  

Where, s  denotes the number of calibrated parameters that has 
small p-values, and n  denotes the total number of calibrated 
parameters. 

Currently, we define a p-value as being small if it is less than 
0.025. The value is chosen because it is a common choice of 
significance level for hypothesis testing, and it acts as a clear 
boundary when the heterogeneity is calculated for the two cross-
company datasets used in this paper. 

4. RESULTS AND DISCUSSION 
Two cross-company datasets are used in this paper. One is the 
NASA dataset, and the other is the USC dataset. We apply the 
process summarized in Section 3.1 to each of these datasets three 
times, each time with a different value for the parameter that 
specifies how many calibration trials are conducted. Doing this, 
we can see how the p-value derived from statistical test varies 
with this parameter. 

Table 2 Calibrated parameters with large p-values 

Trials B VIRT MODP TEAM RUSE

36 0.5642 0.534 0.1477 0.1174 0.08853

48 0.5322 0.3397 0.1532 0.06147 0.1527

60 0.5247 0.4184 0.04999 0.02535 0.05405

NASA USC

 

Table 2 lists the exact number of p-value for the calibrated para-
meters with large p-values. For most of these calibrated para-
meters, their statistical tests reject the null hypothesis (that the 
difference between two means of a calibrated parameter is zero) at 
a significance level of 0.05. 

The USC dataset has a smaller proportion (2/25) of calibrated 
parameters with large p-values, compared with the NASA dataset 
(3/17). Therefore, the former has greater degree of heterogeneity 
than the latter. This result agrees with two characteristics of these 
two datasets. And these two characteristics help to explain why 
the USC dataset has a greater degree of heterogeneity than the 
NASA dataset. 

(1) The USC dataset has a greater degree of variety in the 
software size and development effort than the NASA dataset 
(see Table 1). These two attributes can substantially 
influence the values of calibrated parameters. 



(2) There are merely 4 within-company datasets in the NASA 
dataset, but 14 within-company datasets in the USC dataset. 
It is usually true that a cross-company dataset consisting of 
more within-company datasets has a greater degree of 
heterogeneity. 

However, these two intuitive characteristics cannot determine the 
degree of heterogeneity. Suppose a large cross-company dataset 
consists of many homogeneous within-company datasets, it can 
demonstrate great variety as long as all the within-company data-
sets demonstrate it, but little heterogeneity will be measured. 

Before calibrating a general estimation model such as COCOMO 
model, our method may be used to analyze the heterogeneity of 
the source dataset. Based on the results of analysis, a user can 
determine whether a cross-company dataset is appropriate for 
calibrating a general estimation model. In many cases, however, 
model users and maintainers alike are restricted to what data they 
have in their possession. If there is a high degree of heterogeneity 
in the dataset, it is inadvisable to use the data “as is.” Instead, one 
approach suggested by Cuadrado-Gallego et al. [12] could be 
used to form a segmented (composite) general model that consists 
of several sub-models, instead of using an overall (singleton) 
general model that consists of a single equation. However, this 
approach cannot be applied to COCOMO, because its definition 
strictly stipulates that a single equation should be used. 

An open research question is the exact definition of small p-value. 
We suggest that a relative approach should be adopted for 
determining the appropriate level for small p-value, because the 
appropriate level largely depends on the method used to calibrate 
the general estimation model. In this paper, we used the Ordinary 
Least Squares method and assigned a level of 0.025 to the small 
p-value. However, this is not universally appropriate - other 
methods may require different levels for small p-value.  

5. CONCLUSIONS 
In this paper, we propose a method that statistically compares the 
calibrated parameters of a general estimation model on the basis 
of a cross-company dataset. The results of this comparison can be 
used to calculate the heterogeneity of this cross-company dataset. 
We propose that the proportion of calibrated parameters with 
small p-values should be used as a positive indicator of the degree 
of heterogeneity. The larger the proportion is, the greater the 
heterogeneity. 

The ability to measure the heterogeneity of a dataset has important 
implications for both the maintainers of the general model and for 
the organizations that typically employ locally-biased models. By 
using more homogenous datasets, general models can be 
frequently re-calibrated with some expectation of reliability. This 
would ease the difficulty of maintaining such models and would 
help ensure that general models remain relevant to the frequently 
changing state of the software engineering field. A more 
homogenous general model, or even a method of determining the 
heterogeneity of the data that was used to calibrate the general 
model, could then create a feedback loop where an organization 
uses the more homogeneous general model to evolve their 
practices into proximity to the mainstream, which in turn would 
help further homogenize the general model. Furthermore, such a 
measure can be used to steer model users away from overtly 
heterogeneous datasets. Model users restricted to heterogeneous 

datasets can make more informed decisions about how to use their 
data. Rather than using it “as is,’ they may elect to use a data 
preprocessing technique to filter out some of the heterogeneity. 
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