
Multifaceted Test Suite Generation Using Primary and
Supporting Fitness Functions *

Gregory Gay
University of South Carolina
Columbia, SC, United States

greg@greggay.com

ABSTRACT
Dozens of criteria have been proposed to judge testing adequacy.
Such criteria are important, as they guide automated generation ef-
forts. Yet, the current use of such criteria in automated generation
contrasts how such criteria are used by humans. For a human, cov-
erage is part of a multifaceted combination of testing strategies. In
automated generation, coverage is typically the goal, and a single
fitness function is applied at one time. We propose that the key to
improving the fault detection efficacy of search-based test generation
approaches lies in a targeted, multifaceted approach pairing primary
fitness functions that effectively explore the structure of the class
under test with lightweight supporting fitness functions that target
particular scenarios likely to trigger an observable failure.

This report summarizes our findings to date, details the hypothesis
of primary and supporting fitness functions, and identifies outstand-
ing research challenges related to multifaceted test suite generation.
We hope to inspire new advances in search-based test generation that
could benefit our software-powered society.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging; Search-based software engineering; Software verification
and validation;

KEYWORDS
Automated Test Generation, Search-Based Test Generation, Ade-
quacy Criteria

ACM Reference Format:
Gregory Gay. 2018. Multifaceted Test Suite Generation Using Primary
and Supporting Fitness Functions . In SBST’18: SBST’18:IEEE/ACM 11th
International Workshop on Search-Based Software Testing , May 28–29,
2018, Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3194718.3194723

*This work is supported by National Science Foundation grant CCF-1657299.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBST’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5741-8/18/05. . . $15.00
https://doi.org/10.1145/3194718.3194723

1 INTRODUCTION
With exponential growth in the cost of software testing, we must find
means of reducing costs while maintaining quality. Automation of
tasks such as unit test creation has a critical role to play in reducing
testing costs [2]. Yet, despite advances in automated test generation
technology, the efficacy of the produced test suites at detecting faults
has yet to match human-produced tests [6, 8, 10].

As we cannot know what faults exist a priori, dozens of criteria—
ranging from the measurement of structural coverage to the detection
of synthetic faults [9]—have been proposed to judge testing ade-
quacy. In theory, if the goals set forth by such criteria are fulfilled,
tests should be adequate at detecting faults related to the focus of
that criterion. Adequacy criteria are important for search-based gen-
eration, as they are the most common basis for the fitness functions
that judge solutions and guide the search.

Yet, the current use of adequacy criteria in automated generation
sharply contrasts how such criteria are used by humans. For a hu-
man, coverage typically serves an advisory role—as a way to point
out gaps in existing efforts. Human testers build suites in which
adequacy criteria contribute to a multifaceted combination of testing
strategies. Yet, in automated generation, coverage is typically the
goal, and a single fitness function is applied at one time. Yet, search-
based techniques need not be restricted to one criterion—one fitness
function—at a time. The test obligations of multiple criteria can be
combined into a single score or simultaneously satisfied by multi-
objective optimization algorithms. Such multifaceted suites have the
potential to be more effective than those generated using a single
fitness function, as they trade a laser-focus on that one criterion for
reasonably high coverage of a varied set of goals [9].

In previous work, we have explored the efficacy of both indi-
vidual fitness functions [6] and combinations of functions [7] at
detecting real faults, given a fixed search budget. Our observations
have revealed that, while certain fitness functions are more effective
than others, almost all functions are situationally adept at detect-
ing certain types of faults. Further, we have found that both high
coverage of class structure and high satisfaction of the goals of the
chosen fitness function are both needed to detect faults. Combining
situationally-adept functions like Exception or Output Coverage—
particularly functions that lack their own means to increase structural
coverage—with a strong structure-focused function such as Branch
Coverage—which is unable on its own to favor targeted fault types—
yields significant improvements in the likelihood of fault detection.
Well-chosen fitness functions, when used in combination, are able
to guide the test generation framework towards test suites that com-
bine the strengths of each function, overcome their weaknesses, and
produce a testing strategy that is more effective than any single
function—even without an increase in search budget.

https://doi.org/10.1145/3194718.3194723
https://doi.org/10.1145/3194718.3194723
https://doi.org/10.1145/3194718.3194723

SBST’18, May 28–29, 2018, Gothenburg, Sweden Gregory Gay

Therefore, we propose that the key to improving the fault detec-
tion efficacy of search-based test generation approaches lies in a
human-like approach to test creation—the application of a targeted,
multifaceted approach to generation where multiple testing strate-
gies are selected and simultaneously explored. We hypothesize that
effective test generation strategies will pair primary fitness func-
tions that effectively exploit the structure of the class under test
with lightweight supporting fitness functions that target particular
aspects of the class under test likely to trigger an observable failure.

We propose that the hypothesis of effective multifaceted gener-
ation based on primary and supporting fitness functions should be
explored by the search-based software testing community, and that
numerous research challenges connected to this hypothesis remain
to be solved. Advances are needed in terms of how criteria are op-
timized, the identification of new supporting fitness functions tied
towards particular types of software faults, selection of a multifac-
eted function portfolio for new classes and systems, and approaches
that reduce the difficulty of generation under a limited budget.

This report summarizes our findings to date, details the hypothesis
of primary and supporting fitness functions, and identifies outstand-
ing research challenges related to the topic of multifaceted test suite
generation. We hope to inspire new advances in search-based test
generation that have the potential to impact industrial practices and
benefit our software-powered society.

2 PRELIMINARY RESULTS
We have previously performed empirical studies on the ability of
individual criteria to produce test suites that detect real faults [6]1.
After assessing such suites on 593 faults from 15 open-source Java
projects, we have found that:

• Branch Coverage2 detects more faults and demonstrates a
higher likelihood of detection than other functions, given a
fixed search budget.

• Regardless of overall performance—most functions have situ-
ational applicability, where suites detect faults no other func-
tion can detect. Exception3, Output4, and Weak Mutation
Coverage5 show situational applicability, even if their aver-
age efficacy is lower than Branch Coverage.

• Factors that indicate a high level of efficacy include high struc-
tural coverage over the code and high coverage of the chosen
function’s test obligations. In situations where achieved struc-
tural coverage is low, the fault does not tend to be found.

• The factor that differentiates occasionally detection and con-
sistent detection of a fault is satisfaction of the chosen func-
tion’s test obligations. The best suites are ones that both
explore the code and fulfill their own testing goals, which
may be—in cases such as Exception Coverage—orthogonal
to structural coverage.

We have also performed exploratory studies of the fault-detection
capabilities of combinations of criteria [7]. We have observed:

1Due to space constraints, we do not fully define each fitness function here. Full
definitions can be found in: [6]
2Branch Coverage requires that each control-altering decision outcome be exercised.
3Exception Coverage rewards suites that cause more exceptions to be thrown.
4Output Coverage rewards coverage of type-specific abstract output values
5Weak Mutation Coverage rewards coverage of synthetic faults.

• A combination of all eight studied functions performs well,
but the difficulty of simultaneously satisfying all functions
prevents it from outperforming every individual function un-
der a fixed search budget. However, for all systems, at least
one targeted combination is more effective than every indi-
vidual function.

• The most effective combinations vary by system, but all pair a
structure-focused function—such as Branch Coverage—with
supplemental strategies targeted at the class under test.
– Across the board, effective combinations include Excep-

tion Coverage. Method Coverage6 also generally offers an
efficacy boost. Both can be added to a combination with
minimal effect on generation complexity.

– Additional targeted criteria—such as Output Coverage for
code that manipulates numeric values or Weak Mutation
Coverage for code with complex logical expressions—offer
further efficacy improvements.

3 PRIMARY AND SUPPORTING FITNESS
FUNCTIONS

Fitness functions represent strategies that can be used to manipu-
late the search. In single-objective generation, the chosen fitness
function will determine the focus, strengths, and weaknesses of
the resulting suite. If multiple fitness functions are simultaneously
applied—whether combined into a single score or simultaneously
optimized by a multi-objective algorithm—the resulting test suite
will be the product of the interaction of the chosen strategies. In
theory, the simultaneous use of a portfolio of fitness functions dur-
ing generation could produce test suites that are able to detect a
variety of faults—trading precise focus on one fitness function for
reasonable coverage of multiple functions [9].

In practice, selecting this portfolo of fitness functions requires
careful consideration. Given a limited fixed time limit for generation,
the framework will more easily achieve high coverage of a single
function than high coverage of multiple functions, as the combina-
tion will require that more goals be met—and, at times, that conflict-
ing goals be met. This explains why the eight-way combination of
functions used by the EvoSuite framework is often outperformed
by individual functions [6, 7]. The difficulty of optimizing for so
many functions in the same time window alloted to one function led
to weaker results. Given a sufficiently-long generation period, that
eight-function combination may produce stronger test suites. How-
ever, our observations also indicate that careful selection of a fitness
function portfolio can yield superior results without increasing the
search budget. We hypothesize that effective automated generation
may be performed through targeted selection of this portfolio.

In general, faults cannot be detected without executing the af-
fected lines of code. This is why structure-based criteria such as
Branch Coverage and Line Coverage dominated our ranking of
individual fitness functions. Yet, past research also indicates that
coverage alone is not enough [8]. Merely executing a line of code in
any manner is not sufficient to detect a fault. How that line of code
is executed matters. In our experiments, a consistently high likeli-
hood of fault detection requires both coverage of the code structure
and coverage of a fitness function’s goals. In the case of functions
6Method Coverage requires that each method be called by test cases.

Multifaceted Test Suite Generation Using Primary and
Supporting Fitness Functions SBST’18, May 28–29, 2018, Gothenburg, Sweden

Fitness Function Portfolio

Primary Fitness Function(s)
Structure-focused, may be more complex to calculate.
Use only a small number (1-2) at one time.

Supporting Fitness Functions
Scenario-focused, typically simple to calculate.
Number to use based on complexity of overall portfolio.

Example Options:
● Branch Coverage
● Line/Statement Coverage
● Block Coverage
● Modified Condition/Decision Coverage
● Def-Use Coverage

Example Options:
● Weak/Strong Mutation Coverage
● Exception Coverage
● Output Coverage
● Method Coverage
● Readability
● Input Diversity

Figure 1: Example primary and secondary fitness functions.

such as Branch or Line Coverage, these two are the same. However,
targeted fitness functions such as Exception or Output Coverage
lack an in-built means to drive structural coverage. This may limit
the efficacy of such functions as the sole target of test generation,
but illustrates a potential advantage of multifaceted generation. A
structure-focused function could be used to explore execution paths,
while targeted fitness functions could be simultaneously used to
shape that exploration process—tuning the resulting test suite.

Exception Coverage is effective because it rewards suites that trig-
ger more exceptions—which often are the observable manifestation
of a fault. However, it lacks any feedback mechanism to drive gener-
ation towards exceptions. Branch Coverage is effective at exploring
the structure of a class, but lacks the context needed to drive execu-
tion to an observable failure. By uniting the two, Branch Coverage
provides the means to explore the class under test—leading to the
discovery of additional exceptions. Exception Coverage provides
a weighting mechanism to Branch Coverage—increasing the odds
of detecting a fault. We hypothesize then, that the key to effective
testing is the identification of the correct portfolio of primary and
supporting fitness functions for the class or system under test.

Primary fitness functions are designed to explore the structure
of the class under test. Common examples of such criteria include
Branch, Line, or MC/DC Coverage. As structural coverage is a pre-
requisite to fault detection, primary functions should be the focus of
the generation portfolio—perhaps even weighted more heavily than
other fitness functions. As such criteria tend to be more complex
to compute, requiring more execution time to calculate than other
criteria, a limited number of primary functions should appear in the
portfolio—typically only one. However, as we have observed scenar-
ios where Branch and Line Coverage were more effective combined
than in isolation, multiple primary functions may be considered.

Supporting fitness functions are intended to control how code
is executed, and should be targeted towards scenarios or faults of
interest. For example, Exception Coverage rewards suites that trigger
more exceptions [9]. Output Coverage rewards suites that produce
particular defined value types for output that belongs to particular
data types [1]. Mutation Coverage rewards suites that detect synthetic
faults [5]. Such fitness functions—on their own—do not necessarily
have the means to drive structural coverage. However, when paired
with primary criteria, they can manipulate the overall search strategy,
increasing the likelihood of detecting certain types of faults. As
such fitness functions must rely on complex primary functions for
code exploration, supporting criteria should be lightweight. They
should not unduly increase the time required to calculate fitness. The
number to be used should be based on the complexity of the overall
portfolio, and should remain relatively low.

We hypothesize that a well-chosen portfolio of primary and sup-
porting functions will be able to shape test generation in a more
human-like manner—resulting in test suites tuned towards particular
types of systems, faults, or testing scenarios. However, a number
of research challenges related to the selection and optimization of
primary and supporting fitness functions remain unsolved.

4 RESEARCH CHALLENGES
4.1 How to Optimize The Chosen Functions
The portfolio of fitness functions can be optimized in multiple ways.
Some techniques, such as EvoSuite, combine multiple fitness func-
tions into a single score [9]. Individual fitness functions can be
weighted, but an improvement in any of the chosen functions is
considered to be an improvement in the overall score. A loss of score
for one function is acceptable if balanced by enough improvement in
another. Other techniques, such as jMetal [4], attempt to simultane-
ously optimize separate fitness functions. Such approaches attempt
to find an optimal balance between each distinct fitness functions.

A portfolio of primary and supporting functions can be explored
using either approach. However, each will produce distinct test suites.
Merging each function into a single overall score could result in a
suite that heavily favors a particular function. However, this may
actually be desirable—for example, we may prefer a suite that at-
tains higher structural coverage and lower coverage of a supporting
function over a suite that attains perfect balance of the primary
and supporting criteria. Different means of optimizing the portfolio
should be explored to better understand how to generate suites.

4.2 Identification of the Criteria Portfolio
The identification of the correct portfolio of fitness functions for
a system is not a trivial task. In our experience, the most effective
portfolio varies from system to system, and depends on the purpose
of the system and the type of mistakes that developers tend to make
on that project [7].

Because they add little difficulty to generation, we have observed
that Exception and Method Coverage have the most consistent effect
on suite efficacy. However, targeted supporting criteria often had
beneficial effects as well. For example, generation for the Apache
Commons Math project typically benefited from the inclusion of
Output Coverage. This project offers a variety of tools for numeric
analysis, and Output Coverage’s focus on different abstract types of
numeric values naturally led to an increased rate of fault detection.

One way to choose the criteria portfolio for a new class could
be through the use of reinforcement learning (RL) [11] as part of
the generation process. Each round of generation, the RL algorithm
could choose a new portfolio. After each choice, the algorithm would
receive a reward chosen from a probability distribution dependent
on the portfolio selected. Over time, it would attempt to maximize
the total expected reward, identifying the portfolio most adept at im-
proving a chosen “reward function.” Then, the chosen combination
could be used from the start of generation—without reinforcement
learning—when testing that class in the future.

If developers seek to maximize coverage of a particular adequacy
criterion—for instance, developers of avionics applications must
satisfy MC/DC Coverage to attain safety certification [8]—then
coverage of that criterion could serve as the reward function. The

SBST’18, May 28–29, 2018, Gothenburg, Sweden Gregory Gay

RL algorithm would suggest a portfolio adept at quickly attaining
MC/DC. If a particular criterion is chosen as the reward function,
then the RL algorithm could suggest a portfolio that both meets
a chosen testing goal and is still able to detect a variety of faults.
This process, in particular, could be quite useful for maximizing
criteria that are too complex to serve as ideal fitness functions. For
example, Strong Mutation Coverage—which requires input that
reveals the presence of synthetic faults at the output level—is difficult
to optimize as a direct fitness function as it offers little feedback to
the search. However, the RL process could suggest a portfolio adept
at achieving high levels of Strong Mutation Coverage—made up of
individual fitness functions that do offer feedback to the search.

4.3 Discovery of New Supporting Functions
If the structural coverage enabled by the use of a primary fitness
function enhances the efficacy of supporting functions, then new fit-
ness functions can be formulated and experimented with without the
need for an in-built coverage mechanism. This opens the opportunity
to craft new fitness functions around particular testing scenarios,
fault types, or other measures that could enhance the fault-detection
capabilities of the generated test suites.

For example, when generating test suites, a set of classes must be
chosen as targets. Often, generation is performed solely on classes
whose code was directly changed. However, the likelihood of fault
detection could be increased by also targeting classes that are cou-
pled—dependent—on those changed classes. This is particularly
true during regression or integration testing. A supporting fitness
function could reward test suites that cover connections between
the current generation target and particular classes of interest. By
relying on structural coverage from a primary criterion, this function
could be efficiently calculated as a count of dependencies covered.
This would do little to increase the difficulty or cost of generation.

Similarly, many approaches to test generation reward input di-
versity [3]. Such approaches ensure a wide spread of input choices
over the possible option space, theorizing that ensuring diversity will
improve the likelihood of fault detection. As a supporting fitness
function, a simple diversity measurement could weight the selection
of input chosen by the primary fitness function. This would help
ensure that a variety of input choices are used while still ensuring
a high level of code coverage. This simple metric could be added
to a portfolio of other supporting functions as a low-cost means to
further increase the likelihood of detection.

4.4 Improving Generation Efficiency
Fundamentally, it is more difficult to generate a suite that optimizes
multiple fitness functions than a suite that optimizes a single func-
tion. At the least, the task presented to the generation framework
is more difficult. Improvements in the efficiency of generation are
needed. Such improvements will benefit generation for both single
functions and multifaceted portfolios. In that case, more time could
be allocated to multifaceted generation without unduly delaying
the testing process. In addition, improvements in the efficiency of
calculating fitness for individual criteria will also benefit the ability
to generate for multiple criteria.

Another potential avenue for improvement could be similar in
form to the archiving of test obligations performed by EvoSuite.

When obligations are fully satisfied for criteria such as Branch Cov-
erage in EvoSuite, they can be removed from the overall fitness
evaluation. This enables improvements in efficiency, as fitness be-
comes progressively faster to calculate. A similar process could be
used to stagger the inclusion of additional criteria. A small “core”
portfolio could be considered at the beginning of the generation
process. As obligations are covered, additional criteria could be in-
corporated. Over time, this process would reshape the population of
test suites to steadily cover additional facets, and could reduce the
complexity of fitness calculation at any one step in that process.

5 CONCLUSIONS
We propose that the key to improving the fault detection efficacy
of search-based test generation approaches lies in a human-like
approach to test creation—the application of a targeted, multifaceted
approach to generation where multiple testing strategies are selected
and simultaneously explored. We hypothesize that effective test
generation strategies will pair strong primary fitness functions—
criteria that effectively exploit the structure of the class under test—
with lightweight supporting fitness functions that target particular
aspects of the system under test likely to trigger an observable failure.

We hope to inspire new advances in mutifaceted test genera-
tion that could impact industrial practices and benefit our software-
powered society. In particular, advances are needed in how we select
a portfolio of fitness functions, new fitness functions are needed
that target a variety of testing scenarios, and improvements must be
discovered in regards to generation difficulty and time requirements.

REFERENCES
[1] N. Alshahwan and M. Harman. Coverage and fault detection of the output-

uniqueness test selection criteria. In Proceedings of the 2014 International Sympo-
sium on Software Testing and Analysis, ISSTA 2014, pages 181–192, New York,
NY, USA, 2014. ACM.

[2] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,
M. J. Harrold, and P. McMinn. An orchestrated survey on automated software
test case generation. Journal of Systems and Software, 86(8):1978–2001, August
2013.

[3] T. Chen, H. Leung, and I. Mak. Adaptive random testing. In M. Maher, editor,
Advances in Computer Science - ASIAN 2004. Higher-Level Decision Making,
volume 3321 of Lecture Notes in Computer Science, pages 3156–3157. Springer
Berlin / Heidelberg, 2005.

[4] J. J. Durillo and A. J. Nebro. jmetal: A java framework for multi-objective
optimization. Advances in Engineering Software, 42(10):760 – 771, 2011.

[5] G. Fraser and A. Arcuri. Achieving scalable mutation-based generation of whole
test suites. Empirical Software Engineering, 20(3):783–812, 2014.

[6] G. Gay. The fitness function for the job: Search-based generation of test suites
that detect real faults. In Proceedings of the International Conference on Software
Testing, ICST 2017. IEEE, 2017.

[7] G. Gay. Generating effective test suites by combining coverage criteria. In
Proceedings of the Symposium on Search-Based Software Engineering, SSBSE
2017. Springer Verlag, 2017.

[8] G. Gay, M. Staats, M. Whalen, and M. Heimdahl. The risks of coverage-directed
test case generation. Software Engineering, IEEE Transactions on, PP(99), 2015.

[9] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri. Combining multiple
coverage criteria in search-based unit test generation. In M. Barros and Y. Labiche,
editors, Search-Based Software Engineering, volume 9275 of Lecture Notes in
Computer Science, pages 93–108. Springer International Publishing, 2015.

[10] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri. Do auto-
matically generated unit tests find real faults? an empirical study of effectiveness
and challenges. In Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), ASE 2015, New York, NY, USA,
2015. ACM.

[11] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

	Abstract
	1 Introduction
	2 Preliminary Results
	3 Primary and Supporting Fitness Functions
	4 Research Challenges
	4.1 How to Optimize The Chosen Functions
	4.2 Identification of the Criteria Portfolio
	4.3 Discovery of New Supporting Functions
	4.4 Improving Generation Efficiency

	5 Conclusions
	References

