
Mapping Class Dependencies for Fun and Profit

Allen Kanapala1, Gregory Gay2

1University of South Carolina Salkehatchie, Allendale, SC, USA
2University of South Carolina, Columbia, SC, USA
kanapalaa@acm.org, greg@greggay.com

Abstract. Classes depend on other classes to perform certain tasks. By map-
ping these dependencies, we may be able to improve software quality. We have
developed a prototype framework for generating optimized groupings of classes
coupled to targets of interest. From a pilot study investigating the value of cou-
pling information in test generation, we have seen that coupled classes generally
have minimal impact on results. However, we found 23 cases where the inclu-
sion of coupled classes improves test suite efficacy, with an average improvement
of 120.26% in the likelihood of fault detection. Seven faults were detected only
through the inclusion of coupled classes. These results offer lessons on how cou-
pling information could improve automated test generation.

Keywords: Coupling, Search-Based Software Engineering, Software Testing

1 Introduction

In complex systems, coupled classes depend on other classes to perform certain tasks [6].
By mapping and grouping these dependencies, we may be able to offer valuable infor-
mation that can improve software quality.

Automated test generation can be performed to control testing costs. However, a
question remains—which classes should be targeted for generation? Often, only the
classes that are known to be faulty are targeted. However, a class that is coupled to
a faulty class may still exhibit unexpected behavior. By generating tests for coupled
classes, we may be able to detect faults that would otherwise be missed.

We have developed a prototype framework to investigate the effect of coupling in
test generation. The framework maps the dependencies between Java classes into a di-
rected graph. This graph can then be used to generate small, dense groupings of classes
centered around selected targets. To understand whether test generation is more effec-
tive when including coupled classes, we have performed a pilot case study. Using 588
real faults from 14 Java projects, we have identified groupings of classes, generated
test suites for these groupings and the faulty classes alone, and assessed whether the
inclusion of coupled classes improves the likelihood of fault detection.

Overall, there is only an average improvement of 3.79% in the likelihood of fault
detection when incorporating coupled classes. However, when these additional classes
have any impact, there is an average improvement of 120.26% and seven additional
faults were detected only through coupling. The inclusion of coupled classes could



2

yield significant efficacy improvements if we can identify in advance where they would
be useful, and improve coverage of dependencies. In addition, our optimization process
often yields unnecessarily large groupings.

We hypothesize that the ability to map and optimize groups of coupled classes could
benefit many areas of software engineering research—particularly when automating
tasks. Our framework has offered promising preliminary results. We will further explore
how coupling information could improve automated software engineering.

2 Coupling Mapping Framework

We have developed a framework that maps class dependencies into a directed graph1.
We then use this graph to optimize small, highly-interconnected groupings of classes
coupled to designated targets using a simple genetic algorithm. The following basic
process is used to generate groupings:
1. This framework first maps dependencies between classes. In this case, we consider

dependencies to be either method calls or variable references to another class.
2. A directed graph is created, where each class is a node, and each edge indicates

a dependency. Any classes that have no dependencies and are not the target of a
dependency will be filtered out from consideration at this stage. If no classes are
coupled to a changed class, the changed class will still be added to the target list.

3. We generate a population of 1,000 groupings, formed by randomly selecting classes.
4. Each grouping is scored using the fitness function described below, and a new pop-

ulation is formed through retention of best solutions (by default, 10%), mutation
(20%), crossover (20%), and further random generation (50%).

5. Evolution continues until the time budget is exhausted—by default, five minutes2.
6. The best grouping is returned. The changed classes are added to that grouping.

The fitness function used to score groupings is:

FG =

√
size

2
+ (coverage− 1)

2
+ avg(distance)

2
(1)

That is, we prioritize groupings that are closer to a sweet spot of fewer classes (size),
where the chosen classes are coupled to a large number of other classes (coverage),
and where more classes are either coupled directly to the changed classes or through
a small number of indirect dependency links (average distance). This should result
in a relatively small grouping of classes that are densely coupled to each other and
other classes. x is a normalized value 0 ≤ x−min(x)

max(x)−min(x) ≤ 1. Scores range from

0 ≤ FG ≤
√
3 and lower scores are better.

3 Case Study

Traditionally, in unit test generation research, tests are generated solely for the classes
we know to contain faults. However, other classes may depend on the faulty classes, and

1 Available from https://github.com/Greg4cr/Coupling-Mapping
2 Experimentation suggested that convergence was often reached before that time.



3

by targeting these coupled classes, we may be more likely to detect faults. We wish to
examine whether we could use knowledge of class dependencies to enhance test gener-
ation. Specifically, we wish to address: (1) Can the inclusion of coupled classes improve
the efficacy and reliability of test suite generation? (2) Are the groupings produced by
our framework small enough to be of practical use?

We have performed the following experiment: (1) We have gathered 588 real faults,
from 14 Java projects. (2) For each fault we generate 10 groupings of coupled classes.
(3) For each fault, we generate 10 suites per grouping (and for the set of faulty classes)
using the non-faulty version of each class. We allow a two-minute generation budget per
targeted class. (4) For each fault, we measure the proportion of test suites that detect the
fault to the total number generated.

Defects4J is an extensible database of real faults extracted from Java projects [4]3.
Currently, it consists of 597 faults from 15 projects. For each fault, Defects4J provides
access to the faulty and fixed versions of the code, developer-written test cases that
expose the faults, and a list of classes and lines of code modified by the patch that fixes
the fault. The Guava project was omitted from this study, as its code uses features not
supported by our framework. We have used the remaining 588 faults for this study.

EvoSuite applies a genetic algorithm in order to evolve test suites over several gen-
erations, forming a new population by retaining, mutating, and combining the strongest
solutions [7]. It is actively maintained and has been successfully applied to the De-
fects4J dataset [2]. In this study, we used EvoSuite version 1.0.5.

Tests are generated from the fixed version of each class and applied to the faulty
version in order to eliminate the oracle problem. Tests are generated targeting Branch
Coverage, and EvoSuite is allowed two minutes per class—a time chosen to fit within
the strict time constraints of the continuous integration (CI) process that testing is com-
monly performed as part of. In the CI process, changed code is built, verified, and
deployed. As this process may be performed multiple times per day, test generation and
execution must take place on a limited time scale. As results may vary, we generate 10
groupings of classes per fault, and we perform 10 test generation trials for each fault,
grouping, and budget. Generation tools may generate flaky (unstable) tests [2]. We au-
tomatically remove non-compiling test cases. Then, each test is executed on the fixed
CUT five times. If results are inconsistent, the test case is removed. On average, less
than 1% of tests are removed from each suite.

4 Results & Discussion

In Table 1, we compare the average likelihood of detection between the normal case—
where only the faulty classes are targeted—and when we generate for a set of targets
including coupled classes. From this table, we can see that there is often some improve-
ment, but the overall effect is minimal. The inclusion of coupled classes fails to improve
results for six systems. For the others, we see average improvements of up to 13.36%.
Overall, the average improvement from including coupled classes is only 3.79%.

To understand when coupled classes can benefit generation, we can filter out situa-
tions where their inclusion does not improve results. Table 2 lists the average likelihood

3 Available from http://defects4j.org



4

Project Detection Likelihood Detection Likelihood
(Changed-Only) (With Coupled)

Chart 40.00% 42.58%
Closure 4.10% 5.10%

CommonsCodec 31.36% 35.55%
CommonsCSV 55.00% 58.50%

Jsoup 19.80% 21.70%
Lang 35.20% 35.50%
Math 28.68% 29.29%
Time 34.40% 35.90%

Overall 22.69% 23.55%

Table 1. Average likelihood of detection
when only changed classes are targeted and
when coupled classes are included, omit-
ting systems with no observed differences.

Project Detection Likelihood Detection Likelihood
(Changed-Only) (With Coupled)

Chart 15.00% 27.50%
Closure 30.00% 62.50%

CommonsCodec 13.33% 44.00%
CommonsCSV 30.00% 51.00%

Jsoup 15.00% 27.80%
Lang 10.00% 30.00%
Math 6.67% 28.33%
Time 25.00% 44.00%

Overall 18.26% 40.22%

Table 2. Average likelihood of detection–
omitting cases where coupled classes have
no effect.

of detection for the 23 faults where the inclusion of coupled classes had an impact.
These filtered results show that when additional classes have any impact, it is a major
one. In such cases, the likelihood of detection improves by an average of 120.26%. In
fact, seven new faults were only detected by including coupled classes.

Base64

Base64OutputStream
Base64InputStream BCodec

EncoderException
DecoderException

CharEncoding

Fig. 1. Partial visualization of cou-
pling. Relevant classes are colored red.

While the addition of classes can be very pow-
erful, it is also very expensive given that—by
default—the same amount of time is devoted to
generating test cases for each class. Our results il-
lustrate that we should not generate tests for such
classes if there is a low likelihood they will help
detect faults. To decide when to add additional
targets, we must understand when their inclu-
sion will be helpful.

Figure 1 depicts a selection of classes in the
CommonsCodec project. Three faults—centering
around the Base64 class (faults 12, 15, and
204)—see improved efficacy from the inclusion of
coupled classes Base64Input Stream and Base64OutputStream. Tests gen-
erated solely to target Base64 are able to detect all three faults, but not reliably. The
incorporation of these two coupled classes greatly increases the likelihood of detection.
Class—BCodec—is also coupled to Base64, but does not contribute to efficacy.

These three examples are interesting because the two additional classes are not just
coupled through in-code dependencies, but all three are linked by a common concep-
tual purpose—encoding binary data by treating it numerically and translating it into a
base 64 representation. One option for incorporating coupled classes would be to pe-
riodically present human developers with coupling information and ask them to filter
groupings. Each time that any class in that grouping is altered, those coupled classes
could be included in generation.

Of course, not all situations where coupling assists are as straightforward as the
CommonsCodec example. For instance, consider fault 31 for the Math system5. Gener-
ated tests never detect the issue when targeting faulty class ContinuedFraction.

4
https://github.com/Greg4cr/defects4j/blob/master/framework/projects/
CommonsCodec/patches/[12/15/20].src.patch

5
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/
31.src.patch



5

Instead, the fault is only detected when tests are generated for Gamma (coupled to
Continued Fraction) and GammaDistribution (coupled to Gamma). The
reason the coupled classes are useful is likely because they provide guidance to the
generator in how to make use of ContinuedFraction. Exposing the fault requires
setting up a series of values and calling ContinuedFraction.evaluate(...)
on those values. By attaining coverage of Gamma, EvoSuite is able to set up and execute
the functionality of ContinuedFraction. Without that guidance, it struggles.

While only a small number of classes are coupled to Continued Fraction,
there is not a common conceptual connection like with the CommonsCodec example
above. In retrospect, we can explain these situations. However, more research is needed
to recognize patterns in when the inclusion of coupled classes is beneficial. Further,
asking developers to name useful couplings creates additional maintenance effort, and
may not offer sufficient benefit for the time and knowledge required. Therefore, we also
need further research into automated means to suggest and prune couplings.

We should also endeavor to make the inclusion of coupled classes more useful by
focusing on increased coverage of those dependencies. The efficacy of generation—
when coupled classes are included as targets—may be improved if coverage is en-
sured of references to changed classes.

Test generation for each class is an entirely independent process. While the attained
Branch Coverage may be relatively high for each targeted class, we have no guarantee
that dependencies between classes are covered. Steps could be taken to improve cover-
age of such dependencies by considering coverage of dependencies between classes. Jin
and Offutt have proposed coverage criteria for integration testing that could be used to
ensure class dependencies are covered [3]. These forms of “Coupling Coverage” could
be used to prioritize suites that attain a higher coverage of the specific code segments
that require data or functionality from a changed class.

Number of Classes
Chart 18.63

Closure 73.92
CommonsCLI 1.91

CommonsCodec 3.51
CommonsCSV 3.40

CommonsJXPath 20.80
JacksonCore 5.03

JacksonDatabind 34.96
JacksonXML 2.80

Jsoup 26.34
Lang 7.12
Math 12.64

Mockito 34.43
Time 52.87

Table 3. Average number of classes in
the groupings.

Recent work has found that combinations
of coverage criteria can be more effective than
individual criteria [2]. For example, combin-
ing Branch and Exception Coverage yields test
suites that both cover the code and force the
program into unusual configurations. “Coupling
Coverage” metrics could be thought of as an-
other situationally-appropriate orthogonal crite-
rion. Rather than generating tests using Branch
Coverage alone, the generator could combine
Branch and “Coupling Coverage” when targeting
coupled classes—potentially creating suites that
are especially effective at exploiting dependencies
between classes, and in turn, at detecting faults.

Regardless of the use, our framework is intended to produce small, effective groups
of coupled classes. The size of that group must be small enough to be of practical use.
In Table 3, we list the average grouping size for each system. In many cases, we can
see that these groupings are larger than would be practical. We used them for this case



6

study, as they are useful for understanding the benefits of such information. However,
we must refine the optimization process to further limit grouping size.

We found that, in situations where coupling affects the results, only a small number
of classes are useful, and they are closely linked to the target classes. Therefore, these
groupings could be easily pruned down to a more appropriate size. We will reformulate
our fitness function to further constrain grouping size.

5 Related Work

Coupling between classes is a well-established area of research [6]. Similar search-
based techniques have been used to suggest refactorings. The CCDA algorithm uses
a graph structure and a genetic algorithm to restructure packages based on class de-
pendencies [5]. However, we are aware of no other use of such techniques to optimize
groupings for test generation. Past work on integration testing has suggested ways to
better ensure that class dependencies are tested [3, 1], but has largely not addressed the
question of which classes to test. In addition, we are not focused purely on integration
testing, but a broader set of scenarios.

6 Conclusions

We have developed a framework to optimize groupings of classes. The results of a pilot
study on the applicability of coupling to test generation show potential benefits from
generating tests for coupled classes and offer new research challenges.

References
1. Alexander, R.T., Offutt, A.J.: Criteria for testing polymorphic relationships. In: Proceedings

11th International Symposium on Software Reliability Engineering. pp. 15–23 (2000)
2. Gay, G.: Generating effective test suites by combining coverage criteria. In: Proceedings of

the Symposium on Search-Based Software Engineering. SSBSE 2017, Springer Verlag (2017)
3. Jin, Z., Offutt, A.J.: Couplingbased criteria for integration testing. Software Testing,

Verification and Reliability 8(3), 133–154, https://onlinelibrary.wiley.com/
doi/abs/10.1002/%28SICI%291099-1689%281998090%298%3A3%3C133%
3A%3AAID-STVR162%3E3.0.CO%3B2-M

4. Just, R., Jalali, D., Ernst, M.D.: Defects4J: A database of existing faults to enable controlled
testing studies for Java programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis. pp. 437–440. ISSTA 2014, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2610384.2628055

5. Pan, W., Jiang, B., Xu, Y.: Refactoring packages of objectoriented software using genetic algo-
rithm based community detection technique. International Journal of Computer Applications
in Technology 48(3), 185–194 (2013), https://www.inderscienceonline.com/
doi/abs/10.1504/IJCAT.2013.056914

6. Poshyvanyk, D., Marcus, A.: The conceptual coupling metrics for object-oriented systems. In:
22nd IEEE International Conference on Software Maintenance. pp. 469–478 (Sept 2006)

7. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple coverage cri-
teria in search-based unit test generation. In: Barros, M., Labiche, Y. (eds.) Search-Based Soft-
ware Engineering, Lecture Notes in Computer Science, vol. 9275, pp. 93–108. Springer Inter-
national Publishing (2015), http://dx.doi.org/10.1007/978-3-319-22183-0 7


