IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

The Risks of Coverage-Directed Test Case
Generation

Gregory Gay, Member, IEEE, Matt Staats, Michael Whalen, Senior Member, IEEE, and
Mats P.E. Heimdahl, Senior Member, IEEE

Abstract—A number of structural coverage criteria have been proposed to measure the adequacy of testing efforts. In the avionics
and other critical systems domains, test suites satisfying structural coverage criteria are mandated by standards. With the advent of
powerful automated test generation tools, it is tempting to simply generate test inputs to satisfy these structural coverage criteria.
However, while techniques to produce coverage-providing tests are well established, the effectiveness of such approaches in terms of
fault detection ability has not been adequately studied.

In this work, we evaluate the effectiveness of test suites generated to satisfy four coverage criteria through counterexample-based test
generation and a random generation approach—where tests are randomly generated until coverage is achieved—contrasted against
purely random test suites of equal size. Our results yield three key conclusions. First, coverage criteria satisfaction alone can be a poor
indication of fault finding effectiveness, with inconsistent results between the seven case examples (and random test suites of equal
size often providing similar—or even higher—levels of fault finding). Second, the use of structural coverage as a supplement—rather
than a target—for test generation can have a positive impact, with random test suites reduced to a coverage-providing subset detecting
up to 13.5% more faults than test suites generated specifically to achieve coverage. Finally, Observable MC/DC, a criterion designed to
account for program structure and the selection of the test oracle, can—in part—address the failings of traditional structural coverage
criteria, allowing for the generation of test suites achieving higher levels of fault detection than random test suites of equal size.

These observations point to risks inherent in the increase in test automation in critical systems, and the need for more research in how

coverage criteria, test generation approaches, the test oracle used, and system structure jointly influence test effectiveness.

Index Terms—Software Testing, System Testing

1 INTRODUCTION

In software testing, the need to determine the adequacy of
test suites has motivated the development of several classes
of test coverage criteria [1]. One such class is structural
coverage criteria, which measure test suite adequacy using
the coverage over the structural elements of the system under
test, such as statements or control flow branches. In the criti-
cal systems domain—particularly in avionics—demonstrating
structural coverage is required by standards [2].

In recent years, there has been rapid progress in the creation
of automated test generation tools that direct the generation
process towards the satisfaction of certain structural coverage
criteria [3], [4], [5], [6]. Such tools promise to improve
coverage and reduce the cost associated with test creation.

In principle, this represents a success for software
engineering—a mandatory, and potentially arduous, engineer-
ing task has been automated. Nevertheless, while there is
evidence that using structural coverage to guide random test
generation provides better tests than purely random tests [7],
the effectiveness of test suites automatically generated to

G. Gay is with the Department of Computer Science & Engineering, Univer-
sity of South Carolina. E-Mail: greg@greggay.com

M. Whalen and M. Heimdahl are with the Department of Computer Science
and Engineering, University of Minnesota. E-Mail: whalen@ cs.umn.edu,
heimdahl @ cs.umn.edu

M. Staats is with Google, Inc. E-Mail: staatsm@ gmail.com

This work has been supported by NASA Ames Cooperative Agreement
NNAO6CB21A, NSF grants CCF-0916583, CNS-0931931, and CNS-1035715,
and the Fonds National de la Recherche, Luxembourg (FNR/P10/03). We
would additionally like to thank Rockwell Collins for their support.

satisfy various structural coverage criteria has not been firmly
established.

In previous work, we found that test inputs generated
specifically to satisfy three structural coverage criteria via
counterexample-based test generation were less effective than
random test inputs [8]. Additionally, we found that reducing
larger test suites for a given coverage metric—in our study,
MC/DC—while maintaining the same level of coverage re-
duced their fault finding significantly, hinting that it is not
always wise to build test suites solely to satisfy a coverage
criterion [9]. These findings were confirmed in a larger study,
where we found that test suites generated to provide branch
and MC/DC coverage were less effective than random test
suites of the same size [7]. The same study found that using
structural coverage as a supplement to random testing was a
far more effective practice than generating tests specifically
for satisfying that criterion.

More recent work suggests that a number of factors that
are currently not well understood can strongly impact the
effectiveness of the testing process—for example, the oracle
used, the structure of the program under test, etc. [10], [11],
[12]. The results of these studies indicate that adequacy criteria
that do not take such factors into account may be at a
disadvantage to those that do.

These results are concerning. Given that common standards
in critical systems domains require test suites to satisfy certain
structural coverage metrics—and the rise of automated tools
that can provide such coverage—the temptation exists to
automate the entire testing process. Before we can recommend

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

such action, however, is it essential to establish the efficacy of
the generated test suites.

In earlier work, we reported the results of a study measuring
the fault finding effectiveness of automatically generated test
suites satisfying two structural coverage criteria: decision
coverage and Modified Condition/Decision Coverage (MC/DC
coverage), as compared to randomly generated test suites of
the same size on four production avionics systems and an
example system from NASA [7]. In the work presented in
this paper, we have expanded the initial pilot study to cover
a wider range of structural coverage criteria, with the goal
of making new observations and establishing more generally
applicable conclusions.

In this study, we generate tests for seven industrial critical
systems—four Rockwell Collins systems from previous work,
a NASA system, as well as two subsystems of a complex
real-time infusion pump—using both a random test generation
approach and counterexample-based test generation [13]—
directed to satisfy condition, decision, MC/DC and Observable
MC/DC coverage (a coverage metric designed to propagate the
impact of condition choices to a program point where they can
be observed by the test oracle [12]). Both the generated test
suites and random test suites were reduced while maintaining
coverage and compared to purely random test suites of equal
size. We determined effectiveness of the resulting test suites
through mutation analysis [14]—and, for two systems, a set of
real faults—using two expected value test oracles: an output-
only test oracle and a maximally powerful test oracle (an
oracle observing all output and internal state variables).

Our results show that for three of the four coverage
criteria—in four of our industrial systems—the automatically
generated test suites perform significantly worse than ran-
domly generated test suites of equal size (up to 40.6% fewer
faults found when coupled with an output-only oracle). For
the NASA example and the two infusion pump systems, which
were selected specifically because their structures were signif-
icantly different from the Rockwell Collins systems, and the
Observable MC/DC (OMC/DC) criterion—which was selected
for its potential to overcome the shortcomings of MC/DC-
test suites generated to satisfy structural coverage—performed
better, matching or improving on randomly generated test
suites of the same size. However, these tests were still not
always effective in an absolute sense, generally finding fewer
than 50% of the faults with the standard output-only oracle.
Similar trends can be observed when examining systems with
real faults, with coverage-directed test generation yielding up
to 93.4% worse fault-detection performance.

Finally, we found that for most combinations of coverage
criteria and case examples, randomly generated test suites
reduced while maintaining structural coverage sometimes find
more faults than pure randomly generated test suites of equal
size (finding up to 13.1% more faults).

We draw three conclusions from these results. First, auto-
matic test generation to satisfy structural coverage does not, for
many of the systems investigated, yield effective tests relative
to their size for the commonly-used condition, decision, and
MC/DC coverage criteria. This, indicates that satisfying even
a “rigorous” coverage criterion can be a poor indication of test

suite effectiveness. Furthermore, even when coverage-directed
tests yield superior performance, the tests may still miss a
large number of potentially severe faults.

Second, the use of structural coverage as a supplement—
not a target—for test generation (as Chilensky and Miller
recommend in their seminal work on MC/DC [15]) can be
an effective practice.

Finally, OMC/DC, unlike other coverage criteria, generally
provides the same or better fault finding than random test
suites of equal size in our study, indicating that the ex-
tensions to consider propagation at least partly—though not
completely—address issues related to MC/DC.

These observations have serious implications and point to
the risks inherent in the increased use of test automation.
The goal of this study is not to discourage the use of one
particular form of automated test generation—or to recom-
mend another—but to raise awareness of the risks of assuming
that code coverage equates to effective testing. To the best of
our knowledge, this paper is the largest such study to date.
It demonstrates the potential for automatic test generation
to reduce the fault finding effectiveness of test suites and
coverage criteria relative to random testing, and it is one of the
few such studies that use real-world avionics systems. While
our focus is on critical systems, test generation techniques and
coverage measurements are used in the verifications of systems
across many disparate domains; the issues raised are relevant
to those domains as well.

Our results highlight the need for more research in how the
coverage criterion, the test generation approach, the chosen
test oracle, and the structure of the system under test jointly
influence the effectiveness of testing. The increasing availabil-
ity and use of advanced test-generation tools coupled with the
increased use of code coverage in certification—and our lack
of knowledge of the effectiveness of such tools and metrics—
is worrisome and careful attention must be paid to their use
and acceptance.

2 RELATED WORK

A number of empirical studies exist comparing structural cov-
erage criteria with random testing, with mixed results. Juristo
et al. provide a survey of much of the existing work [16].
With respect to branch coverage, they note that some authors
(such as Hutchins et al. [17]) find that branch coverage
outperforms random testing, while others (such as Frankl
and Weiss [18]) discover the opposite. Namin and Andrews
have found coverage levels are positively correlated with
fault finding effectiveness [19]. However, recent work from
Inozemtseva and Holmes found low-to-moderare correlation
when the number of test cases is controlled for and that
stronger forms of coverage do not necessarly lead to stronger
fault-finding results [20]. Theoretical work comparing the
effectiveness of partition testing against random testing yields
similarly mixed results. Weyuker and Jeng [21], and Chen and
Yu [22], indicate that partition testing is not necessarily more
effective than random testing. Hamlet and Taylor additionally
found that partition testing—as commonly used—is often
ineffective and has little value in gaining confidence in a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

system [23]. Later theoretical work by Gutjahr [24], however,
provides a stronger case for partition testing. Arcuri et al. [25]
recently demonstrated that in many scenarios, random testing
is more predictable and cost-effective at reaching high levels
of structural coverage than previously thought. The authors
have also demonstrated that, when cost is taken into account,
random testing is often more effective at detecting faults than
a popular alternative—adaptive random testing [26].

Most studies concerning automatic test generation for struc-
tural coverage criteria are focused on how to generate tests
quickly and/or improve coverage [27], [3]. Comparisons of the
fault-finding effectiveness of the resulting test suites against
other methods of test generation are few. Gopinath et al.
compared a number of manual and automatically-generated
test suites for statement, block, brand, and path coverage for
their ability to find fault [28]. They concluded that statement
coverage led to the highest level of fault-finding effectiveness.
Others that exist apart from our own limited previous work
and Gopinath’s study are, to the best of our knowledge,
studies in concolic execution [4], [5]. One concolic approach
by Majumdar and Sen [29] has even merged random testing
with symbolic execution, though their evaluation only focused
on two case examples, and did not explore fault finding
effectiveness.

Despite the importance of the MC/DC criterion [15], [2],
studies of its effectiveness are few. Yu and Lau study sev-
eral structural coverage criteria, including MC/DC, and find
MC/DC is cost effective relative to other criteria [30]. Kandl
and Kirner evaluate MC/DC using an example from the auto-
motive domain, and note less than perfect fault finding [31].
Dupuy and Leveson evaluate the MC/DC as a complement to
functional testing, finding that the use of MC/DC improves the
quality of tests [32]. None of these studies, however, compare
the effectiveness of MC/DC to that of random testing. They
therefore do not indicate if test suites satisfying MC/DC are
truly effective, or if they are effective merely because MC/DC
test suites are generally quite large.

More concerning than the negative results regarding the
ability of structural coverage to enhance fault finding is the
overall lack of consensus one way or the other. Certain cover-
age metrics are used as though their use guarantees effective
testing when, in practice, there is no universal evidence of
their utility.

Our study applies counterexample-based test generation
using the JKind model checker [13], [33] to directly generate
test inputs for multiple coverage criteria. In this work, we
find issues with the effectiveness of tests generated using
this approach. Several problems that can arise when using
model checkers to generate tests are discussed by Fraser et
al. [34]; however, issues regarding fault-finding effectiveness
are not among them. Counterexample-based test generation
is simply one method of automated test generation—others
include symbolic [35] and concolic execution [4], model-based
test generation [36], combinatorial testing [37], and search-
based testing [38], among others. For a comprehensive survey
on automated test generation, see [6].

The work presented in this paper is an extension of a con-
ference publication [7]. Our current work differs primarily in

the number of criteria explored (four, rather than two), and—
in particular—the use of OMC/DC [12], a coverage criterion
whose definition was in part motivated by the issues raised in
our earlier work [7]. We also expand on the programs studied,
and include real faults—as opposed to seeded mutations—for
two of the systems.

3 EXPERIMENT

We are interested in two approaches for test generation:
random test generation and directed test generation. As the
name implies, in random test generation, tests are randomly
generated. Suites of these tests can later be reduced with
respect to the coverage criterion—this is akin to the practice
of using coverage as an adequacy criterion, where one tests
until coverage is achieved. Such an approach that is useful as a
gauge of the value of a coverage criterion—if tests randomly
generated and reduced with respect to a coverage criterion
are more effective than pure randomly generated tests, we can
safely conclude the use of the criterion led to the improvement.
Unfortunately—other than our previous work [7]—evidence
demonstrating this is, at best, mixed for coverage metrics such
as decision or condition coverage [16], and non-existent for
more stringent forms of coverage, such as MC/DC.

In directed test generation, tests are created specifically
for the purpose of satisfying a coverage criterion. Examples
include heuristic search methods [38] and approaches based on
reachability [27], [3], [4]. Such techniques have advanced to
the point where they can be effectively applied to production
systems. Although these approaches can be slower than ran-
dom testing, they offer the potential to improve the coverage
of the resulting test suites.

It has been suggested that structural coverage criteria should
only be used as adequacy metrics—to determine if a test suite
has failed to cover functionality in the source code [1], [19].
However, an adequacy criterion can always be transformed
into a test suite generation target. In mandating that a coverage
criterion be used for measurement, it seems inevitable that
some testers will opt to perform generation to speed the testing
process, and tools have been built for that purpose [39].

Therefore, in our study, we aim to determine if using
existing directed generation techniques with these criteria
results in test suites that are more effective at fault detection
than randomly generated test suites. We expect that a test suite
satisfying the coverage criterion to be, at a minimum, at least
as effective as randomly generated test suites of equal size.
Given the central—and mandated—role the coverage criteria
play within certain domains (e.g., DO-178C for airborne
software [40]), and the resources required to satisfy them, this
area requires additional study. We thus seek answers to the
following research questions:

RQ1: Are random test suites reduced to satisfy various cov-
erage criteria more effective than purely randomly
generated test suites of equal size?

Are test suites directly generated to satisfy various
coverage criteria more effective than randomly gen-
erated test suites of equal size?

RQ2:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Simulink Subsystems | # Blocks
DWM_1 3,109 11,439
DWM_2 128 429
Vertmax_Batch 396 1,453
Latctl_Batch 120 718
States | # Transitions | # Vars
Docking_Approach 64 104 51
Infusion_Mgr 27 50 36
Alarms 78 107 60
Infusion_Mgr (faulty) 30 47 34
Alarms (faulty) 81 101 61
TABLE 1

Case Example Information

3.1

In this study, we have used four industrial systems developed
by Rockwell Collins Inc., a fifth system created as a case
example at NASA, and two subsystems of an infusion pump
created for medical device research [41]. The Rockwell Collins
systems were modeled using the Simulink notation and the
remaining systems using Stateflow [42], [43]; all were trans-
lated to the Lustre synchronous programming language [44]
to take advantage of existing automation. In practice, Lustre
would be automatically translated to C code. This is a syntactic
transformation, and if applied to C, the results of this study
would be identical.

Two of these systems, DWM_1 and DWM_2, represent por-
tions of a Display Window Manager for a commercial cockpit
display system. The other two systems—Vertmax_Batch and
Latctl_Batch—represent the vertical and lateral mode logic
for a Flight Guidance System (FGS). The NASA system,
Docking_Approach, was selected due to its structure, which
differs from the Rockwell Collins systems in ways relevant to
this study (discussed later). Docking_Approach describes the
behavior of a space shuttle as it docks with the International
Space Station. The remaining two systems, Infusion_Mgr and
Alarms, were chosen because they come with a set of real
faults that we can use to assess real-world fault-finding. These
systems represent the prescription management and alarm-
induced behavior of an infusion pump device '.

Information related to these systems is provided in Table 1.
We list the number of Simulink subsystems, which are anal-
ogous to functions, and the number of blocks, analogous to
operators. For the examples developed in Stateflow, we list the
number of Stateflow states, transitions, and variables. As we
have both faulty and corrected versions of Infusion_Mgr and
Alarms, we list information for both.

Note that Lustre systems, and the original Simulink systems
from which they were translated, operate in a sequence of
steps. In each step, input is received, internal computations
are done sequentially, and output is produced. Within a step,
no iteration or recursion is done—each internal variable is
defined, and the value for it computed, exactly once. The
system itself operates as an large loop.

For each case example, we performed the following steps:

Experimental Setup Overview

1. These two models are available to download from

http://crisys.cs.umn.edu/PublicDatasets.shtml

1) Generated mutants: We generated 250 mutants, each
containing a single fault, and removed functionally
equivalent mutants. (Section 3.2.)

2) Generated structural tests: We generated test suites
satisfying condition, decision, MC/DC, and Observable
MC/DC coverage using counterexample-based test gen-
eration. (Section 3.4.)

3) Generated random tests: We generated 1,000 random
tests of test lengths between 2-10 steps. (Section 3.4.)

4) Reduced test suites: We generated reduced test
suites satisfying condition, decision, MC/DC, and
OMC/DC coverage using the test data generated in the
previous two step. (Section 3.5.)

5) Random test suites: For each test suite satisfying a
coverage criterion, we created a single random test suite
of equal size. In addition, we created test suites of sizes
evenly distributed from sizes 1 to 1,000. (Section 3.5.)

6) Computed effectiveness: We computed the fault finding
effectiveness of each test suite using both an output-only
oracle and an oracle considering all outputs and internal
state variables (a maximally powerful oracle) against the
set of mutants and—for the infusion pump examples—
against the set of real faults. (Section 3.6.)

3.2

We have created 250 mutants (faulty implementations) for
each case example by automatically introducing a single fault
into the correct implementation. Each fault was seeded by
either inserting a new operator into the system or by replacing
an existing operator or variable with a different operator or
variable. Constructing the specific mutants involved a ran-
domized process in which a list of possible mutants was
enumerated. From this list, 250 mutants were selected for
generation, with a roughly even distribution of fault types
across the system occurring naturally.

The mutation operators used in this study are fairly typical
and are discussed at length in [45]. They are similar to the
operators used by Andrews et al. where they conclude that
mutation testing can be an adequate proxy for real faults for
the purpose of investigating test effectiveness [46].

One risk of mutation testing is functionally equivalent
mutants—the scenario in which faults exist, but these faults
cannot cause a failure (an externally visible deviation from
correct behavior). This presents a problem when using oracles
that consider internal state—we may detect failures that can
never propagate to the output. We have used the JKind model
checker [13] to detect and remove equivalent mutants for the
four Rockwell Collins systems?. This is made possible thanks
to our use of synchronous reactive systems—each system is
finite, and thus determining equivalence is decidable’.

The cost of determining non-equivalence for the Dock-
ing_Approach, Infusion_Mgr, and Alarms system is, unfor-
tunately, prohibitive. However, for every mutant reported as
killed in our study for the output-only oracle, there exists

Mutant Generation

2. The percentage of mutants removed is very small, 2.8% on average
3. Equivalence checking is fairly routine on the hardware side of the
reactive system community; a good introduction can be found in [47].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

at least one trace that can lead to a user-visible failure, and
all fault finding measurements for that oracle indeed measure
faults detected.

3.3 Real Faults

For both of the infusion pump systems—Infusion_Mgr and
Alarms—we have two versions of each case example. One
is an untested—but feature-complete—version with several
faults, the second is a newer version of the system where those
faults have been corrected. We can use the faulty version of
each system to assist in determining the effectiveness of each
test suite. As with the seeded mutants, effective tests should
be able to surface and alert the tester to the residing faults.

For the Infusion_Mgr case example, the older version of
the system contains seven faults. For the Alarm system, there
are three faults. Although there are a relatively small number
of faults for both systems, several of these are faults that
required code changes in several locations to fix. The real
faults used in this experiment are non-trivial faults—these
were not mere typos or operand mistakes, require specific
conditions to trigger, and extensive verification efforts were
required to identify these faults. Faults of this type are ideal,
as we do not want the generated test cases to trivially fail on
the faulty models.

A brief description of the faults can be seen in Table 2.

3.4 Test Data Generation

In this research, we explore four structural coverage crite-
ria: condition coverage, decision coverage, Modified Condi-
tion/Decision Coverage (MC/DC) [16], [15], and Observable
Modified Condition/Decision Coverage (OMC/DC) [12].

Condition coverage is a coverage criterion based on exer-
cising complex Boolean conditions (such as the ones present
in many avionics systems). For example, given the statement
((a and b) and (not c or d)), achieving condition
coverage requires tests where the individual atomic boolean
conditions a, b, c, and d evaluate to true and false.

Decision coverage is a criterion concerned with exercising
the different outcomes of the Boolean decisions within a
program. Given the expression above, ((a and b) and
(not ¢ or d)), tests would need to be produced where
the expression evaluates to true and the statement evaluated to
false, causing program execution to traverse both outcomes
of the decision point. Decision coverage is similar to the
commonly-used branch coverage. Branch coverage is only
applicable to Boolean decisions that cause program execution
to branch, such as that in if or case statements, whereas
decision coverage requires coverage of all Boolean decisions,
whether or not execution diverges. Improving branch coverage
is a common goal in automatic test generation.

Modified Condition/Decision Coverage further strength-
ens condition coverage by requiring that each decision evaluate
to all possible outcomes (such as in the expression used
above), each condition take on all possible outcomes (the
conditions shown in the description of condition coverage),
and that each condition within a decision be shown to inde-
pendently impact the outcome of the decision. Independent

effect is defined in terms of masking, which means that the
condition has no effect on the value of the decision as a whole;
for example, given a decision of the form x and v, the truth
value of x is irrelevant if y is false, so we state that x is masked
out. A condition that is not masked out has independent effect
for the decision.

Suppose we examine the independent affect of d in the
example; if (a and b) evaluates to false, than the decision
will evaluate to false, masking the effect of d; Similarly, if
c evaluates to false, then (not ¢ or d) evaluates to true
regardless of the value of d. Only if we assign a, b, and ¢
true does the value of d affect the outcome of the decision.

MC/DC coverage is often mandated when testing critical
avionics systems. Accordingly, we view MC/DC as likely to be
effective criteria, particularly for the class of systems studied
in this report. Several variations of MC/DC exist—for this
study, we use Masking MC/DC, as it is a common criterion
within the avionics community [48].

Observable MC/DC (OMC/DC) is an enhanced version of
MC/DC that requires that tests not only exercise the Boolean
conditions and decisions within program expressions, but that
tests also offer a path of propagation from that condition to the
program output as well. One can view MCDC as determining
independent affect of a condition within a decision; OMC/DC
requires an analogous effect on some observable quantity for
the test (such as a program output variable). While MC/DC
ensures that Boolean faults will not be masked at the decision
level, it is often the case that the decision will itself be masked
before propagating to an output variable. OMC/DC tests have
the potential to overcome this weakness by requiring that a
path of propagation exists between the condition and an output.
For example, consider the following block of pseudocode:

x = ((a and b) and (not c or d));
y = X Or c;
output = y and (b or d);

In MC/DC it is necessary to show that the result of d
influences the outcome of x. In OMC/DC, we must not
only demonstrate the independent impact of d on x, but the
independent impact of x on y and the independent impact of y
on output—thus establishing a propagation path for (not
c or d) from x to the program output.

For our directed test generation approach, we used
counterexample-based test generation to generate tests satisfy-
ing the four coverage criteria [27], [3]. In this approach, each
coverage obligation is encoded as a temporal logic formula and
a model checker can be used to detect a counterexample (test
case) illustrating how the coverage obligation can be covered.
By repeating this process for each coverage obligation for the
system, we can use the model checker to automatically derive
test sequences that are guaranteed to achieve the maximum
possible coverage of the model.

This coverage guarantee is why we have elected to use
counterexample-based test generation, as other directed ap-
proaches (such as concolic/SAT-based approaches) do not offer
such a straightforward guarantee. In the context of avion-
ics systems, the guarantee is highly desirable, as achieving
maximum coverage is required [2]. We have used the JKind

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Infusion_Mgr

When entering therapy mode for the first time, infusion can begin if there is an empty drug reservoir.

The system has no way to handle a concurrent infusion initiation and cancellation request.

If the alarm level is >= 2, no bolus should occur. However, intermittent bolus mode triggers on alarm <= 2.

Each time step is assumed to be one second.

N[B WD —

When patient bolus is in progress and infusion is stopped, the system does not enter the patient lockout.
Upon restart, the patient can immediately request an additional dosage.

)}

If the time step is not exactly one second, actions that occur at specific intervals might be missed.

7 The system has no way to handle a concurrent infusion initiation and pause request.

Alarms

If an alarm condition occurs during the initialization step, it will not be detected.

DI —

The Alarms system does not check that the pump is in therapy before issuing therapy-related alarms.

3 Each time step is assumed to be one second.

TABLE 2
Real faults for infusion pump systems

model checker [13], [33] in our experiments because we have
found that it is efficient and produces tests that are easy to
understand [8].

For the systems with real faults, we generate tests twice.
When calculating fault-finding effectiveness on generated mu-
tants, we generate tests using the corrected version of the sys-
tem (as the Rockwell Collins systems are free of known faults).
However, when assessing the ability of the test suites to find
the real faults, we generate the tests using the faulty version of
the system. This reflects real-world practice, where—if faults
have not yet been discovered—tests have been generated to
provide coverage over the code as it currently exists.

We have also generated a single set of 1,000 random tests
for each case example. The tests in this set are between two
and ten execution steps (evenly distributed in the set). For each
test step, we randomly selected a valid value for all inputs.
As all inputs are scalar, this is trivial. We refer to this as a
random test suite. After generating coverage-based test suites,
we resample from this test suite to create random test suites
of equal size for each coverage-based test suite. Note that as
all of our case examples are modules of larger systems, the
tests generated are effectively unit tests.

3.5 Test Suite Reduction

Counterexample-based test generation results in a separate test
for each coverage obligation. This leads to a large amount of
redundancy in the tests generated, as each test likely covers
several obligations. Consequently, the test suite generated
for each coverage criterion is generally much larger than is
required to provide coverage. Given the correlation between
test suite size and fault finding effectiveness [19], this has the
potential to yield misleading results—an unnecessarily large
test suite may lead us to conclude that a coverage criterion
has led us to select effective tests, when in reality it is the
size of the test suite that is responsible for its effectiveness.
To avoid this, we reduce each naively generated test suite
while maintaining the coverage achieved. To prevent us from
selecting a test suite that happens to be exceptionally good
or exceptionally poor relative to the possible reduced test
suites, we produce 50 different reduced test suites for each
case example using the process described below.

Per RQI, we have also created tests suites satisfying the
coverage criteria by reducing the random test suite with respect
to the coverage criteria (that is, the suite is reduced while
maintaining the coverage level of the unreduced suite). Again,
we produce 50 tests suites satisfying each coverage criterion.

For both counterexample-based test generation and random
testing reduced with respect to a criterion, reduction is done
using a simple greedy algorithm. We determine the coverage
obligations satisfied by each test generated, and initialize an
empty test set reduced. We then randomly select a test from
the full set of tests; if it satisfies obligations not satisfied by
any test input in reduced, we add it to reduced. We continue
until all tests have been examined in the full set of tests.

For each of our existing reduced test suites, we also produce
a purely random test suite of equal size using the set of random
test data. Recall that each system operates as a large loop
receiving input and producing output. Each generated test is
thus a finite number of “steps”, with each step corresponding
to a set of inputs received by the system. We measure test suite
size in terms of the number of total test steps, rather than the
number of tests, as random tests are on average longer than
tests generated using counterexample-based test generation.
These random suites are used as a baseline when evaluating
the effectiveness of test suites reduced with respect to coverage
criteria. We also generate random test suites of sizes varying
from 1 to 1,000 steps. These tests are not part of our analysis,
but provide context in our illustrations.

When generating tests suites to satisfy a structural coverage
criterion, the suite size can vary from the minimum required to
satisfy the coverage criterion (generally unknown) to infinity.
Previous work has demonstrated that test suite reduction
can have a negative impact on test suite effectiveness [9].
Despite this, we believe the test suite size most likely to be
used in practice is one designed to be small—reduced with
respect to coverage—rather than large (every test generated
in the case of counterexample-based generation or, even more
arbitrarily, 1,000 random tests). Note that one could build a
counterexample-based test suite generation tool that, upon gen-
erating a test, removes from consideration all newly covered
obligations, and randomly selects a new uncovered obligation
to try to satisfy, repeating until finished. Such a tool would
produce test suites equivalent to our reduced test suites, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

thus require no reduction; alternatively, we could view such
test suites as pre-reduced.

3.6 Computing Effectiveness

In our study, we use what are known as expected value oracles
as our test oracles [49]. Consider the following testing process
for a software system: (1) the tester selects inputs using some
criterion—structural coverage, random testing, or engineering
judgement; (2) the tester then defines concrete, anticipated
values for these inputs for one or more variables (internal
variables or output variables) in the program. Past experience
with industrial practitioners indicates that such oracles are
commonly used in testing critical systems, such as those in
the avionics or medical device fields.

We explore the use of two types of oracles: an output-only
oracle that defines expected values for all outputs, and a max-
imum oracle that defines expected values for all outputs and
all internal state variables. The output-only oracle represents
the oracle most likely to be used in practice. Both oracles have
been used in previous work, and thus we use both to allow
for comparison [10], [49]. The fault finding effectiveness of
the test suite and oracle pair is computed as the number of
mutants detected (or “killed”).

For all seven of our example systems, we assess the fault-
finding effectiveness of each test suite and oracle combination
by calculating the ratio of mutants killed to total number of
mutants (with any known non-equivalent mutants removed).

For Infusion_Mgr and Alarms, we also assess the fault-
finding effectiveness of each test suite and oracle combination
against the version of the model with real faults by measuring
the ratio of the number of tests that fail to the total number
of tests for each test suite. We use the number of tests rather
than number of real faults because all of the real faults are in
a single model, and we do not know which specific fault led
to a test failure. However, we hypothesize that the test failure
ratio is a similar measure of the sensitivity of a test suite to
the mutant kill ratio.

4 RESULTS AND DISCUSSION

In Tables 3, 4, 5, and 6, we present the fault finding results
from our experiments when using the mutant kill ratio as the
evaluation criteria. These tables list—for each case example,
coverage criterion, test generation method, and oracle—the
median percentage of found faults for test suites reduced to
satisfy a certain criterion, next to the median percentage of
found faults for random test suites of equal size*, the relative
change in median fault finding when using the test suites
satisfying the coverage criterion versus the random test suite
of equal size, and the p-value for the statistical analysis below.
To give an example, test suites generated to satisfy decision
coverage for the Latctl_Batch system find a median of 89.3%
of faults, while purely random test suites of the same size find
a median of 88.1% of faults—a 1.4% improvement in fault
finding. In Tables 7, 8, 9, and 10, we display the results for

4. “Random of Same Size” refers only to random test suites generated
specifically to be the same size in terms of number of test steps as those
suites reduced with respective coverage.

the systems where real faults were available. In this case, we
display the median percentage of tests to fail in the generated
test suites. Note that negative values for % Change indicate the
test suites satisfying the coverage criterion are less effective
on average than random test suites of equal size.

We present the coverage achieved by the coverage-directed
test generation in Table 11 and the randomly-generated test
suites in Table 12. For decision, condition, and MC/DC
coverage, the random suites are able to reach or come close
to reaching 100% coverage of the test obligations for the
Rockwell systems. OMC/DC is a stronger coverage criterion,
and it is more difficult to achieve full coverage. However,
the random test suites reduced to satisfy OMC/DC are still
able to come within 20 percentage points of full coverage
for the Rockwell systems. Random testing is less capable of
achieving coverage on the Docking_Approach, Infusion_Mgr,
and Alarms systems, covering—at most—around 70% of the
decision coverage obligations for Alarms.

4.1

For both RQ1 and RQ2, we are interested in determining if test
suites satisfying structural coverage criteria outperform purely
random test suites of equal size. We begin by formulating
statistical hypotheses H; and Ho:

Statistical Analysis

e Hi: A test suite generated using random test generation
to provide structural coverage will find more faults—or,
for real faults, find more failing test cases—than a pure
random test suite of similar size.

e Hy: A test suite generated using counterexample-based
test generation to provide structural coverage will find
more faults—or, for real faults, find more failing test
cases—than a random test suite of similar size.

We then formulate the appropriate null hypotheses:

e HOy: The fault finding results of test suites generated
using random test generation to provide structural cover-
age and pure random test suites of similar size are drawn
from the same distribution.

e HO0y: The fault finding results of test suite generated
using counterexample-based test generation to provide
structural coverage and random test suites of similar size
are drawn from the same distribution.

Our observations are drawn from an unknown distribution;
therefore, we cannot fit our data to a theoretical probability
distribution. To evaluate H0; and H0, without any assump-
tions on the distribution of our data, we use a one-sided
(strictly greater) Mann-Whitney-Wilcoxon rank-sum test [50],
a non-parametric hypothesis test for determining if one set
of observations is drawn from a different distribution than
another set of observations. As we cannot generalize across
non-randomly selected case examples, we apply the statistical
test for each pairing of case example, coverage criterion, and
oracle type with a = 0.05°.

5. Note that we do not generalize across case examples, oracles or coverage
criteria, as the needed statistical assumption, random selection from the
population of case examples, oracles, or coverage criteria, is not met. The
statistical tests are used to only demonstrate that observed differences are
unlikely to have occurred by chance.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Counterexample Generation Comparison

Random Generation Comparison

Case Example Oracle Satisfying | Random of %0 p-val Satisfying | Random of %0 p-val
Condition | Same Size | Change Condition | Same Size | Change
Latctl Batch MX 93.8% 97.9% -4.2% 1.00 98.8% 97.1% 1.7% < 0.01
= 00 48.6% 83.5% -41.9% 81.5% 80.2% 1.5% 0.06
Vertmax Batch MX 100.0% 95.6% 4.6% < 0.01 100.0% 96.0% 4.2%
— [0]6) 45.6% 76.2% -40.2% 1.00 81.9% 75.83% 7.9% < 0.01
DWM 1 MX 92.8% 92.8% 0.0% 0.61 97.5% 96.6% 0.8%
- [0]6) 18.2% 25.0% 27.1% 1.00 34.3% 33.1% 3.6% 0.35
MX 94.7% 92.6% 2.3% < 0.01 99.2% 94.2% 5.2%
DWM_2 00 | 75.1% 778% | 2.6% | 099 | 88.9% 82.7% 75% | <00
Docking Approach MX 70.7% 19.4% 264.4% 18.5% 18.5% 0.0% 0.79
[0]6) 21.7% 2.0% 985.0% 2.0% 2.0% 1.00
Infusion_Mgr MX 68.6% 25.1% 173.3% < 0.01 20.7% 20.6% 0.5% 0.11
= [0]6) 27.0% 10.1% 167.3% 7.3% 7.3% 0.0% 0.42
Alarms MX 74.9% 47.4% 58.0% 47.0% 47.0% 0.0% 0.46
[0]6) 40.5% 14.6% 177.4% 15.0% 14.2% 5.6% < 0.01
TABLE 3

Median percentage of faults identified, condition coverage criterion. OO = Output-Only, MX = Maximum Oracle

Counterexample Generation Comparison

Random Generation Comparison

Case Example Oracle Satisfying | Random of % p-val Satisfying | Random of %0 p-val
Decision Same Size | Change Decision Same Size | Change
Latctl Batch MX 89.3% 88.1% 1.4% < 0.01 97.9% 95.9% 2.1% < 0.01
- 00 34.2% 57.6% -40.6% 1.00 80.7% 77.8% 3.7% 0.03
MX 85.1% 70.6% 20.5% | < 0.01 87.9% 84.3% 4.3%
Vertmax_Batch - —a&5——=7157 0% | 2425% 61.7% 573% 77% | < 00!
DWM 1 MX 82.6% 97.0% -14.6% 97.5% 96.2% 1.3% 0.03
- 00 13.1% 32.2% -59.2% 1.00 33.5% 32.6% 2.6% 0.34
MX 80.2% 88.1% -8.9% 94.7% 91.8% 3.1%
DWM_2 00 | 48.1% 708% | 31.9% 80.1% 77.4% 139% | <00
Docking Approach MX 67.5% 19.4% 247.9% 18.5% 18.5% 0.0% 0.90
00 20.1% 2.0% 905% 2.0% 2.0% 1.00
Infusion_Mgr MX 65.2% 23.5% 177.4% <001 20.7% 19.8% 4.5% 0.24
- 00 25.5% 8.9% 186.5% ’ 6.9% 6.9% 0.0% 0.54
Alarms MX 74.9% 47.8% 56.7% 47.0% 47.0% 0.0% 1.00
00 35.7% 14.6% 144.5% 14.6% 13.8% 5.8% < 0.01
TABLE 4

Median percentage of faults identified, decision coverage criterion. OO = Output-Only, MX = Maximum Oracle

Counterexample Generation Comparison

Random Generation Comparison

Case Example Oracle Satisfying | Random of % p-val Satisfying | Random of % p-val
MC/DC Same Size | Change MC/DC Same Size | Change
MX 96.7% 99.6% -2.3% 99.6% 98.8% 0.8%
Latetl_Batch 00 | 98% 54% | 1457 | " [T507% §7.7% 3%
Vertmax Batch MX 100.0% 96.4% 3.8% < 0.01 100.0% 95.2% 5.1% < 0.01
— 00 59.3% 78.2% -24.2% 81.9% 76.6% 6.8%
DWM 1 MX 88.6% 97.5% -9.1% 1.00 97.9% 97.5% 0.4%
- 00 18.6% 36.0% -48.2% 34.7% 34.3% 1.2% 0.45
MX 96.3% 96.3% 0.0% 0.83 99.6% 97.1% 2.5%
DWM_2 00 79.8% 86.0% -12% 1.00 90.9% 88.1% 3.3% < 0.01
Docking Approach MX 72.3% 19.4% 272.7% 18.5% 18.5% 0.0% 0.62
00 23.3% 2.0% 1065.0% 2.0% 2.0% 1.00
Infusion_Mgr MX 69.6% 24.7% 44.9% < 0.01 20.6% 21.9% -1.3% 0.99
- 00 31.6% 11.3% 20.3% 6.9% 7.3% -0.4% 0.02
Alarms MX 78.9% 47.8% 65.1% 47.8% 47.4% 0.8% 0.01
00 40.5% 14.6% 177.4% 15.0% 14.6% 2.7% < 0.01
TABLE 5

Median percentage of faults identified, MC/DC criterion. OO = Output-Only, MX = Maximum Oracle

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Counterexample Generation Comparison Random Generation Comparison
Case Example Oracle Satisfying | Random of %0 p-val Satisfying | Random of % p-val
OMC/DC | Same Size | Change OMC/DC | Same Size | Change
Latctl Batch MX 99.2% 99.2% 0.0% 1.00 99.6% 99.6% 0.0% 0.28
- 00 95.3% 90.1% 5.8% 97.1% 95.9% 1.3%
Vertmax Batch MX 99.6% 96.4% 3.3% < 0.01 99.2% 97.6% 1.6% < 0.01
- 00 97.5% 77.4% 26.0% 90.7% 80.2% 13.1%
DWM 1 MX 100.0% 100.0% 0.0% 0.16 100.0% 100.0% 0.0% 1.00
- 00 90.5% 83.5% 8.4% 97.5% 92.8% 5.1%
DWM 2 MX 98.7% 97.5% 1.2% < 0.01 100.0% 100.0% 0.0% < 0.01
— 00 95.7% 88.9% 7.6% 98.4% 96.7% 1.8%
Docking Approach MX 73.9% 19.4% 280.9% 19.4% 19.4% 0.56
00 26.9% 2.0% 1245.0% 2.0% 2.0% 0.0% 1.00
Infusion_Mgr MX 70.0% 27.5% 154.5% < 001 23.1% 23.1% ’ 0.20
- 00 43.3% 12.1% 257.9% ’ 8.5% 8.5% 0.19
Alarms MX 81.0% 48.2% 68.0% 48.6% 48.6% 0.0% 0.02
00 58.3% 15.4% 278.6% 15.4% 15.4% 0.0% 0.81
TABLE 6

Median percentage of faults identified, OMC/DC criterion. OO = Output-Only, MX = Maximum Oracle

Counterexample Generation Comparison Random Generation Comparison
Case Example | Oracle Satisfying | Random of % val Satisfying | Random of % val
P Condition | Same Size | Change p Condition | Same Size | Change p
Infusion Mer MX 55.8% 36.7% 52.0% | < 0.01 42.9% 36.4% 17.9% 0.16
Ve 00 10.5% 29.0% -63.8% 1.00 35.7% 30.0% 19.0% 0.07
MX 93.0% -0.9% 0.98
Alarms 00 91 2% 93.8% > 3% 100 92.9% 93.0% -0.1% 0.70
TABLE 7
Median percentage of tests failed after identifying real faults, condition coverage criterion.
Counterexample Generation Comparison Random Generation Comparison
Case Example | Oracle Satisfying | Random of % val Satisfying | Random of % —val
P Decision Same Size | Change P Decision Same Size | Change P
Infusion Mer MX 42.3% 40.0% 5.8% < 0.01 33.3% 33.3% 0.0% 0.44
Vg 00 6.3% 31.8% -80.2% 1.00 28.6% 28.6% 0.0% 0.26
MX 92.6% -1.8%
Alarms 00 90 4% 94.3% T1% 1.00 93.8% 94.1% -0.3% 0.33
TABLE 8
Median percentage of tests failed after identifying real faults, decision coverage criterion.
Counterexample Generation Comparison Random Generation Comparison
Case Example | Oracle Satisfying | Random of % val Satisfying | Random of % val
P MC/DC Same Size | Change p MC/DC Same Size | Change p
Infusion Mer MX 46.0% 34.4% 337% | < 0.01 33.3% 30.0% 11.0% 0.02
Vg 00 1.8% 27.3% -93.4% 1.00 30.0% 25.0% 20% 0.05
MX 94.6% 0.9% 0.05
Alarms 00 91 4% 93.8% 06% 036 95.2% 94.1% 1.2% 0.02
TABLE 9
Median percentage of tests failed after identifying real faults, MC/DC criterion.
Counterexample Generation Comparison Random Generation Comparison
Case Example | Oracle Satisfying | Random of % val Satisfying | Random of % val
P OMC/DC | Same Size | Change | P OMC/DC | Same Size | Change | P
Infusion Mer MX 47.9% 38.3% 25.1% < 0.01 42.1% 35.3% 19.3% | < 0.01
-vig 00 40.4% 30.3% 33.3%) 30.0% 28.6% 4.9% 0.09
MX 93.0% -1.5%
Alarms 00 104% 94.4% 575% 1.00 92.4% 94.7% -2.4% 1.00
TABLE 10

Median percentage of tests failed after identifying real faults, OMC/DC criterion.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Decision Coverage | Condition Coverage | MC/DC Coverage | OMC/DC Coverage
DWM_1 100.00% 100.00% 100.00% 99.90%
DWM_2 100.00% 100.00% 95.28% 89.79%
Vertmax_Batch 100.00% 100.00% 100.00% 98.15%
Latctl_Batch 100.00% 100.00% 100.00% 93.42%
Docking_Approach 97.94% 95.85% 91.94% 50.86%
Infusion_Mgr 92.06% 93.56% 92.36% 56.06%
Alarms 91.85% 93.17% 91.32% 76.24%
TABLE 11
Coverage Achieved by Coverage-Directed Test Suites Reduced to Satisfy Coverage Criteria
Decision Coverage | Condition Coverage | MC/DC Coverage | OMC/DC Coverage
DWM_1 100.00% 100.00% 100.00% 99.85%
DWM_2 100.00% 100.00% 93.15% 89.25%
Vertmax_Batch 100.00% 99.83% 99.40% 84.18%
Latctl_Batch 100.00% 100.00% 100.00% 89.21%
Docking_Approach 58.10% 56.90% 48.59% 2.20%
Infusion_Mgr 62.77% 62.33% 48.86% 11.16%
Alarms 69.33% 68.85% 64.22% 32.72%
TABLE 12

Coverage Achieved by Randomly Generated Test Suites Reduced to Satisfy Coverage Criteria

4.2 Evaluation of RQ1

Based on the p-values less than 0.05 in Tables 3-6, we reject
HO; for nearly all of the four Rockwell case examples and
the respective coverage criteria when using either oracle. Note
that we do not reject H0; for the DWM_I case example
when using decision, condition, and MC/DC coverage and the
output-only oracle. That is, the use of coverage as a supple-
ment to random testing—using coverage to decide when to
stop random testing—Ileads to improved fault-finding results.
However, for the majority of coverage criterion and oracle
combinations for the Docking_Approach, Alarms, and Infu-
sion_Mgr systems, we fail to reject H0;. For many of these
combinations, there is no evidence of improvement from using
coverage as an adequacy metric for random testing. Across
all system, for cases with differences that are statistically
significant, test suites reduced to satisfy coverage criteria are
clearly more effective than purely randomly generated test
suites of equal size—for these combinations, we accept Hj.
The difference in results between the four Rockwell
Collins systems and the Docking_Approach, Alarms, and
Infusion_Mgr systems—when examining mutations—can be
somewhat explained through the coverage achieved by random
tests on those systems. As can be seen in Table 12, random
testing is able to cover almost all of the obligations for the four
coverage criteria on the Rockwell systems. In those cases, we
can use coverage as a method of guiding the selection of tests.
We can cut off random testing once coverage is achieved, filter
out superfluous tests, and potentially present a small, powerful
test suite. On the other systems, however, random testing is
unable—even after generating our full pool of 1000 tests—to
achieve full coverage for any of the coverage criteria. In those
cases, it is hardly surprising that using coverage to guide the
selection of random tests fails to lead to an improvement in
fault-finding. Even if there is potential power to be gained from
the guidance of coverage, failing to achieve coverage will also
imply failing to gain that predictive power. It may well be that

any suite of random tests of the same size will result in similar
coverage and fault-finding, and using coverage to choose those
suites may be no more effective than choosing from the pool
of tests at random.

When evaluating test suite effectiveness against the set
of real faults for the Infusion_Mgr and Alarms systems,
we see similar results—see tables 7-10. We reject H0; for
the MC/DC and OMC/DC criteria and the maximum oracle
and the MC/DC criteria for the output-only oracle for the
Infusion_Mgr system. However, we fail to reject H0; for
the remaining criteria and oracle combinations for these two
systems. Note that, in several cases, we do see an improved
median fault-finding result, but we do not see a corresponding
achievement of statistical significance. In those cases, there is
a large amount of variance in the results from the random
test suites. While the median case has improved, the the
distribution of results has not changed. Samples from the
distributions of random tests guided by coverage are not
significantly better at finding faults than samples from the
distribution of purely random tests. In some cases, we see
a small improvement in fault-finding effectiveness when we
use coverage as an adequacy criteria and, even in the other
cases, using coverage as an adequacy metric does not result
in worse fault-finding results.

From our results, we can weakly confirm that all four
of these coverage criteria can be effective metrics for test
suite adequacy within the domain of critical avionics systems:
reducing test suites generated via a non-directed approach to
satisfy structural coverage criteria is at least not harmful, and
in some instances improves test suite effectiveness relative to
their size by up to 13%. Thus, the use of structural coverage
as an adequacy criteria for random testing can potentially
lead to a positive, albeit slight, improvement in test suite
effectiveness. This indicates that the core intuitions behind
these coverage metrics—i.e., covering branches, conditions
and combinations of conditions—appear valid, and thus, given

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

a constant generation strategy, covering code yields benefits as
long as coverage is actually achieved.

4.3 Evaluation of RQ2

Based on the p-values less than 0.05 in Tables 3- 5, we fail
to reject HOq for the four Rockwell Collins case examples
and the decision, condition, and MC/DC coverage criteria
when using the output-only oracle. For all but one of these
case examples, test suites generated via counterexample-based
test generation are less effective than pure random test suites
by 2.6% to 59.2%; we therefore conclude that our initial
hypothesis Hj is false—at least, with respect to the Rockwell
systems—with regard to decision, condition, and MC/DC
coverage when using an output-only oracle.

When using the maximum oracle, the test suites generated
via counterexample-based test generation to satisfy decision,
condition, and MC/DC coverage fare better. In select instances,
countereexample-based test suites outperform random test
suites of equal size (notably Vertmax_Batch), and otherwise
close the gap, being less effective than pure random test
suites by at most 14.6%. Nevertheless, we note that for most
combinations of the Rockwell case examples and those three
coverage criteria, random test suites of equal size are still
more effective. When these criteria are used as targets for test
generation, the test suites produced are generally less effective
than random testing alone, with decreases of up to 59.2%.

This indicates that decision, condition, and MC/DC cover-
age are—by themselves—not necessarily good indicators of
test suite effectiveness; factors other than coverage impact
the effectiveness of the testing process. In contrast, to the
more traditional structural coverage criteria—notably MC/DC
coverage—results for OMC/DC coverage are more positive in
terms of the value of directed test generation. From the p-
values in Table 6, we reject H0, for all case examples except
Latctl_Batch with the maximum oracle and DWM_1 with the
maximum oracle when examining the mutation-based faults. It
appears that test suites generated to satisfy OMC/DC coverage
are more effective than purely random tests of the same size,
and—as when using coverage as a supplemental criteria for
random testing—generating tests in order to satisfy OMC/DC
is no worse than just constructing random tests. Thus, we
can see that considering how covered obligations propagate to
observable points can yield dividends during test generation.

The converse of Ho—that randomly generated test suites
are more effective than equally large test suites generated via
counterexample-based test generation—is also not universally
true, as the Docking_Approach, Alarms, and Infusion_Mgr
examples illustrate. For the Docking_Approach example, ran-
dom testing is effectively useless, finding a mere 2% of
the faults on average when using an output-only oracle and
19.4% with the maximum oracle. Similarly, for the Alarms
and Infusion_Mgr systems, the use of counterexample-based
tests does improve fault-finding effectiveness by up to 278.6%
over random test suites of similar size. However, it should be
noted that improved fault-finding is not always the same as
good fault-finding. The maximum oracle finds up to 81% of
the faults for the Alarms system; however, maximum oracles

are often prohibitively expensive to employ, as they require
a specification of correctness for all variables. The output-
only oracle, a far more common option [49], only manages to
find slightly over half of the faults for a single case example
and coverage combination—OMC/DC testing on the Alarms
system. There is clearly room for improvement.

Contrasting the performance of counterexample-based test
generation and random test generation on the systems with
real faults yields a number of observations. From the results
for Infusion_Mgr in Table 7-10, we can see that the use of
coverage-directed test generation yields a higher percentage of
failing tests for the maximum oracle. However, for the output-
only oracle, the opposite is true—random tests are far more
capable at detecting faults than the coverage-directed tests.
This difference is likely due to masking—some expressions
in the systems can easily be prevented from influencing the
outputs. When covered expressions do not propagate to an
observable output, faults cannot be observed. The coverage-
directed tests tend to be short, one or two test steps at most.
The real faults embedded within this system require specific
combinations of events to trigger, and may take some time
before they influence the output. As a result, the coverage-
based tests may trigger more of the difficult-to-reach faults, but
are not long enough for the effects of those faults to influence
the outward behavior of the system. The random tests, on the
other hand, tend to be longer (up to ten steps), which may
be long enough that many of the faults do propagate to the
system output.

On the Alarms system, the random tests are more capable
of detecting faults than the coverage-directed tests, with the
exception of the MC/DC criterion. For the decision and
condition coverage criteria, this difference is relatively small,
up to a 4.1% difference. However, for the OMC/DC criterion,
random testing is far more capable at detecting the embedded
faults. This result can be explained by examining the type of
faults that exist in this system, as listed in Table 2. In particular,
the first fault—that if an alarm condition occurs during the first
initialization step of execution, it will not be detected in the
faulty version of the system—helps to explain the particular
results that were observed. The coverage criteria employed in
this experiment all, to a varying degree, require that certain
combinations of Boolean conditions are satisfied. As a result,
the generated tests will be biased towards particular input
values. In many cases, these input values would be not trigger
alarm conditions immediately upon system activation. The
random tests, on the other hand, tend towards extreme input
values (or, at least, make use of the full range of possible input
combinations) and, as a result, trigger this particular fault in
almost every test case. As a result, random testing results in
a higher percentage of failing tests, but the majority of those
failures are due to the fault in the initialization step.

Another factor that helps explain the differing results on the
version of Alarms with real faults is that coverage-directed test
generation is unable to achieve a level of OMC/DC coverage
as high as that achieved by MC/DC, condition, and decision
coverage—tests generated on the faulty version of Alarms only
achieve 72% OMC/DC coverage, whereas 88% MC/DC cov-
erage is achieved. This means that some portion of the state

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

space is not being explored by the OMC/DC-directed tests. If
the uncovered state space overlaps with one of the embedded
faults, then the existing OMC/DC tests may not execute the
tests in such a way that the fault will be triggered.

The results when examining real faults differ from those
seen for the Infusion_Mgr and Alarms systems when exam-
ining seeded mutations. In the latter case, coverage-directed
generation yielded stronger tests. Often, in the former case, the
randomly-generated tests yielded stronger results. This shift
can likely be explained by examining the types of faults seeded
in both scenarios. The seeded mutations are all code-based
errors—using the wrong operation, changing a constant, using
a stored value for a variable from a previous computation.
However, the real faults, listed in Table 2, tend to be more
conceptual in nature. Largely, the real faults are problems
of omission—the developers forgot to implement a feature
or the system specification left an outcome ambiguous. Code
coverage cannot be expected to account for code that does
not exist, and thus, is unlikely to yield tests that account for
such faults. This explains the different results for these systems
when switching from seeded faults to real faults—coverage-
directed tests can help find faults when the faults are the result
of mistakes in the code that is being exercised, but are not
guaranteed to be effective when faults are due to conceptual
mistakes.

4.4 Implications

Given the important role of structural coverage criteria in the
verification and validation of safety-critical avionics systems,
we find these results quite troublesome. In the remainder of
this section, we discuss the immediate practical implications
of this as well as the implications for future work. We begin
by discussing why traditional structural coverage criteria fare
poorly when used as targets for test generation. We have
identified several factors that contribute to this, including the
formulation of structural coverage criteria; the behavior of
the test generation mechanism (in this case, software model
checkers); and structural properties of the case examples.

First and—given the differences observed with OMC/DC
coverage—foremost, we note that traditional coverage criteria
are formulated over specific elements in the source code.
For each element, (1) execution must reach the element and
(2) exercise the element in a specific way. This type of
formulation falls short in two ways. First, it is possible to
change the number and structure of each element by varying
the structure of the program, which we have previously seen
can significantly impact the number of tests required to satisfy
the MC/DC coverage criterion [12], [S1]. This is linked partly
to the second issue, masking—some expressions in the systems
can easily be prevented from influencing the outputs. When
covered expressions do not propagate to an observable output
(i.e., do not reach a test oracle variable), faults cannot be
observed. This reduces the effectiveness of any testing process
based on structural coverage criteria, as we can easily satisfy
coverage obligations for internal expressions without allowing
resulting errors to propagate to the output.

Issues related to masking are in turn exacerbated by auto-
mated test generation, bringing us to our second factor. We

have found that test inputs generated using counterexample-
based generation (including those in this study) tend to be
short, and manipulate only a handful of input values, leaving
other inputs at default values (in our case, false or 0) [8].
Such tests tend to exercise the program just enough to satisfy
the coverage obligations for which they were generated and
do not consider the propagation of values to the outputs. In
contrast, random tests can vary arbitrarily in length (up to 10
steps in this study) and vary all input values; such test inputs
may be more likely to overcome any masking present in the
system. Rather than pointing to this as a strength of random
testing, we would like to emphasize that this is a weakness
of the coverage-directed test generation method. The use of
coverage cannot be assumed to guarantee effective tests—the
particulars of the method of test generation appear to have a
greater impact at present.

Finally, the structure of the case examples themselves—
being fairly representative of case examples within this
domain—is also partly at fault. Recall that when testing the
Docking_Approach, Alarms, and Infusion_Mgr systems, tests
generated to satisfy structural coverage criteria sometimes
dramatically outperform random test generation. This is due to
the structure of these systems: large portions of these system’s
behavior are activated only when very specific conditions are
met. As a result the state space is both deep and narrow
at multiple points, and exploration of these deep states re-
quires relatively long tests with specific combinations of input
values. Random testing is therefore highly unlikely to reach
much of the state space, and indeed, less than 50% of the
MC/DC obligations were covered for Docking_Approach. In
contrast, the Rockwell Collins systems (while stateful) have
a state space that is shallow and highly interconnected; these
systems are therefore easier to cover with random testing and,
thus, the potential benefits of structural coverage metrics are
diminished.

It is these issues—particularly the first two issues—that
motivated the development of the OMC/DC coverage criterion.
Observable MC/DC coverage explicitly avoids issues related
to masking by requiring in its test obligations both demonstrate
the independent impact of a condition on the outcome of the
decision statement, and follow a non-masking path to some
variable monitored by the test oracle. Consequently, test suites
generated via counterexample-based test generation to satisfy
OMC/DC outperform purely randomly generated test suites of
equal size by up to 42.5%.

This represents a major improvement over existing structural
coverage criteria, though we still urge caution. The high
cost and difficulty of generating OMC/DC satisfying test
suites—relative to generating the weaker decision, condition,
or MC/DC test suites—makes its use as a target for directed
test suite generation less likely at this point in time. Addi-
tional work demonstrating the cost effectiveness (and perhaps
specific improvements for test generation) will be necessary
before OMC/DC coverage can replace MC/DC coverage.

We see three key implications in our results. First, with
regard to RQ1, we can weakly conclude that using any of these
four structural coverage criteria as an addition to another non-
structure-based testing method—in this case, random testing—

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

can potentially yield improvements in the testing process.
These results are similar to those of other authors, for example,
results indicating MC/DC is an effective coverage criterion
when used to check the adequacy of manual, requirement-
driven test generation [32] and results indicating that reducing
randomly generated tests with respect to decision coverage
yields improvements over pure random test generation [19].
These results, in conjunction with the results for RQ2, rein-
force the advice that coverage criteria are best applied after test
generation to find areas of the source code that have not been
tested. In the case of MC/DC this advice is already explicitly
stated in regulatory requirements and by experts on the use of
the criterion [2], [15].

Second, the dichotomy between the Docking_Approach,
Alarms, and Infusion_Mgr examples and the Rockwell Collins
systems highlights that, while the current methods of deter-
mining test suite adequacy in avionics systems are themselves
largely inadequate, some method of determining testing ad-
equacy is needed. While current practice recommends that
coverage criteria should be applied after test generation, in
practice, this relies on the honesty of the tester (it is not
required in the standard). Therefore, it seems inevitable that
at least some practitioners will use automated test generation
to reduce the cost of achieving the required coverage.

The lack of consensus in the results across these varied
systems is concerning in light of this inevitability. While
coverage-directed test generation can lead to effective testing,
there is no evidence that it can do so consistently. With the
importance given to coverage criteria in the avionics industry,
the temptation exists to rely on coverage as an assurance of
reliable and thorough testing. However, we stress that blind
faith in the power of code coverage is a risky proposition at
best in light of the inconsistency of the results in this study.

Finally, our results with OMC/DC coverage indicate that it
is possible to extend existing coverage to overcome some of
the issues we have highlighted above. The primary problem
with existing structural coverage criteria is that all effort is
expended on covering structures internal to the system, and
no further consideration is paid to how the effect of covered
structure reaches an observable point in the system. OMC/DC
considers the observability aspect for Boolean expressions
(using MC/DC) by appending a path condition onto each test
obligation in MC/DC. Similar extensions could be applied to
a variety of other existing coverage metrics, e.g., boundary
value testing.

5 RECOMMENDATIONS

Assuming our results generalize, we believe that these studies
raise serious concerns regarding the efficacy of coverage-
directed automated testing. The tools are not at fault: we
have asked these tools to produce test inputs satisfying some
form of structural coverage, and they have done so admirably;
for example, satisfying MC/DC for the Docking_Approach
example, for which random testing achieves a mere 37.7%
of the possible coverage. However, our results—along with
the existing body of research on this topic—lead us to con-
clude that it is not sufficient to simply maximize a structural

coverage metric when automatically generating test inputs. In
practice, the mechanism for achieving coverage is important.
How tests are generated matters more than what is being
maximized.

The key issues involve how structural coverage criteria are
formulated and how automatic test generation tools operate.
Traditional coverage criteria are formulated over specific ele-
ments in the source code. To cover an element, (1) execution
must reach the element and (2) exercise the element in a
specific way. However, commonly used structural coverage
criteria typically leave a great deal of leeway to how the ele-
ment is reached, and—more importantly, in our experience—
place no constraints whatsoever on how the test should evolve
after the element is exercised. Automatic test generation tools
typically use this freedom to do just enough work to satisfy
coverage criteria, without consideration of, for example, how
the faults are to be detected by the test oracle.

First, let us consider the path to satisfy a coverage obli-
gation, e.g., a branch of a complex conditional. Structural
coverage criteria require only that the point of interest is
reached and exercised. We have found that automatically
generated tests often take a shortest-path approach to satisfying
test obligations, and manipulate only a handful of input values,
leaving other inputs at default values. This is a cost effective
method of satisfying coverage obligations; why tinker with
program values that do not impact the coverage achieved?
However, we, and other authors, have observed that variations
provided by (for example) simple random testing result in test
suites that are nearly as effective in terms of coverage, and
moreover produce more interesting behavior capable of detect-
ing faults [25], [7]. As illustrated by our experiments, however,
even with lower coverage achieved, randomly generated test
inputs can outperform automatically generated test suites in
terms of fault finding.

Second, for the most commonly used structural coverage
criteria, there is no directive concerning how tests should
evolve after satisfying the structural element. Given this
lack of direction, automatic test generation tools typically
do not consider the path from the covered element to an
output/assertion/observable state when generating a test, and
therefore test inputs may achieve high coverage but fail
to demonstrate faults that exist within the code. One rea-
son for this failure is masking, which occurs when expres-
sions/computations in the system are prevented from influ-
encing the observed output, i.e., do not reach a variable or
assertion monitored by the test oracle. More generally, this is
related to the distinction between incorrect program state and
program output: just because a test triggers a fault, there is no
guarantee this will manifest as a detected fault. Indeed, in our
experience, care must be taken to ensure that this occurs.

These two high level issues result in the generation of test
inputs that may indeed be effective at encountering faults,
but may make actually observing them—that is, actually
detecting the fault—very difficult or unlikely. This reduces
the effectiveness of any testing process based on structural
coverage criteria, as we can easily satisfy coverage obligations
for internal expressions without allowing resulting errors to
propagate to the output.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Furthermore, even when the generated tests are more effec-
tive than the randomly-generated tests, these tests may still not
actually yield good fault-finding performance. On the Alarms,
Infusion_Mgr, and—in particular—Docking_Approach, the
generated tests commonly found fewer than half of the seeded
faults when using a common output-only oracle, and less than
80% of the faults with the prohibitively expensive maximum
oracle.

We believe that these issues raise serious concerns about
the efficacy of coverage-directed automated testing. A focus in
automated test generation work has been on efficiently achiev-
ing coverage without carefully considering how achieving
coverage impacts fault detection. We therefore run the risk of
producing tools that are satisfying the letter of what is expected
in testing, but not the spirit. Nevertheless, the central role of
coverage criteria in testing is unlikely to fade, as demonstrated
by the emphasis on coverage criteria for certification.

Hence, the key is to improve upon the base offered by
these criteria and existing technology. We have come to the
conclusion that the research goal in automated test generation
should not be developing methods of maximizing structural
code coverage, but rather determining how to maximize fault-
finding effectiveness. We propose that algorithms built for test
generation must evolve to take into account factors beyond the
naive execution of individual elements of the code—factors
such as masking, program structure, and the execution points
monitored by the test oracle.

To that end, we recommend three approaches. First, we
could improve, or replace, existing structural coverage criteria,
extending them to account for factors that influence test
quality. Automated test generation has improved greatly in
the last decade, but the targets of such tools have not been
updated to take advantage in this increase in power. Instead,
we continue to rely on criteria that were originally formulated
when manual test generation was the only practical method of
ensuring 100% achievable coverage.

Second, automated test generation tools could be improved
to avoid pitfalls when using structural coverage criteria. This
could take many forms, but one straightforward approach
would be to develop heuristics or rules that could operate
alongside existing structural coverage criteria. For instance,
tools could be encouraged to generate longer test cases,
increasing the chances that a corrupted internal state would
propagate to an observable output (or other monitored vari-
able).

Third, important factors specific to individual domains,
e.g., web testing v.s. embedded systems, could be empirically
identified and formalized as heuristics within a test generation
algorithm.

5.1

In our own work, the issues of criteria formulation and
masking motivated the development of the Observable MC/DC
coverage criterion employed in this case study [12]. OMC/DC
coverage explicitly avoids issues related to masking by re-
quiring that its test obligations both demonstrate the indepen-
dent impact of a condition on the outcome of the decision

Use More Robust Coverage Criteria

statement, and follow a non-masking propagation path to
some variable monitored by the test oracle. OMC/DC, by
accounting for the program structure and the selection of the
test oracle, can, in our experience, address some of the failings
of traditional structural coverage criteria within the avionics
domain, allowing for the generation of test suites achieving
better fault detection than random test suites of equal size.
Similarly, Vivanti et al. have demonstrated evidence that the
use of data-flow coverage as a goal for test generation results
in test suites with higher fault detection capabilities than
suites generated to achieve branch coverage [52]. OMC/DC
considers the observability aspect for Boolean expressions
(using MC/DC) by appending a path condition onto each test
obligation in MC/DC. Similar extensions could be applied to
a variety of other existing coverage metrics, e.g., boundary
value testing.

5.2 Algorithmically Improve Test Selection

Extensions to coverage criteria are not without downsides: for
stronger metrics, programs will contain unsatisfiable obliga-
tions where there is no test that can be constructed to satisfy
the obligation. Depending on the search strategy, the test
generator may never terminate on such obligations. Further,
the cost and difficulty of generating OMC/DC satisfying test
suites—relative to generating the weaker MC/DC test suites—
makes the use of strong coverage criteria as targets for test
generation harder to universally recommend.

Instead, another possible method of ensuring test quality
is to use a traditional structural coverage metric as the ob-
jective of test generation, and augment this by considering
other factors empirically established to impact fault detection
effectiveness. For example, in the context of a search-based
test generation algorithm, this might mean adding additional
objective functions to the search strategy, rather than adding
additional constraints to the coverage criterion. For instance,
an algorithm could both work to maximize an existing struc-
tural coverage criterion and minimize the propagation distance
between the assignment of a value and its observation by
the oracle (an algorithm that minimizes this distance for test
prioritization purposes already exists [53]).

As an example, consider purely random testing. Random
testing does not employ an objective function, but it is possible
to use one to approximate how well the system’s state space
is being covered.We have seen systems containing bottlenecks
(pinch-points) in the state space where randomly generated
tests perform very poorly. Such bottlenecks require certain
specific input sequences to reach a large portion of the state
space. However, approaches such as concolic testing [4]—
combining random testing with symbolic execution—are able
to direct the generation of tests around such bottlenecks.
Similar approaches could be employed to direct test gener-
ation towards, for example, propagation paths from variable
assignment to oracle-monitored portions of the system.

By pursuing and balancing multiple objectives, we could
potentially offer stronger tests that both satisfy MC/DC obliga-
tions and offer short propagation paths, even when it would be
impossible to generate a test that satisfies the corresponding—
but stricter—OMC/DC obligation. Embedding aspects of test

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

selection into the objective function—or even into the search
algorithm itself—may allow for improved efficiency. The
search method can use, say, masking as a pruning mechanism
on paths through the system, and the algorithm would not have
to track as much symbolic information related to the objective
metric itself.

5.3 Tailor an Approach to the Domain

It is important to emphasize that there is no “one size fits all”
solution to test generation. The size and shape of the state
space of a system varies dramatically between domains and
programming paradigms, and, as a result, it is difficult to tailor
universal testing strategies. Much of our work has focused on
embedded systems that run as cyclic processes. In this area, a
common issue is that the impact of exercising a code path on
the system’s output is often delayed; only several cycles after
a fault occurs can we observe it. If the goal of test generation
is only to cause the code path to be executed, many of the
tests will not cause a visible change in system behavior. In
object-oriented systems, a central, but related issue is that
a method call may change internal state that, again, is not
visible externally until another method call produces output.
As a result, choosing appropriate method sequences and their
ordering becomes a major challenge.

Thus while general rules and heuristics for improving test
generation are valuable, we believe there are large improve-
ments to be found in tailoring the approach to the testing
challenge at hand. For example, two often overlooked factors
are the cost of generating tests and the cost of running
tests. It is hard to outperform random testing in terms of the
cost of generating tests, because doing so requires very little
computation. If it is also cheap to run tests, then for many
systems it is difficult to outperform straight random testing. On
the other hand, if it is expensive to run tests, e.g., for embedded
systems, this may require access to a shared hardware “rig.”
In this case, using search-based techniques to generate tests
for a specific strong coverage criterion (such as OMC/DC)
may be sensible because the number of required tests can be
dramatically smaller than the number of random tests required
to achieve the same level of fault finding.

Another overlooked factor is the “reasonableness” of gener-
ated tests. Automated test generation methods should deliver
tests that not only find faults, but are also meaningful to the
domain of interest. Coverage-based techniques take the path
of least resistance when generating tests, but can produce tests
that make little sense in the context of the domain. Techniques
that can generate inputs with meaning to the human testers are
valuable in reducing the “human oracle cost” associated with
checking failing test results [54].

Addressing factors such as these must be done on a per
domain level, and indicate that code coverage should be one
of several goals in test generation. We suspect that, in the long
run, effective test generation tools will consist of both gen-
eral techniques and heuristics, and additional fest generation
profiles for each domain. Determining the correct objective
functions for test generation for each domain is an open
research question, one requiring both technical advancements
in search-based test generation and empirical studies.

6 THREATS TO VALIDITY

External Validity: Our study has focused on a relatively small
number of systems but, nevertheless, we believe the systems
are representative of the critical systems domain, and our
results are generalizable to other systems in that domain.

We have used two methods for test generation (random
generation and counterexample-based). There are many meth-
ods of generating tests and these methods may yield differ-
ent results. Counterexample-based testing is used to produce
coverage-directed test cases because it is a method used widely
in testing safety-critical systems. Random testing is used as
a contrasting baseline because it is one of the most simple
test generation methods in existance. Because the length of
test inputs and the values selected for the input variables are
chosen at random, we believe that random generation is a fair
baseline—it has not been tuned to systems in this domain and
has no particular strengths or result guarantees.

For all coverage criteria, we have examined 50 test suites
reduced using a simple greedy algorithm. It is possible that
larger sample sizes may yield different results. However, in
previous studies, smaller numbers of reduced test suites have
been seen to produce consistent results [51].

Construct Validity: In our study, we primarly measure fault
finding over seeded faults, rather than real faults encountered
during development. However, Andrews et al. showed that
seeded faults lead to similar conclusions to those obtained
using real faults [55] for the purpose of measuring test
effectiveness. We have assumed these conclusions hold true
in our domain/language for several case examples. We have,
however, made use of two systems containing real faults in
order to widen our pool of observations.

Our generation of mutants was randomized to avoid bias
in mutant selection. A large pool of mutants was used to
avoid generated a set of mutants particularly skewed toward
or against a coverage criteria. In our experience, mutants
sets greater than 100 result in very similar fault finding; we
generated 250 to further increase our confidence no bias was
introduced. In addition, we have also used one case example
which has an associated set of real faults, which yields results
comparable to those found when using seeded faults.

We measure the cost of test suites in terms of the number of
steps. Other measurements exist, e.g., the time required to gen-
erate and/or execute tests [56]. We chose size as a metric that
favors directed test generation. Thus, conclusions concerning
the inefficacy of directed test generation are reasonable.

Conclusion Validity: When using statistical analyses, we
have attempted to ensure the base assumptions beyond these
analyses are met, and have favored non-parametric methods.
In cases in which the base assumptions are clearly not met,
we have avoided using statistical methods. (Notably, we have
avoided statistical inference across case examples.)

7 CONCLUSION

Our results indicate that the use of structural coverage as a
supplement to an existing testing method—such as random
testing—may result in more effective tests suites than random
testing alone. However, the results for the use of coverage

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

criteria as a target for directed, automatic test case generation
are mixed. For three of the systems, automatic test case
generation yielded effective tests. However, for the remaining
systems, randomly generated tests often yielded similar—or
more effective—fault-finding results. These results lead us to
conclude that, while coverage criteria are potentially useful
as test adequacy criteria, the use of coverage-directed test
generation is more questionable as a means of creating tests
within the domain of avionics systems. If simple random test
generation can yield equivalently sized—but more effective
test suites—for more traditional coverage criteria such as
decision, condition or MC/DC coverage, then more research
must be conducted before automated test generation can be
recommended.

We do not wish to condemn a particular test generation
method or recommend another. Instead, we want to shine a
light on the risks of relying on structural coverage criteria
as an assurance of effective testing. Given the important
role of structural coverage criteria in the verification and
validation of safety-critical avionics systems, we find these
results quite troublesome. We believe that structural coverage
criteria are, for the domain explored, potentially unreliable,
and thus, unsuitable, as a target for determining the adequacy
of automated test suite generation. Our observations indicate a
need for methods of determining test adequacy that (1) provide
a reliable measure of test quality and (2) are better suited
as targets for automated techniques. At a minimum, such
coverage criteria must, when satisfied, indicate that our test
suites are better than simple random test suites of equal size.
Such criteria must account for all of the factors influencing
testing, including the program structure, the test oracle used,
the nature of the state space of the system under test, and the
method of test generation. Towards this goal, the OMC/DC
criterion is an improvement in this regard, but we believe there
is still much work to be done.

Until the challenges of determining the efficacy of generated
test suites are overcome, we urge caution when automatically
generating test suites: code coverage does not guarantee test
quality. While automated test generation is an alluring possi-
bility, savings of time and cost may not be worth the trade-off
in the safety of the released software.

REFERENCES

[1] H. Zhu and P. Hall, “Test data adequacy measurement,” Software
Engineering Journal, vol. 8, no. 1, pp. 21-29, 1993.

[2] RTCA, DO-178B: Software Considerations In Airborne Systems and
Equipment Certification. RTCA, 1992.

[3] S. Rayadurgam and M. Heimdahl, “Coverage based test-case generation
using model checkers,” in Proc. of the 8th IEEE Int’l. Conf. and
Workshop on the Engineering of Computer Based Systems, pp. 83-91,
IEEE Computer Society, April 2001.

[4] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” 2005.

[5] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” PLDIOS: Proc. of the 2005 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, 2005.

[6] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, and P. McMinn, “An orchestrated survey
on automated software test case generation,” Journal of Systems and
Software, vol. 86, pp. 1978-2001, August 2013.

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

M. Staats, G. Gay, M. W. Whalen, and M. P. Heimdahl, “On the
danger of coverage directed test case generation,” in 15th Int’l Conf. on
Fundamental Approaches to Software Engineering (FASE), April 2012.
M. Heimdahl, G. Devaraj, and R. Weber, “Specification test coverage
adequacy criteria = specification test generation inadequacy criteria?,”
in Proc. of the Eighth IEEE Int’l Symp. on High Assurance Systems
Engineering (HASE), (Tampa, Florida), March 2004.

M. P. Heimdahl and G. Devaraj, “Test-suite reduction for model based
tests: Effects on test quality and implications for testing,” in Proc. of
the 19th IEEE Int’l Conf. on Automated Software Engineering (ASE),
(Linz, Austria), September 2004.

M. Staats, M. Whalen, and M. Heimdahl, “Better testing through oracle
selection (nier track),” in Proceedings of the 33rd Int’l Conf. on Software
Engineering, pp. 892-895, 2011.

M. Staats, G. Gay, and M. Heimdahl, “Automated oracle creation
support, or: how I learned to stop worrying about fault propagation
and love mutation testing,” in Proceedings of the 2012 Int’l Conf. on
Software Engineering, pp. 870-880, 2012.

M. Whalen, G. Gay, D. You, M. Heimdahl, and M. Staats, “Observable
modified condition/decision coverage,” in Proceedings of the 2013 Int’l
Conf. on Software Engineering, ACM, May 2013.

G. Hagen, Verifying safety properties of Lustre programs: an SMT-based
approach. PhD thesis, University of Iowa, December 2008.

Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, no. 99,
p- 1, 2010.

J. J. Chilenski and S. P. Miller, “Applicability of Modified Condi-
tion/Decision Coverage to Software Testing,” Software Engineering
Journal, pp. 193-200, September 1994.

N. Juristo, A. Moreno, and S. Vegas, “Reviewing 25 years of testing
technique experiments,” Empirical Software Engineering, vol. 9, no. 1,
pp. 7-44, 2004.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of the
effectiveness of dataflow-and controlflow-based test adequacy criteria,”
1994.

P. Frankl and S. N. Weiss, “An experimental comparison of the effec-
tiveness of the all-uses and all-edges adequacy criteria,” in Proc. of the
Symposium on Testing, Analysis, and Verification, 1991.

A. Namin and J. Andrews, “The influence of size and coverage on test
suite effectiveness,” 2009.

L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, (New York, NY,
USA), pp. 435445, ACM, 2014.

E. Weyuker and B. Jeng, “Analyzing partition testing strategies,” I[EEE
Trans. on Software Engineering, vol. 17, no. 7, pp. 703-711, 1991.

T. Chen and Y. Yu, “On the expected number of failures detected by
subdomain testing and random testing,” IEEE Transactions on Software
Engineering, vol. 22, no. 2, 1996.

D. Hamlet and R. Taylor, “Partition testing does not inspire confidence,”
Software Engineering, IEEE Transactions on, vol. 16, pp. 1402-1411,
Dec 1990.

W. Gutjahr, “Partition testing vs. random testing: The influence of
uncertainty,” IEEE Transactions on Software Engineering, vol. 25, no. 5,
pp. 661-674, 1999.

A. Arcuri, M. Z. Z. Igbal, and L. C. Briand, “Formal analysis of the
effectiveness and predictability of random testing,” in ISSTA, pp. 219-
230, 2010.

A. Arcuri and L. C. Briand, “Adaptive random testing: An illusion of
effectiveness?,” in ISSTA, 2011.

A. Gargantini and C. Heitmeyer, “Using model checking to generate tests
from requirements specifications,” Software Engineering Notes, vol. 24,
pp. 146-162, November 1999.

R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite
evaluation by developers,” in Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, (New York, NY,
USA), pp. 72-82, ACM, 2014.

R. Majumdar and K. Sen, “Hybrid concolic testing,” in ICSE, pp. 416—
426, 2007.

Y. Yu and M. Lau, “A comparison of MC/DC, MUMCUT and several
other coverage criteria for logical decisions,” Journal of Systems and
Software, vol. 79, no. 5, pp. 577-590, 2006.

S. Kandl and R. Kirner, “Error detection rate of MC/DC for a case study
from the automotive domain,” Software Technologies for Embedded and
Ubiquitous Systems, pp. 131-142, 2011.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]
[43]
[44]
[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

A. Dupuy and N. Leveson, “An empirical evaluation of the MC/DC
coverage criterion on the hete-2 satellite software,” in Proc. of the Digital
Aviation Systems Conf. (DASC), (Philadelphia, USA), October 2000.
A. Gacek, “JKind - a Java implementation of the KIND model checker.”
https://github.com/agacek, 2015.

G. Fraser, F. Wotawa, and P. Ammann, “Issues in using model checkers
for test case generation,” Journal of Systems and Software, vol. 82, no. 9,
pp. 1403-1418, 2009.

P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz
testing,” in Network Distributed Security Symposium (NDSS), Internet
Society, 2008.

M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann,
and L. Nachmanson, “Model-based testing of object-oriented reactive
systems with spec explorer.,” in Formal Methods and Testing (R. M.
Hierons, J. P. Bowen, and M. Harman, eds.), vol. 4949 of Lecture Notes
in Computer Science, pp. 3976, Springer, 2008.

C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput.
Surv., vol. 43, pp. 11:1-11:29, Feb. 2011.

P. McMinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, pp. 105-156,
2004.

“Reactive systems inc. Reactis
http://www.reactive-systems.com/index.msp.
RTCA/DO-178C, “Software considerations in airborne systems and
equipment certification.”

A. Murugesan, S. Rayadurgam, and M. Heimdahl, “Modes, features,
and state-based modeling for clarity and flexibility,” in Proceedings of
the 2013 Workshop on Modeling in Software Engineering, 2013.

Product Description.”

“Mathworks Inc. Simulink.” http://www.mathworks.com/products/simulink,
2015.

“MathWorks Inc. Stateflow.” http://www.mathworks.com/stateflow,
2015.

N. Halbwachs, Synchronous Programming of Reactive Systems. Klower
Academic Press, 1993.

A. Rajan, M. Whalen, M. Staats, and M. Heimdahl, “Requirements
coverage as an adequacy measure for conformance testing,” 2008.

J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?,” Proc of the 27th Int’l Conf on Software
Engineering (ICSE), pp. 402-411, 2005.

C. Van Eijk, “Sequential equivalence checking based on structural sim-
ilarities,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems,, vol. 19, no. 7, pp. 814-819, 2002.

J. Chilenski, “An investigation of three forms of the modified condition
decision coverage (MCDC) criterion,” Tech. Rep. DOT/FAA/AR-01/18,
Office of Aviation Research, Washington, D.C., April 2001.

M. Staats, G. Gay, and M. Heimdahl, “Automated oracle creation
support, or: how I learned to stop worrying about fault propagation
and love mutation testing,” in Proceedings of the 2012 Int’l Conf. on
Software Engineering, pp. 870-880, IEEE Press, 2012.

F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. pp. 80-83, 1945.

A. Rajan, M. Whalen, and M. Heimdahl, “The effect of program and
model structure on MC/DC test adequacy coverage,” in Proc. of the 30th
Int’l Conf. on Software engineering, pp. 161-170, ACM, 2008.

M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-flow test
generation,” in ISSRE’13: Proceedings of the 24th IEEE Int’l Symposium
on Software Reliability Engineering, IEEE Press, Nov. 2013.

M. Staats, P. Loyola, and G. Rothermel, “Oracle-centric test case
prioritization,” in ISSRE, pp. 311-320, 2012.

P. McMinn, M. Stevenson, and M. Harman, “Reducing qualitative
human oracle costs associated with automatically generated test data,”
in Proceedings of the First International Workshop on Software Test
Output Validation, STOV *10, (New York, NY, USA), pp. 1-4, ACM,
2010.

J. Andrews, L. Briand, Y. Labiche, and A. Namin, “Using mutation
analysis for assessing and comparing testing coverage criteria,” Software
Engineering, IEEE Transactions on, vol. 32, pp. 608 —624, aug. 2006.
G. Devaraj, M. Heimdahl, and D. Liang, “Coverage-directed test gen-
eration with model checkers: Challenges and opportunities,” Computer
Software and Applications Conf., Annual Int’l, vol. 1, pp. 455-462, 2005.

£

Gregory Gay is an Assistant Professor of Com-
puter Science & Engineering at the University of
South Carolina. His research interests include
automated testing and analysis—with an em-
phasis on test oracle construction—and search-
based software engineering. Greg received his
Ph.D. from the University of Minnesota, working
with the Critical Systems research group, and an
M.S. from West Virginia University.

Matt Staats has worked as a research asso-
ciate at the Software Verification and Validation
lab at the University of Luxembourg and at the
Korean Advanced Institute of Science and Tech-
nology in Daejeon, South Korea. He received
his Ph.D. from the University of Minnesota-Twin
Cities. Matt Staats’s research interests are re-
alistic automated software testing and empirical
software engineering. He is currently employed
by Google, Inc.

Michael Whalen is a Program Director at the
University of Minnesota Software Engineering
Center. Dr. Whalen is interested in formal anal-
ysis, language translation, testing, and require-
ments engineering. He has developed simu-
lation, translation, testing, and formal analy-
sis tools for Model-Based Development lan-
guages including Simulink, Stateflow, SCADE,
and RSML~¢, and has published extensively
on these topics. He has led successful formal
verification projects on large industrial avionics

models, including displays (Rockwell-Collins ADGS-2100 Window Man-
ager), redundancy management and control allocation (AFRL CerTA
FCS program) and autoland (AFRL CerTA CPD program). He has re-
cently been researching tools and techniques for scalable compositional
analysis of system architectures.

Mats P.E. Heimdahl is a Full Professor of Com-
puter Science and Engineering at the University
of Minnesota, the Director of the University of
Minnesota Software Engineering Center (UM-
SEC), and the Director of Graduate Studies for
the Master of Science in Software Engineering
program. He earned an M.S. in Computer Sci-
ence and Engineering from the Royal Institute of
Technology (KTH) in Stockholm, Sweden and a
Ph.D. in Information and Computer Science from
the University of California at Irvine.

His research interests are in software engineering, safety critical
systems, software safety, testing, requirements engineering, formal
specification languages, and automated analysis of specifications.

He is the recipient of the NSF CAREER award, a McKnight Land-
Grant Professorship, the McKnight Presidential Fellow award, and the
awards for Outstanding Contributions to Post-Baccalaureate, Graduate,
and Professional Education at the University of Minnesota

