IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Automated Oracle Data Selection Support

Gregory Gay, Matt Staats, Michael Whalen, Senior Member, IEEE, and
Mats P.E. Heimdahl, Senior Member, IEEE

Abstract—The choice of test oracle—the artifact that determines whether an application under test executes correctly—can
significantly impact the effectiveness of the testing process. However, despite the prevalence of tools that support test input selection,
little work exists for supporting oracle creation. We propose a method of supporting test oracle creation that automatically selects the
oracle data—the set of variables monitored during testing—for expected value test oracles. This approach is based on the use of
mutation analysis to rank variables in terms of fault-finding effectiveness, thus automating the selection of the oracle data.
Experimental results obtained by employing our method over six industrial systems (while varying test input types and the number of
generated mutants) indicate that our method—when paired with test inputs generated either at random or to satisfy specific structural
coverage criteria—may be a cost-effective approach for producing small, effective oracle data sets, with fault finding improvements over
current industrial best practice of up to 1,435% observed (with typical improvements of up to 50%).

Index Terms—Testing, Test Oracles, Oracle Data, Oracle Selection, Verification

1 INTRODUCTION

There are two key artifacts to consider when testing software:
the fest inputs and the test oracle, which determines if the
system executes correctly. Substantial research has focused on
supporting the creation of test inputs but little attention has
been paid to the creation of oracles [1]. However, existing
research indicates that the choice of oracle has a significant
impact on the effectiveness of testing [2], [3], [4], [5]. There-
fore, we are interested in the development of automated tools
that support the creation of a test oracle.

Consider the following testing process: (1) the tester selects
inputs using some criterion—structural coverage, random test-
ing, or engineering judgement, among others; (2) the tester
then defines concrete, anticipated values for these inputs for
one or more variables (internal variables or output variables)
in the program. This type of oracle is known as an expected
value test oracle [3]. Experience with industrial practitioners
indicates that such test oracles are commonly used in testing
critical systems, such as avionics or medical device systems.

Our goals here are twofold. First, the current practice when
constructing expected value test oracles is to define expected
values for only the outputs, a practice that can be suboptimal
when faults that occur inside the system fail to propagate to
these observed variables. Second, manually defining expected
values is a time-consuming and, consequently, expensive pro-

G. Gay is with the Department of Computer Science & Engineering, Univer-
sity of South Carolina. E-Mail: greg@greggay.com

M. Whalen and M. Heimdahl are with the Department of
Computer Science and Engineering, University of Minnesota. E-Mail:
[whalen,heimdahl] @ cs.umn.edu

M. Staats is with Google, Inc. E-Mail: staatsm @ gmail.com

This work has been supported by NASA Ames Cooperative Agreement
NNAO6CB21A, NSF grants CCF-0916583, CNS-0931931, and CNS-1035715,
an NSF graduate fellowship, and the Fonds National de la Recherche,
Luxembourg (FNR/P10/03). We would additionally like to thank Rockwell
Collins Inc. for their support.

Measure Variable
‘ Program Generate: Mutants % Variable Effectiveness
Effectiveness

Ranking

Run

Against (/'")
4—{ Oracle Data

Test Inputs (Generated i Specifies expected value__y | Expected Value
Externally) ester Test Oracle

Fig. 1. Supporting Expected Value Test Oracle Creation

cess. It is simply not feasible to monitor everything!. Even in
situations where an executable software specification can be
used as an oracle—for instance, in some model-based devel-
opment scenarios—limited visibility into embedded systems
or the high cost of logging often make it highly desirable to
have the oracle observe only a small subset of all variables.
To address these goals, we present and evaluate an approach
for automatically selecting oracle data—the set of variables
for which expected values are defined [4]—that aims at
maximizing the fault finding potential of the testing process
relative to cost. This oracle data selection process, illustrated
in Figure 1, is completely automated. First, we generate a
collection of mutants from the system under test. Second, an
externally generated test suite is run against the mutants using
the original system as the oracle and logs of the values of
a candidate set of variables are recorded after certain points
in execution (i.e., at a certain timing granularity or after pre-
defined execution points). Third, we use these logs to measure
how often each variable in the candidate set reveals a fault in
a mutant and, based on this information, we rank variable
effectiveness. Finally, based on this ranking, we estimate
which variables to include in the oracle data. The underlying
hypothesis is that, as with mutation-based test data selection,
oracle data that is likely to reveal faults in the mutants will also
be likely to reveal faults in the actual system under test. Once

1. In some scenarios, such as regression testing, we can automate definition
of expected values. Comparing large numbers of expected values is still
potentially expensive, and our approach is still of value in such a scenario.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

this oracle data is selected, the tester defines expected values
for each element of the oracle data. Testing then commences
with a small, and potentially highly effective, oracle.

In previous work, we proposed this approach and applied
it to a fixed number of mutants and test inputs generated to
satisfy two specific structural coverage criteria [6]. Although
the results were promising, the initial study was limited, and
did not yield enough evidence to identify the specific condi-
tions in which our approach would be useful. Specifically, we
did not know how the use of structural coverage criteria—as
compared to, for example, tests generated to assess compliance
of a program to its specification—or the number of mutants
used during training impacted our results.

To better evaluate our hypothesis and find answers to these
additional questions, we have evaluated our approach using
four commercial sub-systems from the civil avionics domain
and two medical device systems, and using four different types
of test input data—tests generated to satisfy two structural
coverage metrics, tests generated to satisfy coverage of the re-
quirements, and tests generated purely at random. We perform
a comparison against two common baseline approaches: (1)
current practice, favoring the outputs of the system under
test as oracle data, and (2) random selection of the oracle
data set. We also compare to an idealized scenario where
the seeded faults in the test suites and mutants used for
training are identical to the test suites and mutants in the final
evaluation set; thus, providing an estimate of the maximum
fault finding effectiveness we could hope to achieve with
a mutation-based oracle data selection support method. We
repeat the experiment using varying numbers of mutants in
order to determine the amount of data needed to construct
powerful, stable sets of oracle data.

We draw from our results three key conclusions:

e Our approach generally produces more effective test ora-
cles than the alternative methods explored—in particular,
outperforming output-based test oracles with observed
improvements in fault finding of up to 1,435%, and
consistent improvements of up to 50%. Even in cases
where our approach is not effective, the results achieved
are similar to using output-based test oracles.

o Our approach is the most effective when paired with test
suites generated to exercise the internal structure of the
program under test. When our approach is applied to
randomly generated test inputs, improvements are more
subdued (3%-43%), and improvements are nearly non-
existent when applied to requirements-based tests.

« Finally, the choice of test inputs impacts the number of
mutants required to derive effective sets of oracle data. In
our study, for a given system, the oracle data for structural
test suites is improved by the use of a large number of
mutants (up to 125 mutants). For requirements based tests
suites, no improvements are generally observed after the
number of mutants exceeds 50.

We therefore conclude that our approach may be a cost
effective method of supporting the creation of an oracle data
set—particularly in scenarios where test suites are generated
to satisfy structural coverage criteria.

2 BACKGROUND & RELATED WORK

In software testing, a fest oracle is the artifact used to
determine whether the software is working correctly [7]. There
are many types of test oracles, ranging from program invariants
to “no crash oracles” [1]. In our experience with industrial
partners developing critical software systems, one commonly
used class of test oracles are expected value test oracles—
test oracles that, for each test input, specify concrete values
the system is expected to produce for one or more variables
(internal state and/or output). Thus, in designing an expected
value test oracle, two questions must be answered: (1) “what
variables should be monitored?” and (2), “how often should
the values of those variables be checked?”.

During testing, the oracle compares the actual values pro-
duced by the program against the expected values at the se-
lected points in execution. In current practice, testers generally
must manually select these expected values without the aid of
automation; this process is naturally dependent on the skill of
the tester. Our goal is therefore to develop tools and techniques
to support and optimize the selection of the oracle data. While
others have focused on the latter question—how often valuess
should be checked [8]—we focus on the former question: what
variables should be monitored for faults?

In Richardson et al.’s definition of a test oracle, an oracle
is composed of two parts—the oracle information and oracle
procedure [7]. The oracle procedure renders a pass/fail verdict
on an executed test at selected points in execution using the
data collected in the oracle information. For expected value
oracles, the oracle information must contain two distinct sets
of information: the oracle value set and the oracle data set.
The oracle data set is the subset of variables (internal state
and outputs) for which expected values are specified; i.e., what
variables the oracle must monitor. The oracle value set is then
the set of expected values for those variables [3], [6].

For example, an oracle may specify expected values for all
of the outputs; we term this an output-only oracle. This type of
oracle appears to be the most common expected value oracle
used in testing critical systems. Other types of test oracles
include, for example, output-base oracles, whose oracle data
set contains all the outputs, followed by some number of
internal state variables, and maximum oracles, whose oracle
data set contains all of the outputs and internal state variables.

It has been empirically shown that larger oracle data sets
are generally more powerful than smaller oracle data sets [3],
[5], [2]. (In the remainder of this paper the size of an oracle
is the number of variables used in the oracle data set.) This
is due to fault propagation—faults leading to incorrect states
usually propagate and manifest themselves as failures for only
a subset of program variables; larger oracle data sets increase
the likelihood that such a variable will be monitored by the test
oracle. This limited fault propagation is particularly a concern
in the avionics community, where complex Boolean expres-
sions can mask out faults and prevent incorrect values from
affecting output variables. Common practice dictates focusing
on the output variables, but the effects of this masking can
delay or prevent the propagation of faults to these variacles. It
would be desirable to identify the variables whose definition

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

creates the potential for masking and check the behavior of
these internal “bottleneck” points.

Naturally, one solution is to use the maximum oracle, an
oracle that observes and checks the behavior of all variables
in the system. This is always the most effective expected value
test oracle, but using it is often prohibitively expensive. This is
particularly the case when (1) expected values must be man-
ually specified—a highly labor intensive process, especially
when results are checked at multiple execution points or time
steps during a single test—or (2) when the cost of monitoring a
large oracle data set is prohibitive, e.g., when testing embedded
software on the target platform.

One might ask at this point if a “fault” is really a fault
if it fails to propagate to an output variable? Frequently the
system under test may be capable of absorbing the fault, as
the corrupt program state fails to impact the final behavior of
the software. Indeed, in some cases these “faults” cannot ever
propagate to an output. However, in practice (as we will see
later in Section 5) such faults typically do propagate to the
output under some circumstance, and thus these faults should
still be identified and corrected. This is particularly true for
safety-critical systems, such as avionic or medical devices,
where undiscovered faults can lead to loss of equipment or
harm to human operators. This motivates the use of internal
variables, which allow testers to correct more issues in the
system without incurring the cost of the maximum oracle.

2.1 Related Work

Work on test oracles often focuses on methods of construct-
ing oracles from other software engineering artifacts, such
as formal software requirements [1]. In our work, we are
not constructing the entire oracle; rather, we are identifying
effective oracle data sets, from which effective expected value
oracles can be built. We are not aware of any work proposing
or evaluating alternative methods of selecting the oracle data.

Voas and Miller have proposed the PIE approach, that—
like our work—relies on a form of mutation analysis [9].
Their approach could be used to select internal variables for
monitoring, though evaluation of this idea is lacking. More
recent work has demonstrated how test oracle selection can
impact the effectiveness of testing, indicating a need for
effective oracle selection techniques [4], [3].

Memon and Xie have applied mutation testing in order to
optimize the oracle procedure in an expected value test oracle
for event-driven graphical user interfaces [8]. The authors’
goal was to construct cheaper—but still effective—test oracles
by considering how often to invoke the potentially expensive
oracle procedure (i.e., to compare expected and actual values).
The authors found that (1) transient faults are as common as
persistent ones, and (2) the majority of transient faults were
linked to two event types. Thus, by comparing values only
after those events, the oracle can catch the majority of faults
while remaining computationally affordable.

Memon and Xie’s goals are similar to ours—they are
supporting the construction of efficient expected value test
oracles. However, our respective domains require different
approaches to this task. In the avionics systems that we have

studied, complexity stems from the hundreds or thousands
of variables that can potentially be monitored, and there are
not necessarily discrete events that we can choose to ignore
(especially when considering critical systems). Thus, even if
we could execute the oracle procedure less often, we are still
left with the question of which variables to monitor.

Several tools exist for automatically generating invariant-
based test oracles for use in regression testing, including
Eclat [10], DiffGen [11], and work by Evans and Savoy [12].
However, Briand et al. demonstrate for object-oriented systems
that expected value oracles outperform state-based invariants,
with the former detecting faults missed by the latter [2].

Fraser and Zeller use mutation testing to generate both test
inputs and test oracles [13] for Java programs. The test inputs
are generated first, followed by generation of post-conditions
capable of distinguishing the mutants from the program with
respect to the test inputs. Unlike our work, the end result of
their approach is a complete test case, with inputs paired with
expected results (in this case, assertions). Such tests, being
generated from the program under test, are guaranteed to pass
(except when the program crashes). Accordingly, the role of
the user in their approach is to decide, for each input and
assertion pair, if the program is working correctly. Thus, in
some sense their approach is more akin to invariant generation
than traditional software testing. The most recent version of
this work attempts to generalize the result of their approach
to simplify the user’s task [14]. However, this creates the
possibility of producing false positives, where a resulting
parameterized input/assertion can indicate faults when none
exist—further changing the user’s task.

With respect to evaluation, no comparisons against baseline
methods of automated oracle selection are performed; Gen-
erated tests and assertions are compared against developer-
produced tests and assertions, but the cost—i.e., number of
developer tests/assertions—is not controlled. Thus, relative
cost-effectiveness cannot accurately be assessed. Additionally,
their approach selects enough tests and assertions to detect all
generated mutations, and thus allows no method of controlling
for the human cost.

Our work chiefly differs from other approaches in that we
are trying to support creation of a test oracle, rather than
automate it. Oracle creation support can be considered an
approach to addressing the human oracle cost problem—that
is, the problem of alleviating the burden on the human tester
when no means exist to completely automate the generation
of a test oracle [1]. Other approaches to addressing the human
oracle problem include the automated generation of human-
readable test inputs [15], test suite reduction aimed at reducing
human workload [16], and incorporating knowledge from
project artifacts in order to generate test cases that human
testers can easily understand [17].

This report is an extension of previously published work [6],
and improves upon it in two key ways. First, we explore the
effectiveness of our approach with respect to a variety of test
input types. Second, we investigate how the number of mutants
generated impacts the process. These analyses help us to
better understand the effectiveness of our approach in different
testing contexts—in particular, how structural coverage may

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

be helped by good oracle data selection—and the cost and
scalability of our approach.

3 ORACLE DATA SELECTION

Our approach for selecting the oracle data set is based on the
use of mutation testing [18]. In mutation testing, a large set
of programs—termed mutants—are created by seeding faults
(either automatically or by hand) into a system. Test input
capable of distinguishing the mutant from the original is said
to kill the mutant. In our work, we adopt this approach for
oracle creation support. Rather than generate test inputs that
kill the mutants, however, we use mutants to automatically
generate an oracle data set that—when used in an expected
value oracle, and with a fixed set of test inputs—Xkills the
mutants. To construct this data set, we perform the following:

1) Generate several mutants, called the training set, from
our system under test.

2) Run test inputs over the training set and the original
system, collecting logs of the values of a set of candidate
variables at pre-defined observation points.

3) Use these logs to determine which variables distinguish
each mutant from the original system.

4) Process this information to create a list of variables
ordered in terms of apparent fault finding effectiveness,
the variable ranking.

5) Examine this ranking, along with the mutants and test
inputs, to estimate (as x) how large the oracle data set
should be. Alternatively, the tester can specify = based
on the testing budget.

6) Select the top x variables in the ranking for use in the
final oracle data set.

While conceptually simple, there are several relevant param-
eters to be considered for each step. The following subsections
will outline these parameters, as well as the rationale for the
decisions that we have made.

3.1 Mutant Generation and Test Input Source

During mutation testing, mutants are created from an im-
plementation of a system by introducing a single fault into
the program. Each fault results from either inserting a new
operator into the system or by replacing an operator or
variable with a different operator or variable. This mutation
generation is designed such that no mutant will “crash” the
system under test. The mutation testing operators used in this
experiment include changing an arithmetic operator, changing
a relational operator, changing a Boolean operator, introducing
the Boolean — operator, using the value of a variable from the
previous computation cycle, changing a constant expression
by adding or subtracting 1 from int and real constants (or
by negating Boolean constants), and substituting a variable
reference with another variable of the same type.

The type of faults used to create mutants may impact the
effectiveness of the selected oracle data when used to test
the actual system under test. Note that the type of mutants
used in the evaluation in this report are similar to those used
by Andrews et al., where the authors found that generated

mutants are a reasonable substitute for actual failures in testing
experiments [19]. Additionally, recent work from Just et al.
suggests a significant correlation between mutant detection and
real fault detection [20]. This offers evidence that mutation-
based techniques will be useful for supporting the creation of
oracles for real-world systems.

Our approach can be used with any set of test inputs. In
this work, we assume the tester is equipped with an existing
set of test inputs and wishes to determine what oracle data is
likely to be effective with said test inputs. This assumption
allows the numerous existing methods of test input selection
to be paired with our approach for oracle data selection. This
scenario is likely within our domain of interest.

3.2 Variable Ranking

Once we have generated mutants, we then run suites of test
inputs over both the mutants and the original program (with
the execution over the original program serving as a golden
run [21]). The user chooses a set of internal and output
variables to serve as candidates for oracle data selection. Then,
during execution of these inputs, we collect the value of
every variable in that candidate set at various points during
execution. A variable has detected a fault when the variable
value in the original “correct” system differs from the variable
value produced by a mutant, for some test. We track the
mutants killed by each variable.

In order to form an oracle data set, snapshots of the state
of the candidate variables must be collected. When and how
often those snapshots are logged will help determine what
data is available to our variable ranking approach. Options
can generally be divided into event-driven logging or time-
driven logging. In the event-driven case, the state of the
candidate variables might be logged at certain pre-defined
points in execution. This could include, for example, after
discrete computational cycles, when new input is passed to
the system, when new output is issued from the system, or
when certain types of events occur. In a time-driven process,
snapshots could be taken at a certain timing granularity—say,
every X seconds.

The more often snapshots are taken, the more data the
variable ranking algorithm has to work with. However, this
logging also incurs a computational overhead on the execution
of the system. Therefore, the selection of logging frequency
depends on the project that an oracle is being produced for.

Once we have collected these traces, we can produce a set
of variables ranked according to effectiveness. One possible
method of producing this ranking is simply to order variables
by the number of mutants killed. However, the effectiveness
of individual variables can be highly correlated. For example,
when a variable v, is computed using the value of a variable
vp: if vy is incorrect for some test input, it is highly probable
that v, is also incorrect. Thus, while v, or v, may be highly
effective when used in the oracle data set, the combination of
both is likely to be only marginally more effective than the
use of either alone.

To avoid selecting a set of dependent variables that are
individually effective—but duplicative as a group—we make

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

use of a greedy algorithm for solving the set covering
problem [22] to produce a ranked set of variables. In the
set covering problem, we are given several sets with some
elements potentially shared between the sets. The goal is then
to select the minimum set of elements such that one element
from each set has been selected. In this problem, each set
represents a mutant, and each element of the set is a variable
capable of detecting the mutant for at least one of the test
inputs. Calculating the smallest possible set covering is an
NP-complete problem [23]. Thus, we employ a well-known
effective greedy algorithm to solve the problem [24]: (1) select
the element covering the largest number of sets, (2) remove
from consideration all sets covered by said element, and (3)
repeat until all sets are covered.

In our case, each element removed corresponds to a variable.
These variables are placed in a ranking in the order they were
removed (with the most effective variables being removed
first). The resulting ranking can then be used to produce an
oracle data set of size n by simply selecting the top n variables
from the list.

In the case examples studied, all variables are scalar and
cannot be a heap object or pointers. Thus, comparison is
straightforward. As our approach requires only that expected
and actual values differ (rather than how they differ), mutation-
based oracle optimization should be effective when making
comparisons of any data structure, as long as an accurate and
efficient method of comparing for equality exists.

Additionally, the systems explored in this work contain no
nested loops. For a “step” of the system, every variable is
declared and assigned exactly once. Thus conceptually, there
exists no difference between output variables and internal
variables in terms of how expected values should be defined.

3.3 Estimating Useful Oracle Data Size

If the testers would—by default—use the output variables of
the system as their oracle data set, then a natural use of this
mutation-based technique would be to select a new oracle data
set of the same size. That is, if the testers would have used n
output variables in their oracle data set, then they could use
our technique to select n variables from the full set of internal
and output variables.

However, one potential strength of our technique is that it
can produce oracle data sets of any size, granting freedom to
testers to choose an oracle data set to fit their budget, schedule,
monitoring limitations, or other testing concerns. Once we
have calculated the ranked list of variables, we can select an
oracle data set of size 1, 2, 3, etc. up to the maximum number
of variables in the system.

In some scenarios, the tester may have little guidance as to
the appropriate size of the oracle data. In such a scenario, it
would be ideal to offer a recommendation to the tester. One
would like to select an oracle data set such that the size of the
set balances cost and effectiveness—that is, not so small that
potentially useful variables are omitted, and not so large that a
significant number of variables contribute little to performance.

To accomplish this, testers could examine the fault finding
effectiveness of oracle data sets of size 1, 2, 3, etc. The

5
Subsystems # Blocks # Output # Internal
Variables Variables
DWM_1 3109 11,439 7 569
DWM_2 128 429 9 115
Vertmax 396 1,453 2 415
Latctl 120 718 1 128
States # Transitions # Output # Internal
Variables Variables
Infusion_Mgr 27 50 5 107
Alarms 78 107 5 182
Infusion_Mgr (faulty) 30 47 5 86
Alarms (faulty) 81 101 5 155
TABLE 1

Case Example Information

effectiveness of these oracles will increase with the oracle’s
size, but the increases will likely diminish as the oracle size
increases. As a result, it is generally possible to define a natural
cutoff point for recommending an oracle size; if the fault
finding improvement between an oracle of size n and size
n -+ 1 is less than some threshold, we recommend an oracle
of size n.

In practice, establishing a threshold will depend on factors
specific to the testing process. In our evaluation, we examine
oracle sizes up to maxz(10, (2 x # output variables)) and
explore two potential thresholds: 5% and 2.5%.

4 EVALUATION

We wish to evaluate whether our approach yields effective
oracle data sets. While it would be preferable to directly com-
pare against existing algorithms for selecting oracle data, to the
best of our knowledge, no such methods exist. We therefore
compare our technique against two baseline approaches for
oracle data set selection, detailed later, as well as against an
idealized best case application of our own approach.

We also would like to determine the impact of the choice
of test input generation criteria on our approach. In particular,
we are interested if the effectiveness varies when moving from
tests generated to satisfy structural coverage criteria—which
tend to be short and targeted at specific code constructs—to
requirements-based test inputs, which tend to be longer and
are directly concerned with showing the relationship between
the inputs and outputs (i.e., they attempt to cause values to
propagate through the system). Finally, we are interested in
cost and scalability, specifically how the number of mutants
used to select the oracle data impacts the effectiveness of the
resulting oracle.

We have explored the following research questions:
Research Question 1 (RQ1): Is our approach more effective
in practice than baseline approaches to oracle data selection?
Research Question 2 (RQ2): What is the maximum potential
effectiveness of the mutation-based approach, and how effec-
tive is the realistic application of our approach in comparison?
Research Question 3 (RQ3): How does the choice of test
input data impact the effectiveness of our approach?
Research Question 4 (RQ4): What impact does the number
of training mutants have on the effectiveness of our approach?
Research Question 5 (RQS): What is the ratio of output to
internal variables in the generated oracle data sets?

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

4.1 Experimental Setup Overview

We have used four industrial systems developed by Rockwell
Collins Inc. engineers and two additional subsystems of an
infusion pump created for medical device research [25]. The
Rockwell Collins systems were modeled using the Simulink
notation from Mathworks Inc. [26] and the remaining systems
using Stateflow [26], [27]. The systems were automatically
translated into the Lustre programming language [28] to take
advantage of existing automation. In practice, Lustre would
then be automatically translated to C code. This translation is
a simple transformation, and if applied to C, the case study
results would be identical.

The four Rockwell Collins systems represent sizable, oper-
ational modules of industrial avionics systems. Two systems,
DWM1 and DWM?2, represent distinct subsystems of a Display
Window Manager (DWM) for a commercial cockpit display
system. Two other systems, Vertmax_Batch and Latctl_Batch,
describe the vertical and lateral mode logic for a Flight
Guidance System. The remaining two systems, Infusion_Mgr
and Alarms, represent the prescription management and alarm-
induced behavior of an infusion pump. Both systems come
with a set of real faults that we can use to assess real-world
fault-finding.

Information related to these systems is provided in Table 1.
Subsystems indicates the number of Simulink subsystems
presents, while blocks represents the number of blocks used.
Outputs and internals indicates the number of output and
internal variables present. For the examples developed in
Stateflow, we list the number of Stateflow states, transitions,
and internal and output variables. As we have both faulty
and corrected versions of Infusion_Mgr and Alarms, we list
information for both.

For the purposes of the study conducted in this work,
we automatically generate tests—both randomly and with a
coverage-directed search algorithm—that are effectively unit
tests for modules of synchronous reactive systems. Compu-
tation for synchronous reactive systems takes place over a
number of execution “cycles.” That is, when input is fed to
the system, there is a corresponding calculation of the internal
variables and outputs. A single cycle can be considered
a sequence of assignments of values to variables. A loop
would be considered as a series of computational cycles. This
naturally answers the question of “when” to log variable values
for oracle generation—after each computational cycle, we can
log or check the current value of the candidate variables.

For each case example, we performed the following steps:

1) Generated test input suites: We created 10 test suites
satisfying decision coverage, and 10 test suites satis-
fying MC/DC coverage, and—for systems with known
requirements—10 test suites satisfying UFC (require-
ments) coverage using automatic counterexample-based
test generation. We also produced randomly constructed
test suites of increasing size. (Section 4.2).

2) Generated training sets: We randomly generated 10
sets of 125 mutants to be used to construct oracle data
sets, each containing a single fault. (Section 4.3.)

3) Generated evaluation sets: For each training set, we

randomly generated a corresponding evaluation set of
125 mutants, each containing a single fault. Each mutant
in a evaluation set is guaranteed to not be in the training
set. (Section 4.3.)

4) Ran test suite on mutants: We ran each mutant (from
both training and evaluation sets) and the original case
example using every test suite and collected the internal
state and output variable values produced after each
computation cycle. This yields raw data used for the
remaining steps of our study. (Section 4.5.)

5) Generated oracle data sets: We used the information
gathered to generate oracle data sets using the algorithm
detailed in Section 3. Data sets were generated for each
training set and for each evaluation set (in order to
calculate an idealized ceiling performance). We also
generated random and output-based baseline rankings.
These rankings are used to generate oracles of various
sizes. (Section 4.5.)

6) Assessed fault finding ability of each oracle and test
suite combination: We determined how many mutants
were detected by every oracle, using each test suite. For
oracles generated using a training set, the corresponding
evaluation set was used; for oracles generated using an
evaluation set, the same evaluation set was used. For the
Infusion_Mgr and Alarms systems, we also assess the
performance of each oracle and test suite combination
on the set of real faults (Section 4.6.)

4.2 Test Suite Generation

As noted previously, we assume the tester has an existing set
of test inputs. Consequently, our approach can be used with
any method of test input selection. As we are studying the
effectiveness using avionics systems, two structural coverage
criteria are likely to be employed: decision coverage and
Modified Condition/Decision Coverage (MC/DC) [29].

Decision coverage is a criterion concerned with exercising
the different outcomes of the Boolean decisions within a
program. Given the expression, ((a and b) and (not
c or d)), tests would need to be produced where the
expression evaluates to true and the statement evaluated to
false, causing program execution to traverse both outcomes
of the decision point. Decision coverage is similar to the
commonly-used branch coverage. Branch coverage is only
applicable to Boolean decisions that cause program execution
to branch, such as that in “if”” or “case” statements, whereas
decision coverage requires coverage of all Boolean decisions,
whether or not execution diverges. Improving branch coverage
is a common goal in automated test generation.

Modified Condition/Decision Coverage further strength-
ens condition coverage by requiring that each decision evaluate
to all possible outcomes (such as in the expression used
above), each condition take on all possible outcomes (the
conditions shown in the description of condition coverage),
and that each condition within a decision be shown to inde-
pendently impact the outcome of the decision. Independent
effect is defined in terms of masking, which means that the
condition has no effect on the value of the decision as a whole;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

for example, given a decision of the form x and vy, the truth
value of x is irrelevant if y is false, so we state that x is masked
out. A condition that is not masked out has independent effect
for the decision.

Suppose we examine the independent affect of d in the
example; if (a and b) evaluates to false, than the decision
will evaluate to false, masking the effect of d; Similarly, if
c evaluates to false, then (not ¢ or d) evaluates to true
regardless of the value of d. Only if we assign a, b, and ¢
true does the value of d affect the outcome of the decision.

MC/DC coverage is often mandated when testing critical
avionics systems. Accordingly, we view MC/DC as likely to be
effective criteria, particularly for the class of systems studied
in this report. Several variations of MC/DC exist—for this
study, we use Masking MC/DC, as it is a common criterion
within the avionics community [30].

We are also interested in test suites designed to satisfy
criteria that are not focused on the internal structure of the
system under test, such as Unique First Cause (UFC)—a
black-box criterion that measures coverage of a set of re-
quirements encoded as temporal logic properties [31]. Adapted
from MC/DC a test suite satisfies UFC coverage over a set
of requirements—encoded as LTL formulas—if executing the
test cases in the test suite guarantees that every basic condition
in each formula has taken on all possible outcomes at least
once, and each basic condition in each expression has been
shown to independently affect the outcome of the expression.
As requirement were not available for the Infusion_Mgr and
Alarms systems, we only produce UFC-satisfying tests for the
four Rockwell Collins systems.

We used counterexample-based test generation to generate
tests satisfying the three coverage criteria [32], [33]. In this
approach, each coverage obligation is encoded as a temporal
logic formula and the model checker can be used to detect
a counterexample (test case) illustrating how the coverage
obligation can be covered. By repeating this process for each
property of the system, we can use the model checker to
automatically derive test sequences that are guaranteed to
achieve the maximum possible coverage of the model.

This coverage guarantee is why we have elected to use
counterexample-based test generation, as other directed ap-
proaches (such as DSE/SAT-based approaches) do not offer
such a straightforward guarantee. In the context of avion-
ics systems, the guarantee is highly desirable, as achieving
maximum coverage is required [29]. We have used the JKind
model checker [34], [35] in our experiments because we have
found that it is efficient and produces tests that are easy to
understand [36].

Counterexample-based test generation results in a separate
test for each coverage obligation. This results in a large amount
of redundancy in the tests generated, as each test likely covers
several coverage obligations. Such an unnecessarily large test
suite is unlikely to be used in practice. We therefore reduce
each generated test suite while maintaining coverage. We use a
simple randomized greedy algorithm. It begins by determining
the coverage obligations satisfied by each test generated, and
initializing an empty test set reduced. The algorithm then
randomly selects a test input from the full set of tests; if

it satisfies obligations not satisfied by test input already in
reduced, it is added to the set. The algorithm continues until
all tests have been removed from the full set of tests.

We produce 10 test suites for each combination of case
example and coverage criterion to control for the impact of
randomization. We also produced 10 suites of random tests—
increasing in size from 10 to 100 tests—in order to determine
the effectiveness of our approach when applied to test suites
that were not designed to fulfill a coverage criterion.

For the systems with real faults, we generate coverage-
satisfying tests twice. When calculating fault-finding effective-
ness on generated mutants, we generate tests using the cor-
rected version of the system (as the Rockwell Collins systems
are free of known faults). However, when assessing the ability
of the test suites to find the real faults, we generate the tests
using the faulty version of the system. This reflects real-world
practice, where—if faults have not yet been discovered—tests
have obviously been generated to provide coverage over the
code as it currently exists.

4.3 Mutant Generation

For each case example, 250 mutants are created by introducing
a single fault into the correct implementation (using the ap-
proach discussed in Section 3.1). We then produce 10 training
sets by randomly selecting 10 subsets of 125 mutants. For each
training set, the 125 mutants not selected for the training set
are used to construct an evaluation set.

Mutants can be divided into weak mutants—mutations that
infect the program state, but where the result of that corruption
does not propagate to a variable checked by the oracle—and
strong mutants—mutants where state is corrupted and that
corruption does propagate. The mutants as they are generated
are weak mutants, because there is no a-priori way without
analysis of determining whether a mutant is functionally
equivalent to the original program. However, we perform a
post-processing analysis (described below) to remove func-
tionally equivalent mutants, so the mutants used for testing
are strong mutants.

We remove functionally equivalent mutants from the eval-
uation set using the JKind model checker [34], [35]. This is
possible due to the nature of the systems in our study—each
system is finite; thus, determining equivalence is decidable
and fast.? This removal is done for the evaluation sets because
equivalent mutants represent a potential threat to validity in our
evaluation. No mutants are removed from the training sets.

In practice, one would only generate a training set of
mutants for use in building an oracle data set. We generate
both training and evaluation sets in order to measure the
performance of the proposed generation approach for research
purposes. Thus, while it is possible we select the oracle data
based partly on equivalent mutants which cannot affect the
output, our evaluation measures the ability of the approach to
detect provably faulty systems.

To address Question 4, we also produced four subsets of
each training set. These subsets, respectively, contained 10%,

2. Equivalence checking is fairly routine in the hardware domain; a good
introduction can be found in [37].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Infusion_Mgr
1 When entering therapy mode for the first time,
infusion can begin if there is an empty drug reservoir.

2 The system has no way to handle a concurrent infusion
initiation and cancellation request.
3 If the alarm level is >= 2, no bolus should occur.
However, intermittent bolus mode triggers on alarm <= 2.
4 Each time step is assumed to be one second.
5 When patient bolus is in progress and infusion is

stopped, the system does not enter the patient lockout.
Upon restart, the patient can immediately request an additional dosage.

6 If the time step is not exactly one second, actions
that occur at specific intervals might be missed.
7 The system has no way to handle a concurrent

infusion initiation and pause request.

Alarms
1 If an alarm condition occurs during the initialization
step, it will not be detected.
2 | The Alarms system does not check that the pump is in
therapy before issuing therapy-related alarms.
3 Each time step is assumed to be one second.

TABLE 2
Real faults for infusion pump systems

25%, 50%, and 75% of the training mutants. These subsets
allow us to determine the effectiveness of oracle data generated
with fewer mutants.

4.4 Real Faults

For both of the infusion pump systems—Infusion_Mgr and
Alarms—we have two versions of each case example. One
is an untested—but feature-complete—version with several
faults, the second is a newer version of the system where those
faults have been corrected. We can use the faulty version of
each system to assist in determining the effectiveness of each
test suite. As with the seeded mutants, effective tests should
be able to surface and alert the tester to the residing faults.

For the Infusion_Mgr case example, the older version of the
system contains seven faults. For the Alarms system, there are
three faults. Although there are a relatively small number of
faults for both systems, several of these are faults that required
code changes in several locations to fix. Most are non-trivial
faults—these were not mere typos or operand mistakes, they
require specific conditions to trigger, and extensive verification
efforts were required to identify these faults.

A brief description of the faults can be seen in Table 2.

4.5 Oracle Data Set Generation

For each given case example, we ran the test suites against
each mutant and the original version of the program. For each
execution of the test suite, we recorded the value of every
internal variable and output at each step of every test using an
in-house Lustre interpreter. This raw trace data is then used
by our algorithm and our evaluation.

For each combination of set of mutants (training sets and
evaluation sets) and test suite, we generated an oracle ranking
using the approach described in Section 3. The rankings
produced from training sets reflect how our approach would
be used in practice; these sets are used in evaluating our
research questions. The rankings produced from evaluation
sets represent an idealized testing scenario, one in which we
already know the faults we are attempting to detect. Rankings
generated from the evaluations sets, termed idealized rankings,

hint at the maximum potential effectiveness of our approach
and are used to address Question 2.

Each ranking was limited to m variables (where m is 10 or
twice the number of output variables, whichever was larger)
since oracles significantly larger than output-only oracles were
deemed unlikely to be used in practice. Note that the time
required to produce a single ranking—generate mutants, run
tests, and apply the greedy set cover algorithm—is less than
one hour for each pairing of case example and test suite.

To answer Questions 1 and 3, we compare against two
baseline rankings. First, to provide an unbiased ranking for
comparison, the random approach creates completely random
oracle rankings. The resulting rankings are simply a random
ordering of the output and internal variables. Second, the
output-base approach creates rankings by first selecting output
variables—ordered at random—and then randomly selecting
internal state variables until the size of the oracle matches
the pre-determined threshold. Thus, the output-base rankings
always lists the outputs first (i.e., more highly ranked) followed
by the randomly-selected internal state variables. The output-
based ranking reflects a common industrial approach to oracle
data selection: focus on the output variables. However, there
are two differences between the output-base oracles used in
our evaluation and common practice: (1) we randomly vary the
order of the output variables to avoid any particular biasing of
the results (in the real world, no one order would typically be
favored), and (2), we add randomly chosen internal variables to
the oracle data set after prioritizing the outputs so that we can
compare larger oracle sizes than would typically be employed.

4.6 Oracle Evaluation

To determine the fault finding effectiveness of a test suite ¢
and oracle o on a case example, we simply compare the values
produced by the original case example against every mutant
using test suite ¢ and the subset of variables corresponding
to the oracle data for oracle o (the original “correct” system
fulfills the role of the user in our approach, specifying expected
values for the oracle data).

For all six case examples, we measure the fault finding
effectiveness of oracles generated from the training sets using
the corresponding evaluation sets, and we measure the effec-
tiveness of the idealized oracles generated from evaluation sets
using the same evaluation sets. The fault finding effectiveness
of an oracle is computed as the percentage of mutants killed
versus the total number of mutants in the evaluation set. We
perform this analysis for each oracle and test suite for every
case example, and use the produced results to evaluate our
research questions.

For Infusion_Mgr and Alarms, we also assess the fault-
finding effectiveness of each test suite and oracle combination
against the version of the model with real faults by measuring
the ratio of the number of tests that fail to the total number
of tests for each test suite. We use the number of tests rather
than number of real faults because all of the real faults are in
a single model, and we do not know which specific fault led
to a test failure. However, we hypothesize that the test failure
ratio is a similar measure of the sensitivity of a test suite to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Decision Random
Oracle DWM DWM Vertmax Latctl Infusion Alarms Oracle DWM DWM Vertmax Latctl Infusion Alarms
Size _1 2 _Batch _Batch _Mgr Size 1 2 _Batch _Batch _Mgr
I 66.67%% | 109.17% | 34.48% | 4.89% | 1307.14% | 11.62% 1 2427% | 10.07% | 15.50% | 0.00%* | 60.0% | 70.33%
2 26.79%% | 14.00% | 29.76% | 24.10% | 222.02% | 41.33% 2 1552% | 1.95% 13.07% | 084% | 85.71% | 80.00%
3 1250%* | 11.11% | 31.82% | 28.73% | 88.49% | 44.28% 3 8.79% 829% 15.00% | 0.85%* | 83.33% | 8091%
1 0.00%* 7.50% 3590% | 2747% | 41.94% | 42.35% 1 311% 871% 1656% | 0.85%* | 55.55% | 53.14%
5 2.94%* 9.45% 4339% | 3191% | 4499% | 27.84% 5 6.73% 9.54% 1754% | 091%* | 33.33% | 35.14%
6 0.00%* 821% 45.79% | 35.08% | 4849% | 28.06% 6 1.46%* | 71.48% 17.20% | 0.87%* | 33.33% | 2951%
7 0.00%* 6.55% 4651% | 38.84% | 52.10% | 20.78% 7 T11% | 461% 17.03% 1.64% | 37.09% | 2857%
3 0.00%* 6.49% 49.44% | 37.73% | 45.95% 19.19% 3 0.00%* | 0.88%* | 16.04% | 086% | 38.46% | 27.33%
9 8.01%* 7.96% 1694% | 37.15% | 4459% | 21.90% 9 0.00%* | -1.12% | 1547% | 0.86%* | 28.57% | 31.58%
10 1082%* | 9.03% 5233% | 36.60% | 45.17% | 23.96% 10 1.03%* | 093% | 1547% | 0.84%* | 2851% | 32.58%
11 15.83% 9.42% 11 2.02% | -0.84%
2 2124% 9.46% 2 239% | 0.00%*
3 23.13% 10.60% 3 410% | 0.00%*
4 2353% | 1053% 4 419% | 0.85%F
15 12.19% 5 0.88%~
16 13.46% 16 0.88%~
17 13.46% 17 0.95%"
s 14.08% 13 0.97%*
MC/DC UFC

Oracle DWM DWM Vertmax Latctl Infusion Alarms Oracle DWM DWM Vertmax Latetl
Size 1 2 _Batch _Batch _Mgr Size _1 2 _Batch _Batch
1 0.00%* | 168.85% | 37.50% | 0.00% | 1435.00% | 21.11% I 0.00%* | 85%% -081% | 0.00%*
2 9.72%* 7.95% 37.33% 3.12% 305.00% | 3827% 2 0.00%* | 6.98% -0.81% | 0.00%*
3 12.92% 7.59% 3.42% 3.16% 12583% | 42.11% 3 0.00%* | 9.53% 0.81% | 0.00%*
7 1396% | 1.10% 3400% | 3.96% 3529% | 40.13% 4 -1056% | 9.52% | -0.81% | 0.00%*
5 2000% | 7.23% | 46.05% | 396% | 4520% | 21.78% 5 -1176% | 955% | 0.00%* | 0.83%
6 -1923% | 5.83% 4445% | 398% | 4634% | 24.00% 6 [1429% | 642% | 000%~ | 083%
7 15.60% | 440% | 4330% | 440% | 4878% | 20.79% ! 17.32% | 273% | 0.00%7 | 0.85%
3 12.00% | 2.15% 330% | 3.96% 51.22% | 20.19% 8 -1396% | -0.87% | 0.00% 0.83%

. 9 12.02% | -336% | 000%* | 0.83%
9 A81%* | 1.02%* | 3821% | 3.96% 4390% | 21.83% o L% 536% | 0.00% 1 0.52%
10 0.00%* | 1.02%* | 37.13% | 3.64% 3854% | 2347% 0 09T —259%
11 385% 1.01%* 7 AT 56T
2 10.62% 2.00% 3 S
3 12.02% 2.93% 7 <060 T 2A6%
4 16.95% 3.02% 5 6%
5 33838% 16 0867
16 4.77% 17 0.83%
7 T17% 5 o
i3 I17%

TABLE 3 TABLE 4

Median relative improvement using mutation-based
selection over output-base selection for structural
coverage-satisfying tests

the mutant kill ratio. Note that we do not generate separate
“idealized” oracles when evaluating on real faults, as these
would simply be oracles generated from additional mutants,
and do not represent the same performance ceiling.

5 RESULTS & DISCUSSION

In this section, we discuss our results in the context of our
four research questions. We begin by plotting the median fault
finding effectiveness of the produced test oracles for increasing
oracle sizes in Figures 2-5. 3 Four ranking methods are plotted:
both baseline rankings, our mutation-based approach, and an
idealized mutation-based approach. For each subfigure, we
plot the number of outputs as a dashed, vertical line. This line
represents the size of an output-only oracle; this is the oracle
size that would generally be used in practice. We also plot
the 5% and 2.5% thresholds for recommending oracle sizes as
solid lines (see Section 3.3). Note that the 2.5% threshold is
not always met for the oracle sizes explored.

In Tables 3-5, we list the median relative improvement
in fault finding effectiveness using our proposed oracle data

3. For readability, we do not state “median” relative improvement, “median”
fault finding, etc. in the text, though this is what we are referring to.

Median relative improvement using mutation-based
selection over output-base selection for
randomly-generated and UFC-satisfying tests

creation approach versus the output-base ranking. In Tables 6-
7, we list the median relative improvement in fault finding
effectiveness using the idealized mutation-based approach (an
oracle data set built and evaluated on the same mutants) versus
our mutation-based approach. As shown in Figures 2-5, ran-
dom oracle data performs poorly; thus, detailed comparisons
were deemed uninteresting and are omitted.

5.1 Statistical Analysis

Before discussing the implications of our results, we would
like to first determine which differences observed are statis-
tically significant. With regard to RQI and RQ2, we would
like to determine with significance at what oracle sizes, and
for which case examples, (1) the idealized performance of a
mutation-based approach outperforms the actual performance
of the mutation-based approach, and (2) the mutation-based
approach outperforms the baseline ranking approaches. We
evaluated the statistical significance of our results using a two-
tailed bootstrap permutation test. We begin by formulating the
following statistical hypotheses:*

4. As we evaluate each hypothesis for each case example and oracle size,
we are essentially evaluating a set of statistical hypotheses.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

—— T ——— — 2 —— T
Ideal | o2 Ideal | o | S0k
o + -
Ranked ! o Ranked ! o ° - _%
| i > .
o o S o o o *
Output-base L5 24 Output-base & R 60 e AT R
o & o 1% 1 Poad Ideal
Random | 4 = Random | = S A
B * X - Ranked
: T - 1 S o ¥ 2
Lo k2 A —p T 1 L4or x g Output-base
(I i Il- -tk S @
104 o P J A * s Random
T ! ! R P
° oot | o m-m- - m-m 20 ¢ 4
5t H . 4 _ m-a--®-®m ¥
>l _m--a - _m- a & - -m-a-&
rg-w !] _g-u--w-R-4
of = - | 1 | | 1 0,5.»./""" d
S S S SR S S S SR iR e R R R
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13
Oracle Size Oracle Size Oracle Size

(b) DWM_1, MC/DC Inputs

(c) DWM_1, Random Inputs

(a) DWM_1, Decision Inputs

- — 80
| 4? o
| o T0F 1
| o ©
Ranked 5 6 O o] 60F o ® % <
Output-base ﬂé R % sl R o‘§ o © e ‘éé e
S Random o = e I
e ! e -1 4 S4o0r Q *- ! -
w e et w Q s _m -E
& S Balt] e
[e} - Tx ’ "
0k - | | ok 7 - 1 Ranked Ranked
o " ! _m--m ¥ . |
¥ e - \!_ g m- B = 10} - | Output-base Output-base
o -u- - - " j o | Random Random
OF R L L L L L L L L L L i [= " s ey - T
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
Oracle Size Oracle Size Oracle Size
(d) DWM_L, UFC Inputs (e) DWM_2, Decision Inputs f) DWM_2, MC/DC Inputs
100f wof T T T T g — Q
90f 90f ed Ezgzﬁif - i 1
o 4 !
S0k sol g * b 4+ A)
o+ @ 15
= 1 _of ¥ . Ta i
S g v T
< 6ot < I
w ’ w 00F n ‘ |
50 F 50t ’/ ! Ideal
]
40 Ranked me ! ‘ | Ranked
30k Output-base |{ ,/ ‘ : Output-base
20l Random || ‘ﬂ)’" ‘ : Random
P W e Y1) S— Fi—
7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 ll 12 13 1-1 la 16 17
Oracle Size

Oracle Size

(g) DWM_2, Random Inputs

(h) DWM_2, UFC Inputs

Fig. 2. Median Effectiveness of Various Approaches to Oracle Data Selection for DWM_1 and DWM_2. Yellow Circles

= Ideal; Green * =

Hy: For a given oracle size m, the standard mutation-
based approach outperforms the output-base ap-
proach.

H,: For a given oracle size m, the standard mutation-
based approach outperforms the random approach.

Hs: For a given oracle size m, the idealized approach

outperforms the standard mutation-based approach.

Towards RQ4, we would also like to quantify—with
significance—the number of mutants needed to train the oracle
data. We repeated the same experiment, varying the number of
mutants used to train the oracle—making use of training sets
containing 10%, 25%, 50%, and 75% of the mutants used to
train oracles in the initial experiment. We have generated fault
finding results using the same evaluation sets, and formulated
the following hypothesis.

H,_7:For a given oracle size m, the standard mutation-
based approach, generated using a full training set,
outperforms the standard mutation-based approach,
generated with N% of the same training set.

The null hypothesis HOx for each hypothesis Hx above is
that each set of values are drawn from the same distribution.
To evaluate our hypotheses without any assumptions on the
distribution of our data, we use the two-tailed bootstrap paired
permutation test (a non-parametric test with no distribution

Ranked; Blue + = Output-base; Red Squares = Random.

assumptions [38]), with median as the test statistic. Per our
experimental design, each evaluation set has a paired training
set, and each training set has paired baseline rankings (output-
base and random). Thus, for each combination of case example
and coverage criterion, we can pair each test suite T +
training set ranking with 7' + random or output-base ranking
(HO1, HO3), each test suite T + idealized ranking with 7' +
training set ranking (for H03), and finally each test suite 7" +
training set with 7" + training set subset ranking (H04 — HO07).
We then apply and evaluate our null hypotheses for each case
example, coverage criteria, and oracle size with @ = 0.05.% We
discuss the results of our statistical tests below in the context
of the questions they address.

5.2 Evaluation of Practical Effectiveness (Q1)

When designing a method of supporting oracle creation, the
obvious question to ask is, “Is this better than current best
practice?” In Tables 3 and 4, we list the median relative im-
provement in fault finding effectiveness on seeded faults using

5. Note that we do not generalize across case examples or coverage
criteria as the appropriate statistical assumption—random selection from the
population of case examples and coverage criteria—is not met. Furthermore,
we do not generalize across oracle sizes as it is possible our approach is
statistically significant for some sizes, but not others.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

w0fT : : : : : : : : T T p P ol 1 — . . S ——
6ol 1 o °© o & "‘____g,,,;_,_i'_'_’—’f———i'—‘!i e 77:&::%::%::3113_7_8__3
O 1 our == 1 | -
o o L o o N _m---m--m S0 i M 1
501 5 o . * 5 8 2 = 52
TE _ oo 1% - 1 - S
Laop o dmmmr T 2| . - - I I]
[SO S Sl SOk
30 ‘ - - O C ideal 40+ ‘ s \deal a0k : // 0 0 igeal
200 ! s * % Ranked | ,/ Ranked (] * % Ranked
o |
ok ! ’ + =+ Output-base 20 :)/ Output-base 20 ,, + =+ Output-base
['/ B -8 Random '/ Random ! B -8 Random
e « N I
1 2 3 4 5 6 1 2 3 1 5 1 2 3 4 5 6
Oracle Size Oracle Size Oracle Size
(a) Latctl_Batch, Decision Inputs (b) Latctl_Batch, MC/DC Inputs (c) Latctl_Batch, Random Inputs
T : T : . : . T . 100 F— T . - : . —
L] A e - R S N Bty T B | | PN | % % o o o ¢ ¢
I -~ I o | . . e R
! | o Sk @ .
0F o e 4 50 P) e * 4 80F g g o o 1
15 a [e 5 &) a
g F o 5 G g 3 K
) _aof % 1 -
w P iy R * ' _--""
Sl [O C ideal v -7 - ! " O 0 ideal
[. * | __-= t | =
] * ok Ranked 20r I Ranked | N * ok Ranked
| - - -
20t + =+ Outputbase 101 o Output-base /L _ - + =+ Outputbase
! B -B Random S Random [- B -B Random
ok L L L L n L oLt : L L n L bl ! ! ! n n
1 2 3 4 5 6 1 2 3 1 5 6 1 2 3 4 5 6
Oracle Size Oracle Size Oracle Size
(d) Latctl_Batch, UFC Inputs (e) Vertmax_Batch, Decision Inputs (f) Vertmax_Batch, MC/DC Inputs
00F : : : : . — 100 —
c o © © © B T . JEE N S I S
80t e = * e - -m - -m---m
_ m-- W TEm AT
-
of S 90+ o - 1
m--a--"" :
60 F = 1 P
& s0r " 1 g
w 40 w 70 II - Ideal
30 Ranked /I o Ranked
20k Output-base y ,I E Output-base
s 60f .
andom andom
10f ‘ ‘ ‘ o ‘ ‘ ‘ ‘
4 5 6 1 2 3 1 5
Oracle Size Oracle Size

(g) Vertmax_Batch, Random Inputs (h) Vertmax_Batch, UFC Inputs

Fig. 3. Median Effectiveness of Various Approaches to Oracle Data Selection for Latctl_Batch and Vertmax_Batch.

Yellow Circles = Ideal; Green * = Ranked; Blue + = Output-base; Red Squares = Random.

T T T T T T T T T T T T T T T T T T T
50 | sor | o 1 20 1 b
1o}
e ° 'o o
; 50 : ‘E * * * ;
a0 o 1% * o 15 # 5l o |8 i
-t ¥ © +
c
* \ 40 o * | b o . |
o o x 1 L o 0 I 5 - -+ S Sk 1
< - < e _Fo -+ < 10k * B
k . s Eof g pm T i I -T
ol ® . | @ , | " > _ 1
. , _ _m wl . Lo - L
Lo m-F 0 0 Ideal A" © o Ideal r+-—7 m-Em - 0 0 Ideal
s . | * % Ranked L7 1 # % Ranked P | * % Ranked
- ! + + Output-base or W 1 + + Output-base "t ! + + Output-base
"3 ! B B Random ¥ ! B B Random o= ! B B Random
Y B L L L L L I L L L L L L L L L L
1 2 3 1 5 6 T 8 9 0 1 2 3 4 5 7 8 9 1 2 3 4 5 6 7 8 9
Oracle Size Oracle Size Oracle Size
(a) Infusion_Mgr, Decision Inputs (b) Infusion_Mgr, MC/DC Inputs (c) Infusion_Mgr, Random Inputs
60 FT T T T T T T ™3 T T T T T T T T T T T T T T T T
o | c | o
I o o 60 ! l ° 30 - 1 o 1
| 1
o i R 50 o s = B 2 g o
5 L R o 25 g |
c . o S J— .
s < 1 IR ° \ [B : N N
. o Lo —+ = _of 3 +--1 — b n * i
I3 * <1 ® -7 8 © T
w s Pis = - g v _a = e i
[- ! N Eoaorg - ! s ? ! __a--—a=-1
* - [_ -+ [N ° -
20 oo & - A 2 7 =
L | .
-7 oo Ideal 2 P o ¢ Ideal 10 T v o o Ideal
P \ _ -
P *- % Ranked - I *- % Ranked + _ *--% Ranked
0 - i + + Output-base 10 e ! + + Output-base sk g - ! + + Output-base
.- ! = ® Random - T ! = ® Random e - T ! = m Random
n L L L L n L L L L n L L L L
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 T 8 9 1 2 3 4 5 6 7 8 9
Oracle Size Oracle Size Oracle Size

(d) Alarms, Decision Inputs

(e) Alarms, MC/DC Inputs

(f) Alarms, Random Inputs

Fig. 4. Median Effectiveness of Various Approaches to Oracle Data Selection for Infusion_Mgr and Alarms, evaluated
on mutants. Yellow Circles = Ideal; Green * = Ranked; Blue + = Output-base; Red Squares = Random.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

T T T T T T T T 35 F=T T T T T T T — T T T T T T T T
ul X * * | * + Ranked ‘ * * 0 | X * * *
| 30 4+ + Output-base 1 4 1
12| N £ 1 ® B Random £ N 4
& - * - —-u - B & 30| & & i
10 ! - , 25 1 i 30 i
I , I I
= st ! ’ 4 20+ ! 4 . |
Q & o b4 Q 2
& * 2 * * koo - B - — - e & ! E a0l # e S S
wool 71 i wosf ! i w]
i , ’ o i /
. 7 ! 4 : / : _u
r - - - - — o 1 s d
Pt ‘# o ' e - . 0} // A - - -f--B- - - K g
2r 0 : * * Ranked - = PO B — / - : * % Ranked
- - — e + + Output-base
ol g - & - + + Output-base e -G - g--m--" - Pl
! = m Random of & - —g- == » 1 of & ! = m Random
L L L 1 L L L L 1 L L L L L L L 1 L
1 2 3 4 5 6 7 8 9 1 2 3 4 6 7 8 9 1 2 3 4 5 6 7 8 9
Oracle Size Oracle Size Oracle Size
(a) Infusion_Mgr, Decision Inputs (b) Infusion_Mgr, MC/DC Inputs (c) Infusion_Mgr, Random Inputs
N r——*‘w—#‘——#——i‘::i—:‘#::i * 77#77#74‘511‘—,—.1‘1—!}1—4‘ 100 - }——r——#f—#fﬂ&——#f—#f—#—
- l - i
80 | - B R -
1 _a- % sl i o 2] i 2
s - 15 e s s0 | i > 5 - -8 -8 - -8 — 8
2 1@ & 1% & z 1@
0 ‘e I 'y I ! ’ I
60 | . _
I L I | i
. / 1 _® It 1 o[i 1 4
X S | S I | S e |
:v_ 7R :v_ VA :T_ ! s
Tl] ! b woaf s/ ! i ® | i ’ ! |
L] ! w ! ! o [)
/ 1 ' 1 i /F 1
20F 1 ! N 20t ! ! ol !
/ ! * % Ranked ! ! # -+ Ranked - i, l * % Ranked
! ! + + Output-base / ! + + Output-base 17 ! + + Output-base
o+ ! = ® Random of 4 ! = ® Random of & ! = ® Random
L L L 1 L L L L 1 L L L L 1 L
1 2 3 4 5 T 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 T 8 9
Oracle Size Oracle Size Oracle Size

(d) Alarms, Decision Inputs

(e) Alarms, MC/DC Inputs

(f) Alarms, Random Inputs

Fig. 5. Median Effectiveness of Various Approaches to Oracle Data Selection for Infusion_Mgr and Alarms, evaluated
on real faults. Yellow Circles = Ideal; Green * = Ranked; Blue + = Output-base; Red Squares = Random.

Decision

Oracle Size Infusion_Mgr Alarms

1 Inf (0.00% — 7.14%) Inf (0.00% — 86.78%)

2-3 Inf (0.00% — 7.14%) 0.00%*

4 100% 2.17%

5-6 0.00%* 2.17%

7 0.00% 2.17%

8 9.09% 0.00%*

9-10 99.99% 0.00%*
MC/DC

Oracle Size Infusion_Mgr Alarms

1 Inf (0.00% — 4.25%) Inf (0.00% — 86.78%)

2-3 Inf (0.00% — 4.25%) 0.00%*

4 700.0% 0.00%*

5-7 0.00%* 0.00%*

8 700.0% 0.00%*

9-10 349.99% 0.00%*
Random

Oracle Size Infusion_Mgr Alarms

1 Inf (0.00% — 20.00%) 0.00%*

2-6 0.00%* 0.00%*

7-10 100.00% 0.00%*

TABLE 5

Median relative improvement using mutation-based
selection over output-base selection over real faults. “Inf”
= output-base oracle failed no tests—we note the median

percentage of tests failed by the generated oracle.

our proposed oracle data creation approach versus the output-
base ranking—the standard practice of checking the values of
the output variables, with additional random variables added
to ensure the same number of variables across all oracle types.
Relative improvements not statistically significant at o = 0.05
level are marked with a x. Almost all of the oracles generated
outperform the random approach with statistical significance,
often by a wide margin®.

From these two tables, we can see that for both struc-

6. Exceptions being output-base vs random on Infusion_Mgr with MC/DC
and decision inputs at size 2 and Alarms with random inputs at size 7

tural coverage criteria, nearly every oracle generated for
five of six systems (Latctl_Batch, Vertmax_Batch, DWM_2,
Infusion_Mgr, and Alarms) outperforms the output-base ap-
proaches with statistical significance. A common pattern can
be seen: for oracles smaller than the output-only oracle, our
approach tends to perform well compared to output-base, with
improvements of up to 1,435%. This reflects the strength
of prioritizing variables: we generally select more effective
variables for inclusion earlier than the output-base approach.
Even in cases where output variables are the most effective,
our approach is able to order them in terms of effectiveness.
As the test oracle size grows closer in size to the output-only
oracle, the relative improvement decreases, but our approach
often still outperforms the output-only oracle, up to 45.2%.
Finally, as the test oracle grows in size beyond the output-
only oracle incorporating (by necessity) internal variables, our
relative improvement when using our approach again grows,
with improvements of 3.64-52.33% for the larger oracles.

A similar trend can be seen when random tests are used to
train the oracle, although the acutal improvements are more
subdued. For oracles smaller than the output-base approach,
improvements of up to 85.71% can be seen. As middle sizes
are approached, our approach performs between an identical
performance (plus or minus roughly 2%—our method does
demonstrate a higher level of variance, as it depends on both
a set of training mutants and a particular test suite) and
improvements of up to 35.14%. For the largest oracle sizes,
modest improvements can be seen—up to 38.46% for the
Infusion_Mgr system.

In particular, the Infusion_Mgr and Alarms systems, we see
a large improvement in fault-finding effectiveness from using
our oracle creation method. This is explained by the structure
of these systems. Both systems work to determine the behavior

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

of an infusion pump by checking sensor readings against a
series of complex Boolean conditions. The state spaces of
these models are both deep and narrow, meaning that to reach
large portions of the state space, a specific sequence of input
values that meet certain combinations of those conditions must
occur. Thus, output-based oracles may not detect faults due
to masking—some expressions in the systems can easily be
prevented from influencing the outputs. If masking prevents
the effect of a fault from reaching an output variable, then the
effectiveness of an output-based oracle will naturally decrease.
Our oracle creation approach can select the important output
variables and certain internal bottlenecks to observe.

For the structural criteria and random test suites, one key
exception can be seen when examining the DWM_I system.
For this case example, mutation-based oracles tend to be
roughly equivalent in effectiveness to output-base oracles (we
generally cannot reject H0; at a = 0.05), and at times
(particularly for oracles generated using MC/DC satisfying test
suites) produce results that are up to 20% worse. It is only for
small or large oracles (approximately +-6 variables from the
output-only oracle) that our approach does well, with up to
a 66.67% improvement at smallest sizes and 4.19%-23.53%
improvement at the largest recorded oracle size. Examining
the composition of these oracles reveals why: the ranking
generated using our approach for this case example begins
mostly with output variables, and thus oracles generated using
our approach are very similar to those generated using the
output-base approach. The performance gain at small sizes
suggest that certain output variables are far more important
than others, but what is crucially important at all levels up to
the total number of outputs is fo choose output variables.

As noted previously, in a small number of instances, our
approach in fact does worse than the output-base approach.
The issue appears to be that the greedy set-coverage algorithm
is overfitting to the training data. If the trace data indicates that
there is a highly effective internal state variable, the algorithm
will prevent a computationally-related output variable from
being selected later in the process. However, it is possible that
overall, faults occur more prevalently in that output variable,
and that the internal variable is only more fault-prone for the
selected set of training data. Given a more optimal set cover
algorithm or additional overfitting avoidance improvements,
this issue would likely be circumvented. However, for larger
oracle sizes, this issue is generally corrected, with statistically
significant improvements again being demonstrated.

Very different results are observed when our technique
is applied with test inputs generated to satisfy the UFC
requirements coverage criterion. When these test suites are
used, our technique is, on occasion, modestly successful (up
to 9.55% improvement), but more often demonstrates either
no improvement (Vertmax_Batch and Latctl_Batch) or worse
results (for oracle sizes surrounding the number of output
variables on the DWM_1I system). We will elaborate on reasons
for this difference shortly.

In Table 5, we list the median improvement in fault finding
effectiveness on the set of real faults for the Infusion_Mgr
and Alarms systems. On the Infusion_Mgr system, we observe
the same trends that we saw when evaluating against seeded

mutations. At small oracle sizes, we see an improvement in
the percentage of the test suite that fails from 0% of the
tests with an output-base oracle up to 20% with a generated
oracle. As we approach the number of output variables, the
two approaches converge. Finally, at large oracle sizes, our
approach improves on the output-base oracle by up to 349%.

Examining the plots for Infusion_Mgr in Figure 5 offers
insight into the importance of the outputs in finding the real
faults embedded into the system—and shows why focusing on
the output variables is not always a wise idea. Only two of
the five output variables are relevant for finding any of the
known faults. This can be seen in the plots, as the median
percentage of tests that fail rises exactly twice for the output-
base oracle for sizes 1-5. As a result, for the structure-based
test inputs, choosing oracle completely at random sometimes
results in a more effective oracle. If some care is taken in
selecting an oracle, time may not be wasted in specifying the
expected behavior of outputs that rarely, if ever, are useful for
finding faults. Our approach is able to select the important
output variables early and automatically suggest additional
bottlenecks in the state space.

The results on the version of Alarms with real faults are
more subdued. At size one, our approach typically outperforms
the output-base approach by a large margain—from no failing
tests to failure results in a median of 86.78% of the tests.
However, from that point, the largest improvement from our
approach is by an additional 2.17%. The reason for this can
be clearly seen in Figure 5—no matter what variables are
chosen, by an oracle of size ten, 90-100% of the tests will have
failed. This can be explained by examining the faults listed in
Table 2. In particular, the first fault—that if an alarm condition
occurs during the first initialization step of execution, it will
not be detected in the faulty version of the system—explains
the observed results. The majority of the system outputs deal
explicitly with signaling alarms in the precence of particular
input conditions. If a test triggers that particular fault, then
the results of that fault will be obvious at the output level.
Our approach is able to select the most important output first,
while an unordered approach may not. However, unlike on the
Infusion_Mgr system, additional gains from observing internal
variables are rare.

The major observations made when evaluating on seeded
mutations are confirmed by the evaluation against the real
faults, indicating the applicability of our approach in practice.
However, the performance benefits were more subdued. A
likely reason for this effect is due to the potentially substantial
differences between the faulty and corrected models (or faulty
system and any source of expected values)—in the case of
Alarms, fixing the model involved adding 24 new transitions
and changing the guard conditions on time-related transitions,
meaning that any expected value oracle is very likely to detect
a fault. Examining models that are less substantially different
would likely yield different results—for instance, the fixes to
the Infusion_Mgr model only required two new transitions and
changes to a small number of guard conditions.

In addition, the changes imposed by the mutation operators
may not be similar to the real mistakes made by the system
developers. In particular, mutations do not replicate errors

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

of omission—Ileaving out functionality is very different from
making a mistake in the implemented functionality. While
examining the traces of mutated systems may help us discover
important internal variables for identifying faults caused by
incorrect implementation, those bottlenecks may not assist in
observing errors that stem from missing execution paths (as
several of the real faults, listed in Table 2, are). This indicates
that—while the core tenants of our mutation-based approach
seem correct—there is room for improvement in the sources
of the traces used to generate an oracle with our approach.
For instance, in addition to seeded faults, it may be possible
to train oracles using past revisions of a system (as long as
there is enough overlap in the internal structure of the system).
The combination of seeded mutations and corrected faults may
yield even more effective oracles.

While our approach is of little use when paired with UFC-
satisfying test inputs, it does seem clear that our approach can
be effective in practice when paired with either randomly-
generated test inputs or test suites generated to satisfy a
structural coverage criterion. For those test suites, we can
consistently generate oracle data sets that are effective over
different faults, generally outperforming existing ranking ap-
proaches. Our approach is able to highlight the most important
variables, allowing developers to craft smaller, more effective
oracle data sets.

5.3 Potential Effectiveness of Oracle Selection (Q2)

In Tables 6 and 7, we list the median improvement in fault
finding effectiveness between the idealized performance (ora-
cle data set built and evaluated on the same mutants) and the
real-world performance of our approach. The results which are
not statistically significant at o = 0.05 are marked with a x*.

As noted, there is limited empirical work on test oracle
effectiveness. Consequently, it is difficult to determine what
constitutes effective oracle data selection—clearly performing
well relative to a baseline approach indicates our approach is
effective, but it is hard to argue the approach is effective in
the absolute sense. We therefore posed Q2: what is the max-
imum potential effectiveness of a mutation-based approach?
To answer this question, we applied our approach to the same
mutants used to evaluate the oracles in QI (as opposed to
generating oracles from a disjoint training set). This represents
an idealized testing scenario in which we already know what
faults we are attempting to find; thus, this scenario is used to
estimate the maximum potential of our approach.

The results can be seen in Figures 2-4 and Tables 6-7.
We can observe from these results that while the potential
performance of a mutation-based oracle is (naturally) almost
always higher than the actual performance of our method, the
gap between the actual implementation of our approach and
the ideal scenario is often quite small. In some cases, such as
when using UFC-satisfying test inputs with the Vertmax_Batch
system or at small oracle sizes on Infusion_Mgr, the difference
in results is statistically insignificant. Thus we can conclude
that while there is clearly room for improvement in oracle
data selection methods, our approach appears to often be quite
effective in terms of absolute performance.

14
Decision
Oracle DWM DWM Vertmax Latctl Infusion | Alarms
Size 1 2 _Batch _Batch _Mgr
1 100.00% 3.54% 5.00% 0.00%* 0.00%* 13.79%
2 133.33% 8.70% 5.28% 7.55% 13.79% 3.35%
3 133.33% | 11.24% 13.73% 12.50% 21.62% 9.00%
4 143.65% | 14.29% 16.03% 16.67% 12.50% 11.59%
5 124.04% | 15.76% 15.25% 15.38% 16.67% 12.61%
6 12321% | 17.24% 17.24% 10.71% 14.58% 15.69%
7 116.67% | 18.64% 20.34% 11.27% 14.00% 18.80%
8 112.50% 17.24% 17.46% 13.89% 16.67% 21.67%
9 109.82% 17.95% 19.40% 14.86% 18.18% 21.55%
10 106.46% 18.87% 21.54% 14.81% 14.29% 21.43%
11 105.41% | 17.65%
12 109.26% 19.05%
13 109.31% 19.18%
14 115.00% | 20.00%
15 19.72%
16 17.72%
17 18.18%
18 17.33%
MC/DC
Oracle DWM DWM Vertmax Latctl Infusion | Alarms
Size 1 2 _Batch _Batch _Mgr
1 66.67% 5.48% 2.08% 0.97% 0.00%* 3.23%
2 82.86% 6.41% 2.80% 0.99% 10.53% 7.14%
3 91.29% 6.69% 4.55% 2.04%%* 15.91% 11.11%
4 85.71% 7.06% 3.67% 3.77% 16.00% 451%
5 100.00% 7.74% 4.07% 4.85% 12.96% 8.27%
6 97.37% 8.84% 5.41% 5.66% 14.29% 11.57%
7 94.87% 8.74% 6.14% 5.63% 15.52% 13.59%
8 100.00% 10.05% 6.19% 6.60% 16.13% 14.71%
9 95.65% 8.91% 6.55% 7.55% 20.00% 15.50%
10 92.15% 10.21% 7.02% 8.37% 21.67% 16.91%
11 88.89% 11.00%
12 87.10% 11.00%
13 87.10% 11.00%
14 90.31% 11.59%
15 11.43%
16 10.90%
17 11.21%
18 11.21%
TABLE 6

Median relative improvement in idealized performance
over standard performance of mutation-based selection
for structural coverage-satisfying tests

5.4 Impact of Coverage Criteria (Q3)

Our technique relies on pre-existing suites of test inputs. It
follows that we would like to investigate the impact of varying
the fype of test suite on the effectiveness of oracle selection.

Intuitively, when examining the results of the oracle data
sets generated using the two structural coverage criteria, using
test suites satisfying the stronger criterion (MC/DC) should
have a lower potential for improving the testing process via
oracle selection, as the test inputs should do a better job of
exercising the code. However, as shown in Figures 2-5 for each
case example, the gap between the output-base and generated
oracles for both decision and MC/DC test suites seems to
be roughly the same. For example, for the DWM_2 system,
we can see that despite overall higher levels of fault finding
when using the MC/DC test suites, the general relationships
between the output-base baseline approach, our approach, and
the idealized approach remain similar. We see a rapid increase
in effectiveness for small oracles, followed by a decrease
in the improvement of our approach versus the output-base
baseline as we approach oracles of size 10 (corresponding
to an output-only oracle), followed by a gradual increase in
the improvement. In some cases, relative improvements are
higher for decision coverage (Latctl_Batch) and in others they

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Random
Oracle DWM DWM Vertmax Latctl Infusion | Alarms
Size _1 2 _Batch _Batch _Mgr
1 8.89% 1.12% 2.06% 0.82% 12.50% 7.14%
2 20.26% 3.23% 1.96% 1.65% 10.00% 11.11%
3 12.61% 3.86% 3.33% 1.67% 26.97% 16.23%
4 9.74% 2.87% 3.90% 2.48% 28.57% 22.73%
5 9.67% 0.98%* 4.68% 2.48% 30.77% 25.00%
6 5.55% 2.78% 5.10% 2.48% 31.25% 31.91%
7 4.18% 4.41% 591% 2.48% 29.41% 38.39%
8 5.82% 5.31% 6.12% 2.48% 27.78% 41.38%
9 7.96% 6.28% 6.90% 2.48% 31.41% 42.86%
10 8.75% 7.11% 7.33% 2.48% 30.00% 36.36%
11 10.64% 6.96%
12 12.56% 6.60%
13 12.25% 6.06%
14 12.37% 5.98%
15 5.19%
16 5.08%
17 5.08%
18 4.27%
UFC
Oracle DWM DWM Vertmax Latctl
Size _1 2 _Batch _Batch
1 60.00% 3.37% 0.85% 0.83%*
2 72.08% 4.17% 1.64% 1.67%
3 76.92% 3.96% 1.65% 2.50%*
4 81.25% 3.88% 1.65% 3.33%*
5 79.47% 0.85% 1.64% 2.48%
6 82.29% 2.54% 1.64% 2.48%
7 89.18% 3.45% 0.82% 2.48%*
8 88.24% 431% 0.82% 2.48%%*
9 94.12% 4.46% 0.82% 2.48%%*
10 100.00% 5.22% 0.82% 2.48%*
11 100.00% 6.03%
12 100.00% 6.03%
13 103.85% 5.24%
14 103.94% 5.19%
15 5.13%
16 4.68%
17 4.22%
19 3.36%
TABLE 7

Median relative improvement in idealized performance
over standard performance of mutation-based selection

for random and UFC-satisfying tests
Decision | MC/DC | UFC Random
DWM_1 2.0 2.0 4.0 6.0
DWM_2 1.5 2.0 7.0 6.0
Vertmax_Batch 1.0 2.0 5.0 6.0
Latctl_Batch 1.0 2.0 5.0 6.0
Infusion_Mgr 3.0 3.0 6.0
Infusion_Mgr (real faults) 3.0 3.5 6.0
Alarms 2.0 2.0 6.0
Alarms (real faults) 2.0 3.0 6.0
TABLE 8

Median number of steps per test

are higher for MC/DC (Vertmax_Batch). Relative improve-
ments even vary between oracle sizes—as can be seen on
Infusion_Mgr and Alarms, where MC/DC-satisfying tests tend
to lead to larger improvements than decision-satisfying tests at
small oracle sizes, but decision-satisfying tests lead to larger
improvements at larger sizes.

The results in Tables 3-5 and Figures 2-5—particularly
those for DWM_2—reveal three key observations about the
oracles generated using random test inputs. First, the oracles
largely exhibit the same trends as the oracles generated for
the structure-based test suites—a sharp rise at small sizes,
performance comparable to the output-base oracle around
middle sizes, and further gains at the end. Second—however,
the improvements from using our method over an output-base
oracle are more modest. Finally, On the Rockwell Collins

systems, all oracle selection methods achieve higher levels
of fault finding over random tests than they do when applied
to test inputs generated to satisfy structural coverage criteria.

Observations 2 and 3 can be partially explained by exam-
ining the individual tests. As seen in Table 8, the median
length of each randomly-generated test—as measured in num-
ber of recorded test steps—is significantly longer than the
length of the tests in the coverage satisfying tests. In fact,
the random tests tend to be three to six times longer than
their structure-based counterparts. This addresses the third
observation in particular, because longer tests allow more
time for corrupted internal states to propagate to the output
variables. Tests generated to satisfy structural coverage criteria
tend to focus on exercising particular syntactic elements of the
source code, and thus, tend to be short—just long enough to
exercise that particular obligation. As a result, tests generated
to satisfy structural coverage obligations may be very effective
at locating faults, but may not be long enough to propagate
the fault to the output level.

The third observation is not true for Infusion_Mgr
and Alarms—coverage-satisfying tests outperform randomly-
generated tests. This is due to the complex structure of these
systems. Deep exploration of their state spaces requires par-
ticular combinations of Boolean conditions, and random tests
are less likely to hit some of these combinations. However,
the second observation—that the gains are more modest—is
still true. Even if the state space is less thoroughly explored,
the longer test lengths still allow more time for the effects of
the triggered faults to propagate to the output variables.

As shown in Figures 2 and 3—despite different fault finding
numbers—the plots for test oracles that make use of test
suites generated to satisfy the UFC requirements coverage
criterion look very similar to the plots for the oracles that
use other test input types. However, as with random tests, (1)
all oracle selection methods tend to do very well, and (2), the
improvement from using our method tends to be small.

There is some wisdom in the common approach of mon-
itoring the output variables, as some faults will always be
caught by monitoring them. Ultimately, the recommendation
of whether or not to make use of our oracle data selection
method is biased by the choice of test input—more specifically,
the probability of a fault propagating to the output variables.
As UFC coverage obligations tend to take the form of explicit
relationships between inputs and outputs, it is unsurprising that
our approach often fails to outperform the output-base oracle.
While faults can still be masked in UFC tests, they are far more
likely to propagate to an output variable than when running
tests providing structural coverage. Therefore, it is unlikely
that much improvement will be seen when working with test
inputs that satisfy a requirements coverage criterion. On the
other hand, when working with tests that explicitly exercise
the internal structure of the software (as is mandated for certi-
fication for the avionics domain), masking of faults is common
and our approach can significantly improve the effectiveness
of the testing process. Regardless of the differing level of fault
finding, the consistent trends across case examples exhibited
for generated oracles indicates that, perhaps more that the test
inputs used, characteristics of the system under test are the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

100 F T T T T

+++++

T

++++++

ee eoo ® 00 900 o0o ooo ° °
X X XX X X

A A A a a a a
+ +

Training Set Size(%)
)
T

%
T

=
=)
T

x
xoe00
o000

xxxxx

B b X X X
B BB X X X X

1 2 3 4 5 6 7 8 9 10
Oracle Size

100 ;

11 12 13 14 15 16 17 18

x

75

50 |

Training Set Size(%)

10 |-

ALF, Ran
Inf, Dec

Inf, MC/DC
Inf, Ran
Inf_F, Dec

+ Inf_F, MC/DC
1+ + Inf_F, Ran

+ P B> 8OO XXX
+ P B> 8OO XXX

Oracle Size

Fig. 6. Smallest Effective Training Sets (V_B = Vertmax_Batch, L_B = Latctl Batch, Al = Alarms, Inf = Infusion_Magr,

F = version with real faults)

primary determinant of the effectiveness of our approach.

5.5

For our initial experiment, we chose to use 125 mutants for
training the oracle data. This number was chosen because
earlier studies yielded evidence that results tend to stabilize
after 100 mutants are used. That said, it may be possible to
train sufficiently powerful oracles with fewer mutants—in fact,
this would be an ideal situation, as examining fewer mutants
will save time in the oracle generation process.

In Figure 6, we have summarized the results for statistical
tests H4 — H'7. We have omitted the full set of values, instead
opting to determine the smallest training set size where we
cannot reject the null hypothesis—the smallest training set
that produces test oracles of effectiveness not statistically
different from the full training set. The selected training set
for each combination of case example, coverage criteria, and
oracle size is plotted in the figure. (Note small vertical and
horizontal offsets are present for readability. Points above
X% and below Y % should be interpreted as training set size
of exactly Y%. Point above oracle size X and Y should be
interpreted as oracle sizes of Y.) For example, for the DWM_]
system, training set sizes of 50% of those typically used
provided statistically equivalent performance for oracle sizes
between one to seven, while the full training set is required
for oracles of sizes eight and larger.

Each point represents the plateau at which we cease to
observe significant improvements from adding additional mu-
tants to the training process. Based on the figure, we conclude
that, for the most part, our initial estimate of 125 mutants
was reasonable. For several of the combinations of case

Impact of Number of Training Mutants (Q4)

example and test input, we fail to observe this plateau for
several oracle sizes—we can say with statistical certainty that
oracle effectiveness will diminish with fewer training mutants.
These points typically correspond to areas where the ideal
approach has a moderate (7-15%) and statistically significant
difference over our approach, for example the DWM_I system
with random, MC/DC, and decision coverage for oracle sizes
between 7-13. For these systems, our approach constructs test
oracles that are effective, but can clearly be improved.

Often, however, smaller training set sizes are sufficient. We
frequently observe a plateau in fault finding results after 75%
or 50% of the training mutants are used to train the oracle
(though some improvement is often seen when using the full
training set). Thus, for the majority of combinations of test
input type and case example, we can conclude that 62 to 100
mutants are needed to produce effective test oracles.

When using real faults as an evaluation criterion, dimishing
returns are seen at smaller training set sizes—often at 25%
for Infusion_Mgr and 10% for Alarms. As shown by our
earlier results, ranking variables using information learned
from seeded faults leads to improvements in effectiveness.
However, when the mutation operators are dissimilar to the
real mistakes made by the developers, we quickly exhaust what
we can learn from the seeded faults. This again indicates that—
while our mutation-based approach yields benefits—there is a
need to expand the sources of the traces used to generate the
oracle data set.

Although results vary between case example, it seems that
one of the largest determinations of how many mutants are
needed is the choice of test input type. Test suites generated
to satisfy a structural coverage metric tend to require a large

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

Test Type | Oracle | # Chosen Total # Chosen Total
Size Outputs Outputs Internals Internals
DWM_1 Decision 0.37 13.63
MC/DC 043 13.57
UFC 14 0.84 7 13.16 569
Random 2.28 11.72
DWM_2 Decision 3.10 14.90
MC/DC 4.33 13.67
UFC 18 754 o 10.16 s
Random 8.30 9.70
Vertmax Decision 1.50 8.50
_Batch MC/DC 1.51 8.49
UFC 10 2.00 2 8.00 415
Random 0.96 9.04
Latctl Decision 0.00 10.00
_Batch MC/DC 0.00 10.00
UFC 10 T.00 ! 9.00 128
Random 0.97 9.03
Infusion Decision 1.88 8.12
_Mgr MC/DC 10 1.73 5 8.27 107
Random 2.72 7.28
Infusion Decision 2.40 7.60
_Mgr MC/DC 10 2.29 5 7.71 86
(RF) Random 3.34 6.66
Alarms Decision 2.02 7.98
MC/DC 10 2.27 5 7.73 182
Random 1.03 8.97
Alarms Decision 1.71 8.29
(RF) MC/DC 10 1.54 5 8.46 155
Random 0.88 9.12
TABLE 9
Average composition of generated oracles. RF = real
faults.

number of mutants. In fact, when using suites designed to
satisfy decision coverage, it may be possible to improve results
further by adding more mutants than we did. Decision and
MC/DC coverage obligations exercise pieces of the internal
structure of a system, and thus, it is hard to predict exactly
where a corrupt internal state will propagate to. The more
mutants we examine, the more evidence there is for which
specific internal variables we can observe to catch faults.

In contrast, UFC test obligations are expressed in terms
of the relationship between inputs and outputs to the system
under test, and thus, the tests are very likely to propagate
faults to the output variables. As a side effect, our oracle
selection method reaches a plateau very quickly. For two case
examples, Vertmax_Batch and Latctl_Batch, as few as 10%
of the training mutants used are necessary to reach stable
conclusions. In fact, using more training mutants with test
suites that satisfy UFC coverage can occasionally be slightly
detrimental, as overfitting at larger training set sizes leads to
worse median fault finding results at certain oracle sizes.

5.6 Oracle Composition (Q5)

In addition to performance, we are also interested in the
composition of the generated data sets. Are they similar in
structure to the current industrial practice of favoring the
output variables, or, are they more heavily constructed from
the many internal variables of the examined systems?

The average composition of the generated oracle data sets
are listed in Table 9. For each system and test type, we list the
size of the oracle data, the average number of chosen output
variables, the total number of output variables, the average
number of chosen internal variables, and the total number of
internal variables. Recall that the oracle size was chosen to
be the larger of twice the number of output variables or ten
variables. Therefore, while a generated oracle data set could be

entirely composed of internal variables, none of the generated
data sets will be composed entirely of output variables.

As with the performance of the generated oracle data, the
composition seems to be largely determined by the type of
test suite used to generate the data. The oracles created from
structure-based test suites saw a large efficacy improvement
from the oracle generation process because faults did not tend
to propagate to the output variables in these tests. It follows,
that the generated oracle data sets favor internal variables
and largely ignore the output variables—for every system
except Vertmax_Batch, fewer than half of the output variables
are used in the oracles generated from structure-based tests.
The UFC tests, on the other hand, are written specifically to
propagate certain behaviors to the output variables, and the
oracle data generated from the UFC tests tends to make use of
more of those output variables. The composition of the oracle
data sets generated from random tests varies depending on
the case example—for the Vertmax_Batch system, oracle data
generated from random tests only uses one of the two output
variables. Similarly, for the Alarms system, the oracles gener-
ated from random tests made use of fewer output variables than
those generated from structure-based tests. However, for the
other systems, the oracle data sets generated from the random
tests did more commonly choose output variables.

If the majority of the selected variables are internal vari-
ables, the effort cost of producing expected values for those
variables must be considered. Not all variables can have their
values specified with equal difficulty. Two key factors must
be considered—how often the value of the variable is checked
and how the variable is used within the system.

When and how often correctness is checked will help deter-
mine how effective the test oracle will be at catching faults.
It is common to check behaviors after particular events or at
regular points in time—for example, following the completion
of a discrete computational cycle, as is the case with the
systems used in our evaluation. A reasonable hypothesis might
be that the more frequently values are checked, the easier it
will be to spot problems. However, if expected values must be
specified manually, there will be an increase in the required
effort to produce the expected values for these result checks.
Balancing the effort-to-volume ratio is important.

How a variable is used within the structure of the system
may make specifying the value of those variables quite compli-
cated. For example, if a variable is assigned a value in a triple-
nested loop, unrolling the loops and selecting the value may
be difficult. Similarly, an assignment requiring a complicated
calculation might also require specifying the values of other
dependent variables.

Therefore, even if our approach suggests a particular in-
ternal variable, testers may ignore the advice if specifying
values for that variable is too difficult. In such situations,
we recommend two courses of action—either remove difficult
internal variables from consideration or weight those variables
by the difficulty of specification.

Our approach starts with a candidate set of oracle variables
and prunes it down into a recommended subset. While we have
used all of the internal variables in our candidate set, that is
not required. Testers could simply remove certain variables

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

from consideration before generating an oracle. This is the
easiest solution to the problem of specifying expected values
for more difficult internal variables.

However, that solution does carry a risk of causing the
tester to miss out on valuable oracle information. Variables
that are difficult to specify expected values for might be worth
considering if they also correspond to valuable monitoring
points in the system. Therefore, another option is that, before
generating the oracle data set, the tester could go through the
list of variables in the system and apply weights to some
or all of them to represent the cost of producing expected
output for that variable. Weights can easily be incorporated
into the set-covering algorithm used to generate the oracle
data—the weight can be factored against the expected fault-
finding improvement from the use of that variable. Unless
the improvement from using that variable is quite high, an
expensive to test internal variable will not be chosen.

6 THREATS TO VALIDITY

External Validity: Our study is limited to six synchronous
reactive critical systems. Nevertheless, we believe these sys-
tems are representative of the avionics systems in which we
are interested and our results are therefore generalizable to
other systems in the domain.

We have used Lustre [28] as our implementation language
rather than a more common language such as C or C++.
However, systems written in Lustre are similar to traditional
imperative code produced in embedded systems development.
A simple syntactic transformation suffices to translate Lustre
code into C code.

We have generated approximately 250 mutants for each case
example, with 125 mutants used for training sets and up to
125 mutants used for evaluation. These values are chosen
to yield a reasonable cost for the study. It is possible the
number of mutants is too low. Nevertheless, based on past
experience, we have found results using less than 250 mutants
to be representative [39].

Internal Validity: We have used the JKind model checker
to generate test cases. This generation approach provides the
shortest test cases that provide the desired coverage. It is
possible that test cases produced through some other method
would yield different oracle data sets.

Construct Validity: We measure the fault finding of oracles
and test suites over seeded faults, rather than real faults en-
countered during development of the software, for four of the
examined systems. Given that our approach to selecting oracle
data is also based on the mutation testing, it is possible that
using real faults would lead to different results. As mentioned
earlier, Andrews et al. and Just et al. have shown that the use
of seeded faults leads to conclusions similar to those obtained
using real faults in similar fault finding experiments [19], [20].
For the systems with real faults, our general results held.

Yao et al. have found that certain mutation operators can
result in more equivalent mutants than other operators, thus
skewing the results of testing experiments [40]. While we did
remove equivalent mutants from the evaluation set (about 3%
of the mutants for each system), in practice, these did not

disproportionately result from particular mutation operators.
Therefore, we do not feel that our results could have been
impacted by biasing in the mutation operators.

7 CONCLUSION

In this study, we have explored a mutation-based method
for supporting oracle creation. Our approach automates the
selection of oracle data, the set of variables monitored by the
test oracle—a key component of expected value test oracles.

Experimental results indicate that our approach, when paired
with test suites generated to satisfy structural coverage criteria
or random tests, is successful with respect to alternative
approaches for selecting oracle data, with improvements up to
1,435% over output-base oracle data selection and improve-
ments of up to 50% relatively common. Even in cases where
our approach is not more effective, it appears to be comparable
to the common practice of monitoring the output variables.
We have also found that our approach performs within an
acceptable range from the expected maximum performance.

However, we also found that our approach was not effective
when paired with test inputs generated to satisfy requirements-
based metrics. These tests, expressed in terms of the rela-
tionships between inputs and outputs, are highly likely to
propagate faults to the output variables, reducing the potential
gains from selecting key internal states to monitor.

Thus, we recommend the use of our approach when test
suites that exercise structures internal to the system under
test are employed in the testing process (such test suites are
required by standards in the avionics domain) [29].

REFERENCES

[1] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “A comprehensive
survey of trends in oracles for software testing,” Tech. Rep. CS-13-01,
University of Sheffield, Department of Computer Science, 2013.

[2] L. Briand, M. DiPenta, and Y. Labiche, “Assessing and improving state-
based class testing: A series of experiments,” I[EEE Trans. on Software
Engineering, vol. 30 (11), 2004.

[3] M. Staats, M. Whalen, and M. Heimdahl, “Better testing through oracle
selection (nier track),” in Proceedings of the 33rd Int’l Conf. on Software
Engineering, pp. 892-895, 2011.

[4] M. Staats, M. Whalen, and M. Heimdahl, “Programs, testing, and
oracles: The foundations of testing revisited,” in Proceedings of the 33rd
Int’l Conf. on Software Engineering, pp. 391-400, 2011.

[5] Q. Xie and A. Memon, “Designing and comparing automated test
oracles for gui-based software applications,” ACM Trans. on Software
Engineering and Methodology (TOSEM), vol. 16, no. 1, p. 4, 2007.

[6] M. Staats, G. Gay, and M. Heimdahl, “Automated oracle creation
support, or: how I learned to stop worrying about fault propagation
and love mutation testing,” in Proceedings of the 2012 Int’l Conf. on
Software Engineering, pp. 870-880, 2012.

[71 D.J. Richardson, S. L. Aha, and T. O’Malley, “Specification-based test
oracles for reactive systems,” in Proc. of the 14th Int’l Conf. on Software
Engineering, pp. 105-118, Springer, May 1992.

[8] A. Memon and Q. Xie, “Using transient/persistent errors to develop
automated test oracles for event-driven software,” in Automated Software
Engineering, 2004. Proceedings. 19th Int’l Conf. on, pp. 186 —195, sept.
2004.

[9] 1. Voas and K. Miller, “Putting assertions in their place,” 1994.

[10] C.Pacheco and M. Ernst, “Eclat: Automatic generation and classification

of test inputs,” ECOOP 2005-Object-Oriented Programming, pp. 504—

527, 2005.

K. Taneja and T. Xie, “Diffgen: Automated regression unit-test genera-

tion,” 2008.

R. Evans and A. Savoia, “Differential testing: a new approach to change

detection,” 2007.

(1]

(12]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD

[13]
[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

[26]
[27]
[28]
[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

(38]
[39]

G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” 2010.

G. Fraser and A. Zeller, “Generating parameterized unit tests,” 2011.
S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string test
inputs using a natural language model to reduce human oracle cost,” in
Int. Conf. on Software Testing, Verification and Validation (ICST), 2013.
M. Harman, K. Sung, K. Lakhotia, P. McMinn, and S. Yoo, “Optimizing
for the number of tests generated in search based test data generation
with an application to the oracle cost problem,” in Software Testing,
Verification, and Validation Workshops (ICSTW), 2010 Third Int’l Conf.
on, pp. 182-191, 2010.

P. McMinn, M. Stevenson, and M. Harman, “Reducing qualitative
human oracle costs associated with automatically generated test data,”
in Proceedings of the First International Workshop on Software Test
Output Validation, STOV *10, (New York, NY, USA), pp. 1-4, ACM,
2010.

Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, no. 99,
p. 1, 2010.

J. Andrews, L. Briand, Y. Labiche, and A. Namin, “Using mutation
analysis for assessing and comparing testing coverage criteria,” Software
Engineering, IEEE Transactions on, vol. 32, pp. 608 —624, aug. 2006.
R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?,”
in Proceedings of the Symposium on the Foundations of Software
Engineering, 2014.

M. Hiller, A. Jhumka, and N. Suri, “An approach for analysing the
propagation of data errors in software,” in Proceedings of the 2001 Int’l
Conf. on Dependable Systems and Networks (formerly: FTCS), DSN
’01, (Washington, DC, USA), pp. 161-172, IEEE Computer Society,
2001.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. MIT Press and McGraw-Hill, 2001.

M. Garey and M. Johnson, Computers and Intractability. New York:
Freeman, 1979.

V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of operations research, vol. 4, no. 3, pp. 233-235, 1979.

A. Murugesan, S. Rayadurgam, and M. Heimdahl, “Modes, features,
and state-based modeling for clarity and flexibility,” in Proceedings of
the 2013 Workshop on Modeling in Software Engineering, 2013.

“Mathworks Inc. Simulink.” http://www.mathworks.com/products/simulink,
2015.

“MathWorks Inc. Stateflow.” http://www.mathworks.com/stateflow,
2015.

N. Halbwachs, Synchronous Programming of Reactive Systems. Klower
Academic Press, 1993.

RTCA, DO-178B: Software Considerations In Airborne Systems and
Equipment Certification. RTCA, 1992.

J. Chilenski, “An investigation of three forms of the modified condition
decision coverage (MCDC) criterion,” Tech. Rep. DOT/FAA/AR-01/18,
Office of Aviation Research, Washington, D.C., April 2001.

M. Whalen, A. Rajan, M. Heimdahl, and S. Miller, “Coverage metrics
for requirements-based testing,” in Proceedings of the Int’l Symposium
on Software Testing and Analysis, pp. 25-36, 2006.

A. Gargantini and C. Heitmeyer, “Using model checking to generate tests
from requirements specifications,” Software Engineering Notes, vol. 24,
pp. 146-162, November 1999.

S. Rayadurgam and M. Heimdahl, “Coverage based test-case generation
using model checkers,” in Proc. of the 8th IEEE Int’l. Conf. and
Workshop on the Engineering of Computer Based Systems, pp. 83-91,
IEEE Computer Society, April 2001.

G. Hagen, Verifying safety properties of Lustre programs: an SMT-based
approach. PhD thesis, University of Iowa, December 2008.

A. Gacek, “JKind - a Java implementation of the KIND model checker.”
https://github.com/agacek, 2015.

M. Heimdahl, G. Devaraj, and R. Weber, “Specification test coverage
adequacy criteria = specification test generation inadequacy criteria?,”
in Proc. of the Eighth IEEE Int’l Symp. on High Assurance Systems
Engineering (HASE), (Tampa, Florida), March 2004.

C. Van Eijk, “Sequential equivalence checking based on structural sim-
ilarities,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems,, vol. 19, no. 7, pp. 814-819, 2002.

R. Fisher, The Design of Experiment. New York: Hafner, 1935.

A. Rajan, M. Whalen, and M. Heimdahl, “The effect of program and
model structure on MC/DC test adequacy coverage,” in Proc. of the 30th
Int’l Conf. on Software engineering, pp. 161-170, ACM, 2008.

[40] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn

|

mutation operators using human analysis of equivalence,” in Proceedings
of the 36th International Conference on Software Engineering, ICSE
2014, (New York, NY, USA), pp. 919-930, ACM, 2014.

\ Gregory Gay is an Assistant Professor of Com-
puter Science & Engineering at the University of
South Carolina. His research interests include
automated testing and analysis—with an em-
phasis on test oracle construction—and search-
based software engineering. Greg received his
Ph.D. from the University of Minnesota, working
with the Critical Systems research group, and an
M.S. from West Virginia University.

Matt Staats has worked as a research asso-
ciate at the Software Verification and Validation
lab at the University of Luxembourg and at the
Korean Advanced Institute of Science and Tech-
nology in Daejeon, South Korea. He received
his Ph.D. from the University of Minnesota-Twin
Cities Matt Staatss research interests are real-
istic automated software testing and empirical
software engineering. He is currently employed
by Google, Inc.

Michael Whalen is a Program Director at the
University of Minnesota Software Engineering
Center. Dr. Whalen is interested in formal anal-
ysis, language translation, testing, and require-
ments engineering. He has developed simu-
lation, translation, testing, and formal analy-
sis tools for Model-Based Development lan-
guages including Simulink, Stateflow, SCADE,
and RSM L~¢, and has published more than 40
papers on these topics. He has led successful
formal verification projects on large industrial

-

avionics models, including displays (Rockwell-Collins ADGS-2100 Win-
dow Manager), redundancy management and control allocation (AFRL
CerTA FCS program) and autoland (AFRL CerTA CPD program). He
has recently been researching tools and techniques for scalable compo-
sitional analysis of system architectures.

Mats P.E. Heimdahl is a Full Professor of Com-
puter Science and Engineering at the University
of Minnesota, the Director of the University of
Minnesota Software Engineering Center (UM-
SEC), and the Director of Graduate Studies for
the Master of Science in Software Engineering
program. He earned an M.S. in Computer Sci-
ence and Engineering from the Royal Institute of
Technology (KTH) in Stockholm, Sweden and a
Ph.D. in Information and Computer Science from
the University of California at Irvine.

His research interests are in software engineering, safety critical

systems, software safety, testing, requirements engineering, formal
specification languages, and automated analysis of specifications.

He is the recipient of the NSF CAREER award, a McKnight Land-

Grant Professorship, the McKnight Presidential Fellow award, and the
awards for Outstanding Contributions to Post-Baccalaureate, Graduate,
and Professional Education at the University of Minnesota

