
Detecting Real Faults in the Gson Library Through
Search-Based Unit Test Generation

Gregory Gay

University of South Carolina, Columbia, SC, USA,⋆⋆

greg@greggay.com

Abstract. An important benchmark for test generation tools is their ability to
detect real faults. We have identified 16 real faults in Gson—a Java library for
manipulating JSON data—and added them to the Defects4J fault database. Tests
generated using the EvoSuite framework are able to detect seven faults. Analysis
of the remaining faults offers lessons in how to improve generation. We offer
these faults to the community to assist future research.

Keywords: Search-based test generation, automated test generation, software faults

1 Introduction

Automation of unit test creation can assist in controlling the cost of testing. One promis-
ing form of automated generation is search-based generation. Given a measurable test-
ing goal, powerful optimization algorithms can select test inputs meeting that goal [6].

To impact practice, automated generation techniques must be effective at detecting
the complex faults that manifest in real-world software projects [2]. “Detecting faults”
is not a goal that can be measured. Instead, search-based generation relies on fitness
functions—based on coverage of code structures, synthetic faults, and other targeted
aspects—that are believed to increase the probability of fault detection. It is important
to identify which functions produce tests that detect real faults.

By offering case examples, fault databases—such as Defects4J [5]—allow us to
explore questions like those above. The Google Gson library 1 offers an excellent op-
portunity for expanding Defects4J. Gson is an open-source library for serializing and
deserializing JSON input that is an essential tool of Java and Android development and
is one of the most popular Java libraries [4].

Gson serves as an interesting benchmark because much of its functionality is re-
lated to the parsing of JSON input and creation and manipulation of complex objects.
Manipulation of complex input and non-primitive objects is challenging for automated
generation. Gson is also a mature project. Its faults will generally be more complex than
the simple syntactic mistakes modeled by mutation testing [2]. Rather, detecting faults
will require specific, contextual, combinations of input and method calls. By studying
these faults, we may be able to learn lessons that will improve test generation tools.

⋆⋆ This work is supported by National Science Foundation grant CCF-1657299.
1
https://github.com/google/gson

https://github.com/google/gson


2

We have identified 16 real faults in the Gson project, and added them to Defects4J.
We generated test suites using the EvoSuite framework [6]—focusing on eight fit-
ness functions and three combinations of functions—and assessed the ability of these
suites to detect the faults. Ultimately, EvoSuite is able to detect seven faults. Some of
the issues preventing detection include a need for stronger coverage criteria, the need
for specific data types or values as input, and faults that only emerge through class
interactions—requiring system testing to detect. We offer these faults and this analysis
to the community to assist future research and improve test generation efforts.

2 Study

In this study, we have extracted faults from the Gson project, gathering faulty and fixed
versions of the code and developer-written test cases that expose each fault. For each
fault, we have generated tests for each affected class-under-test (CUT) with the Evo-
Suite framework [6]—using eight fitness functions and three combinations of functions—
and assessed the efficacy of generated suites. We wish to answer the following research
questions: (1) can suites optimizing any function detect the extracted faults?, (2) which
fitness function or combination of functions generates suites with the highest overall
likelihood of fault detection? and (3), what factors prevented fault detection?

In order to answer these questions, we have performed the following experiment:
1. Extracted Faults: We have identified 16 real faults in the Gson project, and added

them to the Defects4J fault database (See Section 2.1).
2. Generated Test Cases: For each fault, we generated 10 suites per fitness function

and combination of functions, using the fixed version of each CUT. We repeat this
step with a two-minute and a ten-minute search budget per CUT (See Section 2.2).

3. Removed Non-Compiling Tests: Any tests that do not compile, or that return in-
consistent results, are automatically removed (See Section 2.2).

4. Assessed Fault-finding Efficacy: For each budget, function, and fault, we measure
the likelihood of fault detection. For each undetected fault, we examined gathered
data and the source code to identify possible detection-preventing factors.

2.1 Fault Extraction

Defects4J is an extensible database of real faults extracted from Java projects [5]. Cur-
rently, the core dataset consists of 395 faults from six projects, with an experimental
release containing 597 faults from fifteen projects2. For each fault, Defects4J provides
access to the faulty and fixed versions of the code, developer-written test cases that
expose each fault, and a list of classes and lines of code modified to fix the fault.

We have added Gson to Defects4J. This process consisted of developing build
scripts that would compile and execute all tested project versions, extracting candi-
date faults using Gson’s version control and issue tracking systems, ensuring that each
candidate could be reliable reproduced, and minimizing the ”patch” used to distinguish
fixed and faulty classes until it only contains fault-related code. Following this process,
we extracted 16 faults from a pool of 132 candidate faults that met all requirements.

2 Core: http://defects4j.org; Experimental: http://github.com/Greg4cr/defects4j

http://defects4j.org
http://github.com/Greg4cr/defects4j


3

Each fault is required to meet three properties. First, the fault must be related to the
source code. The “fixed” version must be explicitly labeled as a fix to an issue3, and
changes imposed by the fix must be to source code, not to other project artifacts such
as the build system. Second, the fault must be reproducible—at least one test must pass
on the fixed version and fail on the faulty version. Third, the fix to the fault must be
isolated from unrelated code changes such as refactoring.

The faults used in this study can be accessed through the experimental version of
Defects4J4. Additional data about each fault can be found at http://greggay.com/
data/gson/GsonFaults.csv, including commit IDs, fault descriptions, and a list
of triggering tests. We plan to add additional faults and improvements in the future.

2.2 Test Generation and Removal

EvoSuite applies a genetic algorithm in order to evolve test suites over several gener-
ations, forming a new population by retaining, mutating, and combining the strongest
solutions [6]. In this study, we used EvoSuite version 1.0.5 with eight fitness func-
tions: Branch Coverage, Direct Branch Coverage, Line Coverage, Exception Coverage,
Method Coverage, Method (Top-Level, No Exception) Coverage, Output Coverage, and
Weak Mutation Coverage. Rojas et al. provide a primer on each [6]. We have also used
three combinations of fitness functions: all eight of the above, Branch/Exception Cover-
age, and Branch/Exception/Method Coverage. The first is EvoSuite’s default configura-
tion, and the other two were found to be generally effective at detecting faults [3]. When
a combination is used to generate tests, the individual fitness functions are calculated
and added to obtain a single fitness score.

Tests are generated from the fixed version of the system and applied to the faulty
version in order to eliminate the oracle problem. Given the potential difficulty in achiev-
ing coverage over Gson classes, two search budgets were used—two and ten minutes,
a typical and an extended budget [2]. As results may vary, we performed 10 trials for
each fault, fitness function, and budget. Generation tools may generate flaky (unstable)
tests [2]. We automatically remove non-compiling test cases. Then, each test is exe-
cuted on the fixed CUT five times. If results are inconsistent, the test case is removed.
On average, less than 1% of tests are removed from each suite.

3 Results and Discussion

In Table 1, we list—for each search budget and fitness function—the likelihood of fault
detection (the proportion of suites that detected the fault). Seven of the sixteen faults
were detected. EvoSuite failed to generate test suites for Fault 12. At the two minute
budget, the most effective fitness function is a combination of Branch/Exception/Method
Coverage, with an average likelihood of fault detection of 40.67%—closely followed
by the Branch/Exception combination and Branch Coverage alone. At the ten minute

3 The commit message for the “fixed” version must reference either a reported issue or a pull request that describes and
fixes a fault (that is, it must not add new functionality).

4 These faults will be migrated into the core dataset following additional testing and study.

http://greggay.com/data/gson/GsonFaults.csv
http://greggay.com/data/gson/GsonFaults.csv


4

Fault Budget BC DBC EC LC MC M(TLNE) OC WMC C-All C-BE C-BEM
2 2m 100.00% 100.00% 70.00% 70.00% - - - 100.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 40.00% 90.00% - - - 100.00% 100.00% 100.00% 100.00%
3 2m 70.00% 60.00% - 80.00% - - - 60.00% 30.00% 90.00% 70.00%

10m 100.00% 80.00% - 100.00% - - - 100.00% 70.00% 90.00% 100.00%
6 2m 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
8 2m 20.00 30.00% - 50.00% - - - 10.00% 10.00% 10.00% 40.00%

10m 90.00% 60.00% - 100.00% - - - 80.00% 80.00% 100.00% 90.00%
10 2m 100.00% 100.00% 30.00% 100.00% 20.00% 10.00% 40.00% 50.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 10.00% 100.00% 30.00% 10.00% 40.00% 70.00% 100.00% 100.00% 100.00%
13 2m 100.00% 100.00% 20.00% 30.00% 100.00% 100.00% - 90.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 10.00% - 100.00% 100.00% - 100.00% 100.00% 100.00% 100.00%
16 2m 100.00% 100.00% 60.00% 100.00% 40.00% 10.00% - 40.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 30.00% 100.00% - 30.00% 30.00% 10.00% 100.00% 100.00% 100.00%
Average 2m 39.33% 39.33% 18.67% 35.33% 17.33% 14.67% 9.33% 30.00% 36.00% 40.00% 40.67%

10m 46.00% 42.67% 12.67% 39.33% 15.33% 16.00% 11.33% 37.33% 43.33% 46.00% 46.00%
Table 1. Likelihood of fault detection for each fitness function (two-minute/ten-minute budget).
(D)BC = (Direct) Branch Coverage, EC = Exception Coverage, LC = Line Coverage, M(TLNE)C
= Method (Top-Level, No Exception) Coverage, OC = Output Coverage, WMC = Weak Muta-
tion Coverage, C-All = combination of all criteria, C-BE = combination of BC/EC, C-BEM =
combination of BC/EC/MC. Undetected faults (1, 4, 5, 7, 9, 11, 14, and 15) are omitted.

budget, these three configurations perform equally, with an average detection likeli-
hood of 46.00%. Unlike in other Defects4J systems [3], Exception Coverage does not
add significant value. Specialized metrics, like Output Coverage, also do not seem to
have much situational applicability.

Fault 6 was detected the most reliably, regardless of search budget or fitness func-
tion. This fault updates Gson to be compliant with the 2014 JSON RFC 7159 standard,
and adds a leniency check to enable backwards compatibility5. Compliance checks are
spread throughout the code, resulting in fault detection if even a small amount of cover-
age is attained. Fault 136, dealing with an index out of bounds error, is a classic example
of what automated generation excels at. The fix adds boundary checks, which are effi-
ciently covered by Branch Coverage—ensuring differing output between versions.

Fault 87 was detected the least reliably. This fault causes issues with deserializing
map structures when a key is an unquoted long or integer. The generated tests arguably
expose the fault—they produce differing behavior and result in the same exception as
the human-written test cases. Yet, these failing tests also point out an issue with test
suite generation. The test cases fail in the same manner as the human-written cases, but
not for the same reason. The failing tests pass strings to methods meant to handle long
or integer values and expect a NumberFormatException—which is not thrown by
the faulty version. The exception thrown instead—a complaint about a string—makes
sense, given the input used. Rather than helping a human tester identify actual issues,
these test cases only show that the two versions of the code behave differently.

EvoSuite failed to detect the other eight faults. Therefore, our next step was to ex-
amine these faults to identify factors preventing detection. These factors include:
Stronger Adequacy Criteria are Required: Fault 148 causes all instances of −0
(“negative 0”) to be converted to 0. Catching this fault would require the generation

5
https://github.com/google/gson/commit/af68d70cd55826fa7149effd7397d64667ca264c

6
https://github.com/google/gson/commit/9e6f2bab20257b6823a5b753739f047d79e9dcbd

7
https://github.com/google/gson/commit/2b08c88c09d14e0b1a68a982bab0bb18206df76b

8
https://github.com/google/gson/commit/9a2421997e83ec803c88ea370a2d102052699d3b

https://github.com/google/gson/commit/af68d70cd55826fa7149effd7397d64667ca264c
https://github.com/google/gson/commit/9e6f2bab20257b6823a5b753739f047d79e9dcbd
https://github.com/google/gson/commit/2b08c88c09d14e0b1a68a982bab0bb18206df76b
https://github.com/google/gson/commit/9a2421997e83ec803c88ea370a2d102052699d3b


5

framework to produce −0 as input—an unlikely choice. However, the test genera-
tor could be guided towards this input. The fixed version of the class has a complex
if-condition that includes this corner case. Branch Coverage simply requires the
full predicate to evaluate to true and false, so coverage can be achieved without −0
input. However, a stronger criterion such as Modified Condition/Decision Coverage [1]
would require −0 to attain full coverage.

Specific Data Types are Required as Input: Fault 99 causes an error when Gson at-
tempts to initialize an interface or abstract class. This fault can only be detected if a test
case attempts to instantiate either type of object. Most generation frameworks will not
attempt this, and the feedback provided by criteria like Branch Coverage is not sufficient
to suggest such an action.

Fault Emerges Through Class Interactions and System Testing: Fault 110 causes
Gson to fail to serialize or deserialize a class when its super class has a type parameter.
Like Fault 9, this is a case where tests would need to attempt to generate a highly spe-
cific object. In addition, the developer-written test exposing this fault is a system-level
test, not a unit test—working through Gson’s top-level serialization and deserialization
functions. It is possible that unit testing could expose the fault, but this is code that—
like Fault 9 above—that would be hard to cover. System testing is more likely to expose
the fault, but external context would still be needed to guide data type selection.

By default, Gson converts application classes to JSON using its built-in type adapters.
If Gson’s default JSON conversion isn’t appropriate for a type, users can specify their
own adapter using an annotation. Fault 511 deals with ensuring that custom type adapters
safely handle null objects. However, performing unit testing of the modified class will
not expose the fault. Rather, one needs to define a type adapter for a null class, then use
Gson’s top-level API. Fault 712 modifies the same class, fixing a null pointer exception
when a null object is returned instead of a proper TypeAdapter. A similar scenario
exists for Fault 1113, where custom adapters are ignored for primitive fields. In all three
cases—as long as the right input is chosen—system testing will expose this fault while
unit testing may not be able to replicate the same example. However, system testing
alone will still not be sufficient. Each of these scenarios requires external context to
create the specific conditions called for to detect the fault.

Gson is a complex system designed to be accessed through a simple API. Human-
written tests tend to use that API, even when testing specific classes. Unit test generation
may not be suited to detecting some of the faults that emerge from this type of system,
and even if it can, the generated test suites may not be easily understood by human de-
velopers. Many of the most mature test generation approaches are based on unit testing,
and more work clearly needs to be conducted in the system testing realm.

Regardless of the form of testing, better means are needed of extracting context from
the system and its associated artifacts. Automation requires information to guide test
creation. Often, this is some form of code coverage. However, code coverage doesn’t

9
https://github.com/google/gson/commit/0f66f4fac441f7d7d7bc4afc907454f3fe4c0faa

10
https://github.com/google/gson/commit/c6a4f55d1a9b191dbbd958c366091e567191ccab

11
https://github.com/google/gson/commit/57b08bbc31421653481762507cc88ee3eb373563

12
https://github.com/google/gson/commit/dea305503ad8827121e8212248c271f1f2f90048

13
https://github.com/google/gson/commit/bb451eac43313ae08b30ac0916718ca00c39656d

https://github.com/google/gson/commit/0f66f4fac441f7d7d7bc4afc907454f3fe4c0faa
https://github.com/google/gson/commit/c6a4f55d1a9b191dbbd958c366091e567191ccab
https://github.com/google/gson/commit/57b08bbc31421653481762507cc88ee3eb373563
https://github.com/google/gson/commit/dea305503ad8827121e8212248c271f1f2f90048
https://github.com/google/gson/commit/bb451eac43313ae08b30ac0916718ca00c39656d


6

provide the same type of information developers use during test creation, and many
of the studied faults were detected by almost any coverage criterion or no criterion.
Rather, information from the project is needed to guide input generation. Methods of
gleaning that information, either through seeding from existing test cases or data mining
of project elements, may assist in improving the efficacy of test generation. Approaches
to mining of requirements information or bug reports, for instance, might suggest using
particular data types or values as input.

4 Conclusion

Testing costs can be reduced through automated unit test generation. An important
benchmark for such tools is their ability to detect real faults. We have identified 16
real faults in Gson, and added them to Defects4J. We generated test suites and found
that EvoSuite is able to detect seven faults. Some of the issues preventing fault detection
include a lack of fitness functions for stronger coverage criteria, the need for specific
data types or values as input, and faults that only emerge through class interactions—
requiring system testing rather than unit testing to detect. We offer these faults to the
community to assist future research.

References

1. Chilenski, J.: An investigation of three forms of the modified condition decision coverage
(MCDC) criterion. Tech. Rep. DOT/FAA/AR-01/18, Office of Aviation Research, Washing-
ton, D.C. (April 2001)

2. Gay, G.: The fitness function for the job: Search-based generation of test suites that detect real
faults. In: Proceedings of the International Conference on Software Testing. ICST 2017, IEEE
(2017)

3. Gay, G.: Generating effective test suites by combining coverage criteria. In: Proceedings of
the Symposium on Search-Based Software Engineering. SSBSE 2017, Springer Verlag (2017)

4. Idan, H.: The top 100 java libraries in 2017 - based on 259,885 source files (2017),
https://blog.takipi.com/the-top-100-java-libraries-in-2017-
based-on-259885-source-files/

5. Just, R., Jalali, D., Ernst, M.D.: Defects4J: A database of existing faults to enable controlled
testing studies for Java programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis. pp. 437–440. ISSTA 2014, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2610384.2628055

6. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple coverage cri-
teria in search-based unit test generation. In: Barros, M., Labiche, Y. (eds.) Search-Based Soft-
ware Engineering, Lecture Notes in Computer Science, vol. 9275, pp. 93–108. Springer Inter-
national Publishing (2015), http://dx.doi.org/10.1007/978-3-319-22183-0 7

https://blog.takipi.com/the-top-100-java-libraries-in-2017-based-on-259885-source-files/
https://blog.takipi.com/the-top-100-java-libraries-in-2017-based-on-259885-source-files/
http://doi.acm.org/10.1145/2610384.2628055
http://dx.doi.org/10.1007/978-3-319-22183-0_7

	Detecting Real Faults in the Gson Library Through Search-Based Unit Test Generation
	Introduction
	Study
	Fault Extraction
	Test Generation and Removal

	Results and Discussion
	Conclusion


