Moving the Goalposts:
Coverage Satisfaction Is Not Enough’

Gregory Gay*, Matt Staats?, Michael W. Whalen*, and Mats P.E. Heimdahl*

*Department of Computer Science & Engineering

University of Minnesota, USA

greg@greggay.com,

[whalen,heimdahl]l@cs.umn.edu

ABSTRACT

Structural coverage criteria have been proposed to measure the ad-
equacy of testing efforts. Indeed, in some domains—e.g., criti-
cal systems areas—structural coverage criteria must be satisfied to
achieve certification. The advent of powerful search-based test gen-
eration tools has given us the ability to generate test inputs to satisfy
these structural coverage criteria. While tempting, recent empiri-
cal evidence indicates these tools should be used with caution, as
merely achieving high structural coverage is not necessarily indica-
tive of high fault detection ability. In this report, we review some
of these findings, and offer recommendations on how the strengths
of search-based test generation methods can alleviate these issues.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Verification

Keywords

Software Testing, Automated Test Generation, Structural Coverage

1. INTRODUCTION

Central to software test selection are structural coverage criteria,
which measure test suite adequacy in terms of coverage over the
structural elements of the system under test, such as statements or
control flow branches. These criteria are so trusted that they are
required for certification when testing avionics systems.

These adequacy metrics can be easily adapted as objective func-
tions for search-based optimization algorithms, and as a result, there
has been rapid progress in the creation of automated test generation
tools that direct the generation process to satisfy structural cover-
age criteria [1]. Such tools promise to improve coverage and reduce
the cost associated with test creation.

*This work has been supported by NASA Ames Cooperative
Agreement NNAO6CB21A, NSF grants CCF-0916583, CNS-
0931931, and CNS-1035715, and the Fonds National de la
Recherche, Luxembourg (FNR/P10/03).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SBST ’14, June 2 — June 3, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2852-4/14/06 ...$15.00.

iInterdisciplinary Centre for

Security, Reliability and Trust
University of Luxembourg
matthew.staats@uni.lu

In principle, this represents a success for software engineering—
an arduous engineering task has been automated. However, in actu-
ality, the effectiveness of test suites automatically generated to sat-
isfy various structural coverage criteria has not been firmly estab-
lished in practice. Of crucial importance is the method of test gener-
ation: while evidence establishing that coverage is positively corre-
lated with fault detection, such evidence typically holds the method
of test generation fixed, e.g., demonstrating that using structural
coverage to guide random test generation provides better tests than
purely random tests [13]. Consequently, much of the work in test
generation (search-based and otherwise) fails to address the effec-
tiveness of the generated tests, and the studies that have examined
this issue have returned mixed results [7, 5, 3].

In recent work, we have examined the effectiveness of automated
test generation in depth and found that test inputs generated specif-
ically to satisfy structural coverage criteria via counterexample-
based test generation were typically less effective than randomly
generated test inputs [13]. These results are disconcerting—given
the central role of coverage criteria in testing research and practice,
and the rise of automated tools that can provide such coverage, the
temptation exists to automate the entire testing process. Our re-
sults indicate that it is not sufficient to simply maximize the level
of code coverage when generating tests. Recent research suggests
that a number of factors that are currently not well understood can
strongly impact the effectiveness of the testing process, such as the
oracle used or the structure of the program under test [16].

These findings lead us to the conclusion that code coverage is
merely one factor in the broader objective of generating effective
test input. Search-based test generation algorithms must evolve to
take into account additional factors such as fault propagation, sys-
tem structure, and the execution points monitored by the test oracle.
In this report, we discuss our findings and make recommendations
on the next generation of search-based test-generation approaches.

2. THE CENTRAL QUESTION

Advances in search-based test generation should be celebrated;
however, we seek evidence that using such generation techniques to
maximize structural coverage yields test suites that are more effec-
tive at fault detection than naive generation methods such as ran-
dom testing. That is, are tests automatically generated to achieve
coverage actually useful for finding faults in the system under test?

Empirical studies comparing structural coverage criteria have
mixed results. Juristo et al. provide a survey of much of the existing
work [8]. With respect to branch coverage, they note that some au-
thors (such as Hutchins et al. [7]) find that branch coverage outper-
forms random testing, while others (such as Frankl and Weiss [5])
discover the opposite. Namin and Andrews have found coverage
levels are positively correlated with fault finding effectiveness [11].

100 F T T T T ™

0l 8 /—/’/,

80 | o 4

Fault Finding (%)
o
2
T

60 /4 — Random tests M

+ Branch via generation
0§ e o Branchviarandom ||
.
0 100 200 300 400 500

Test Suite Size (in Steps)

(a) Branch

100 FT T T T T ™

Fault Finding (%)

60 — Random tests I
+ Condition via generation

® e Condition via random
T T

L L L
0 100 200 300 400 500
Test Suite Size (in Steps)

(b) Condition

100 F

90 |

80 |

70 |

Fault Finding (%)

60 | — Random tests I
+ MCDC via generation
® ¢ MCDC via random
T

L L T
0 100 200 300 100 500
Test Suite Size (in Steps)

(c) MC/DC

Figure 1: Percentage of faults identified compared to test suite
size for generated test suites, coverage-satisfying subsets of ran-
domly generated tests, and pure random test generation.

Theoretical work comparing the effectiveness of partition testing
against random testing yields similarly mixed results. Chen and Yu
indicate that partition testing is not necessarily more effective than
random testing [3]. Later theoretical work by Gutjahr [6], however,
provides a stronger case for partition testing. Kandl and Kirner
evaluate MC/DC using an example from the automotive domain
and note less than ideal fault finding [9]. Dupuy and Leveson eval-
uate the MC/DC as a complement to functional testing, finding that
the use of MC/DC improves the quality of tests [4]. None of these
studies, however, compare the effectiveness of test generation to
satisty MC/DC to other forms of test generation. They, therefore,
do not indicate if test suites satisfying MC/DC are truly effective,
or if they are effective merely because MC/DC test suites are gener-
ally quite large. Arcuri et al. [2] recently demonstrated that in many
scenarios, random testing is more predictable and cost-effective at
reaching high levels of structural coverage than previously thought.

Most studies concerning automated test generation for structural
coverage maximization are focused on how to generate tests quickly
or on improving coverage [1]. Comparisons of the fault finding ef-
fectiveness of the resulting test suites against other methods of test
generation are few. Those that exist apart are largely, to the best of
our knowledge, studies in concolic execution [12]—a combination
of random testing with symbolic execution.

Recently, we have conducted a large-scale case study to evaluate
the effectiveness of test suites generated to to satisfy branch and
MC/DC coverage using counterexample-based test generation and
a random generation approach, contrasted against purely random
test suites of equal size [13]. Our results yielded two key conclu-

sions. First, coverage criteria satisfaction alone is a poor indication
of fault finding effectiveness, with random test suites of equal size
providing similar—and often higher—Ilevels of fault finding. Sec-
ond, the use of structural coverage as a supplement—rather than a
target—for test generation can have a positive impact, with random
test suites reduced to a coverage-providing subset detecting up to
135% more faults than test suites generated to achieve coverage. A
typical result from this study is illustrated in Figure 1, where for
the three coverage criteria, random tests and a random test suite
reduced to a coverage-satisfying subset outperform test suites au-
tomatically generated to achieve coverage of the same size.

3. KEY ISSUES

The existing body of research on this topic leads us to the obser-
vations that it is not sufficient to simply maximize a structural cov-
erage metric when automatically generating test inputs, and there-
fore in practice how coverage is achieved matters.

The key underlying issues relate to how structural coverage crite-
ria are formulated and how automatic test generation tools operate.
Traditional coverage criteria are formulated over specific elements
in the source code. To cover an element, (1) execution must reach
the element and (2) exercise the element in a specific way. How-
ever, commonly used structural coverage criteria typically leave a
great deal of leeway to how the element is reached, and—more
importantly, in our experience—place no constraints whatsoever
on how the test should evolve after the element is exercised. Au-
tomatic test generation tools typically use this freedom to do just
enough work to satisfy coverage criteria, without consideration of,
for example, how the faults are to be detected by the test oracle.

First, let us consider the path to satisfy a coverage obligation,
e.g., a branch of a complex conditional. Structural coverage criteria
require only that the point of interest is reached and exercised. We
have found that automatically generated tests often take a shortest-
path approach to satisfying test obligations, and manipulate only
a handful of input values, leaving other inputs at default values.
This is a cost effective method of satisfying coverage obligations;
why tinker with program values that do not impact the coverage
achieved? However, we and other authors have observed that vari-
ations provided by (for example) simple random testing result in
test suites which are nearly as effective in terms of coverage, and
moreover produce more interesting behavior capable of detecting
faults [2, 13]. As illustrated in Figure 1, even with less coverage
achieved, randomly generated test inputs can outperform automat-
ically generated test suites in terms of fault finding.

Second, for the most commonly used structural coverage crite-
ria, there is no directive concerning how tests should evolve af-
ter satisfying the structural element. Given this lack of direction,
automatic test generation tools typically do not consider the path
from the covered element to an output/assertion/observable state
when generating a test, and therefore test inputs may achieve high
coverage but fail to demonstrate faults that exist within the code.
One reason for this failure is masking, which occurs when expres-
sions/computations in the system are prevented from influencing
the observed output, i.e., do not reach a variable or assertion mon-
itored by the test oracle. More generally, this is related to the dis-
tinction between incorrect program state and program output: just
because a test triggers a fault, there is no guarantee this will man-
ifest as a detected fault. Indeed, in our experience, care must be
taken to ensure that this occurs.

These two high level issues result in the generation of test inputs
that may indeed be effective at encountering faults, but may make
actually observing them—that is, actually detecting the fault—very
difficult or unlikely. This reduces the effectiveness of any testing

process based on structural coverage criteria, as we can easily sat-
isfy coverage obligations for internal expressions without allowing
resulting errors to propagate to the output.

We believe that these issues raise serious concerns about the ef-
ficacy of coverage-directed automated testing. As mentioned, the
focus in automatic test generation work is currently on efficiently
achieving coverage without carefully considering how achieving
coverage impacts fault detection. We therefore run the risk of pro-
ducing tools that are satisfying the letter of what is expected in
testing, but not the spirit. Nevertheless, the central role of cover-
age criteria in testing is unlikely to fade, as demonstrated by the
increasing use of coverage criteria for certification.

Hence, the key is to improve upon the base offered by these cri-
teria and existing technology. We have come to the conclusion
that the research goal in search-based test generation should not
be developing methods of maximizing structural code coverage,
but rather determining how to maximize fault-finding effectiveness.
‘We propose that test generation is, in fact, a multi-objective opti-
mization problem, and that algorithms built for test generation must
evolve to take into account factors beyond the naive execution of in-
dividual elements of the code—factors such as masking, program
structure, and the execution points monitored by the test oracle.

4. RECOMMENDATIONS

To support the broader objective of effective testing, we believe
that search-based test generation approaches must evolve to take
into account multiple factors—including not only satisfaction of
structural coverage criteria, but also the propagation of faults to
execution points monitored by the test oracle, and the underlying
structure of the system under test. Given the two core issues iden-
tified in Section 3, we recommend two approaches.

First, we could improve, or replace, existing structural coverage
criteria, extending them to account for factors that influence test
quality. Automated test generation has improved greatly in the last
decade, but the targets of such tools have not been updated to take
advantage in this increase in power. Instead, we continue to rely on
criteria that were originally formulated when manual test genera-
tion was the only practical method of ensuring 100% coverage.

Second, search-based test generation tools could be improved to
avoid pitfalls when using structural coverage criteria. This could
take many forms, but one straightforward approach would be to
develop additional heuristics or rules that could operate alongside
existing structural coverage criteria. For instance, tools could be
encouraged to generate longer test cases, increasing the chances
that a corrupted internal state would propagate to an observable
output (or other monitored variable). Also, important factors spe-
cific to individual domains, e.g. web testing vs embedded systems,
could be empirically identified and formalized as heuristics.

4.1 Use More Robust Coverage Criteria

In our own work, the issues of criteria formulation and mask-
ing motivated the development of the Observable MC/DC coverage
criterion [16]. OMC/DC coverage explicitly avoids issues related
to masking by requiring that its test obligations both demonstrate
the independent impact of a condition on the outcome of the deci-
sion statement, and follow a non-masking propagation path to some
variable monitored by the test oracle. OMC/DC, by accounting for
the program structure and the selection of the test oracle, can, in
our experience, address some of the failings of traditional struc-
tural coverage criteria within the avionics domain, allowing for the
generation of test suites achieving up to 26% better fault detection
than random test suites of equal size. Similarly, Vivanti et.al have
demonstrated evidence that the use of data-flow coverage as a goal

for test generation results in test suites with higher fault detection
capabilities than suites generated to achieve branch coverage [15].

The primary problem with many existing structural coverage cri-
teria is that all effort is expended on covering structures internal
to the system, and no further consideration is paid to how the ef-
fect of covered structure reaches an observable point in the sys-
tem. These results indicate that it is possible to overcome some of
the issues we have highlighted by working with stronger coverage
criteria or extending existing criterion to take into account issues
such as fault propagation. OMC/DC considers the observability as-
pect for Boolean expressions (using MC/DC) by appending a path
condition onto each test obligation in MC/DC. Similar extensions
could be applied to a variety of other existing coverage metrics,
e.g., boundary value testing.

4.2 Algorithmically Improve Test Selection

Extensions to coverage criteria are not without downsides: for
stronger metrics, programs will contain unsatisfiable obligations
where there is no test that can be constructed to satisfy the obli-
gation. Depending on the search strategy, the test generator may
never terminate on such obligations. Further, the higher cost and
difficulty of generating OMC/DC satisfying test suites—relative to
generating the weaker branch, condition, or MC/DC test suites—
makes the use of strong coverage criteria as targets for test genera-
tion harder to universally recommend.

Instead, another possible method of ensuring test quality is to
use a traditional structural coverage metric as the objective of test
generation, and augment this by considering other factors empir-
ically established to impact fault detection effectiveness. In the
context of search-based test generation, this means adding addi-
tional objective functions to the search strategy, rather than adding
additional constraints. For instance, an algorithm could both work
to maximize an existing structural coverage criterion and minimize
the propagation distance between the assignment of a value and its
observation by the oracle (an algorithm that minimizes this distance
for test prioritization purposes already exists [14]).

As an example, consider purely random testing. Random test-
ing does not employ an objective function, but it is possible to use
one to approximate how well the system’s state space is being cov-
ered.We have seen systems containing bottlenecks (pinch-points)
in the state space where randomly generated tests perform very
poorly. Such bottlenecks require certain specific input sequences to
reach a large portion of the state space. However, approaches such
as concolic testing [12]—combining random testing with symbolic
execution—are able to direct the generation of tests around such
bottlenecks. Similar approaches could be employed to direct test
generation towards, for example, propagation paths from variable
assignment to oracle-monitored portions of the system.

While work exists considering test suite generation as a multi-
objective problem, we believe that there is still much need for re-
search in this area. By pursuing multiple objectives, we could po-
tentially offer stronger tests that satisfty MC/DC obligations, even
when it would be impossible to generate a test that satisfies the
corresponding—but stricter—OMC/DC obligation. Embedding as-
pects of test selection into the objective function—or even into the
search algorithm itself—may allow for improved efficiency. The
search method can use, say, masking as a pruning mechanism on
paths through the system, and the algorithm would not have to track
as much symbolic information related to the objective metric itself.

4.3 Tailor an Approach to the Domain

It is important to emphasize that there is no “one size fits all”
solution to test generation. The size and shape of the state space of

a system varies dramatically between domains and programming
paradigms, and, as a result, it is difficult to tailor universal testing
strategies. Much of our work has focused on embedded systems
that run as cyclic processes. In this area, a common issue is that
the impact of exercising a code path on the system’s output is de-
layed; only several cycles after a fault occurs can we observe it. If
the goal of test generation is only to cause the code path to be ex-
ecuted, many of the tests will not cause a visible change in system
behavior. In object-oriented systems, a central, but related issue
is that a method call may change internal state that, again, is not
visible externally until another method call produces output. As a
result, choosing appropriate method sequences and their ordering
becomes a major challenge.

Thus while general rules and heuristics for improving test gen-
eration are valuable, we believe there are large improvements to be
found in tailoring the approach to the testing challenge at hand. For
example, two often overlooked factors are the cost of generating
tests and the cost of running tests. It is hard to outperform ran-
dom testing in terms of the cost of generating tests, because doing
so requires very little computation. If it is also cheap to run tests,
then for many systems it is difficult to outperform straight random
testing. On the other hand, if it is expensive to run tests, e.g., for
embedded systems, this may require access to a shared hardware
'rig’. In this case, using search-based techniques to generate tests
for a specific strong coverage criterion (such as OMC/DC) may be
very sensible, because the number of required tests can be dramat-
ically smaller than the number of random tests required to achieve
the same level of fault finding.

Another overlooked factor is the “reasonableness” of generated
tests. Automated test generation methods should deliver tests that
not only find faults, but are also meaningful to the domain of in-
terest. Coverage-based techniques take the path of least resistance
when generating tests, but can produce tests that make little sense in
the context of the domain. Techniques that can generate inputs with
meaning to the human testers are valuable in reducing the “human
oracle cost” associated with checking failing test results [10].

Addressing factors such as these must be done on a per domain
level, and indicate that code coverage should be one of several goals
in test generation. We suspect that, in the long run, effective auto-
matic test generation tools will consist of both general techniques
and heuristics and additional fest generation profiles for each do-
main. Determining the correct objective functions for test gener-
ation for each domain is still an open research question, one re-
quiring both technical advancements in search-based test genera-
tion and empirical studies.

S. CONCLUSION

While coverage criteria are a central aspect of software testing,
both in practice and in research, there is an increasing body of work
indicating that high structural coverage alone does not lead to effec-
tive testing—how the tests are generated also matters. To achieve
effective testing, we should consider other factors, both general
(e.g. test case length, path to test oracles) and domain specific.

Search-based test generation approaches, with their use of po-
tentially multiple objective functions to guide search, are particu-
larly well-suited to moving beyond simple structural coverage. We
therefore believe that careful selection of the algorithms employed,
the tuning of the parameters, and the objective functions used all
have important roles to play. Moving in this direction requires
work both empirical, determining exactly what factors influence
fault detection the most for each software domain, and technical,
translating that empirically acquired knowledge into heuristics and
objective functions.

[1]

(2]
(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES
S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen,

W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn.
An orchestrated survey on automated software test case
generation. Journal of Systems and Software,
86(8):1978-2001, August 2013.

A. Arcuri, M. Z. Z. Igbal, and L. C. Briand. Formal analysis
of the effectiveness and predictability of random testing. In
ISSTA, pages 219-230, 2010.

T. Chen and Y. Yu. On the expected number of failures
detected by subdomain testing and random testing. /EEE
Transactions on Software Engineering, 22(2), 1996.

A. Dupuy and N. Leveson. An empirical evaluation of the
MC/DC coverage criterion on the hete-2 satellite software. In
Proc. of the Digital Aviation Systems Conference (DASC),
Philadelphia, USA, October 2000.

P. Frankl and S. N. Weiss. An experimental comparison of
the effectiveness of the all-uses and all-edges adequacy
criteria. In Proc. of the Symposium on Testing, Analysis, and
Verification, 1991.

W. Gutjahr. Partition testing vs. random testing: The
influence of uncertainty. IEEE Transactions on Software
Engineering, 25(5):661-674, 1999.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow-and
controlflow-based test adequacy criteria. In Proc. of the 16th
Int’l Conf. on Software Engineering. IEEE Computer Society
Press Los Alamitos, CA, USA, 1994.

N. Juristo, A. Moreno, and S. Vegas. Reviewing 25 years of
testing technique experiments. Empirical Software
Engineering, 9(1):7-44, 2004.

S. Kandl and R. Kirner. Error detection rate of MC/DC for a
case study from the automotive domain. Software
Technologies for Embedded and Ubiquitous Systems, pages
131-142, 2011.

P. McMinn, M. Stevenson, and M. Harman. Reducing
qualitative human oracle costs associated with automatically
generated test data. In Proceedings of the First International
Workshop on Software Test Output Validation, STOV 10,
pages 1-4, New York, NY, USA, 2010. ACM.

A. Namin and J. Andrews. The influence of size and
coverage on test suite effectiveness. In Proc. of the 18th Int’l
Symp. on Software Testing and Analysis. ACM, 2009.

K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In Proc. of the 10th European Software
Engineering Conf. / 13th ACM SIGSOFT Int’l. Symp. on
Foundations of Software Engineering. ACM New York, NY,
USA, 2005.

M. Staats, G. Gay, M. W. Whalen, and M. P. Heimdahl. On
the danger of coverage directed test case generation. In /5th
International Conference on Fundamental Approaches to
Software Engineering (FASE), April 2012.

M. Staats, P. Loyola, and G. Rothermel. Oracle-centric test
case prioritization. In ISSRE, pages 311-320, 2012.

M. Vivanti, A. Mis, A. Gorla, and G. Fraser. Search-based
data-flow test generation. In ISSRE’13: Proceedings of the
24th IEEE International Symposium on Software Reliability
Engineering. IEEE Press, Nov. 2013.

M. Whalen, G. Gay, D. You, M. Heimdahl, and M. Staats.
Observable modified condition/decision coverage. In
Proceedings of the 2013 International Conference on
Software Engineering. ACM, May 2013.

