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Abstract—Current approaches to search-based test case gen-
eration have yielded limited results in terms of human-
competitiveness. However, effective search-based test generation
relies on the selection of the correct fitness functions—feedback
mechanisms—for a chosen goal. We propose that the key to
overcoming these limitations lies in infusing domain knowledge
and context into the fitness functions used to guide the search
and the ability to automatically optimize the fitness functions used
when generating tests for a given class, goal, and algorithm.

Index Terms—Automated Test Generation, Search-Based Soft-
ware Testing, Search-Based Software Engineering

I. INTRODUCTION

Test input generation can naturally be seen as a search
problem. Testers approach input selection with a goal in
mind—causing the program to crash, maximizing code cov-
erage, or any number of other potential goals. Of the near-
infinite choices of input that could be provided, the tester
seeks specific selections that meet the chosen goal. Given
this goal, an optimization algorithm can systematically sam-
ple the space of test input, guided by feedback from one
or more fitness functions—scoring functions that judge the
optimality of the chosen input. In other words: algorithm+
fitness functions =⇒ goal.

Effective search-based test generation relies on the selection
of the correct sampling mechanism—the right algorithm—and,
perhaps more importantly, the right feedback mechanism—the
right fitness functions. Fitness functions offer the algorithm
the feedback and guidance needed to locate better solutions,
making their design and use important. A great deal of
attention has been paid to the algorithm variable in the test
generation equation [10]. Comparatively less attention has
been paid to the fitness functions [2]. We propose that the key
to moving search-based test generation into “production”—
advancing the field to the point where we produce human-
competitive tests—requires a deep look at the other variables
of the equation, particularly the fitness functions.

II. THE LIMITATIONS OF GENERAL APPROACHES

The default goal of testing is to find faults in class or system-
under-test (CUT, SUT). Even if test generation is performed to
satisfy a measurable goal, the ultimate goal of the tester is to
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usually to find issues in the SUT. In that regard, search-based
test generation still has great room for improvement [2].

Arguably, the majority of approaches to search-based gen-
eration are based on code coverage, often specifically based
on Branch Coverage1. Branch Coverage—and many similar
criteria–measure how much of the code has been executed,
with the rationale being that faults cannot be detected without
execution [5]. This rationale is intuitive, coverage can be mea-
sured efficiently, and there are fitness function representations
that can quickly improve coverage [10].

However, coverage has a tenuous relationship with fault
detection [6]. How code is executed is far more important
than whether it was executed. Coverage criteria are able to
drive execution, but tend to impose few constraints on how
that code is executed. Even for non-coverage fitness functions,
there tend to be a large number of input choices that satisfy
the imposed constraints—only a small subset of those inputs
are actually useful for inducing failure.

Each SUT—even each class in a SUT—is unique. By
focusing on the idea of universal applicability, we may have
unwittingly limited the efficacy of automated test generation.
General “one-size-fits-all” criteria do not reflect how human
testers behave. A human tester may measure and take advice
from Branch Coverage, but rarely do they base their input
selection on what will quickly increase coverage. Human
testers are driven by context—informed by the requirements
of the SUT, product domain, and past experience.

A narrow focus on generalized criteria explicitly lacks con-
text. We hypothesize that this limits the efficacy of automated
generation. Test generation—specifically, the fitness functions
used to guide generation, must evolve to incorporate the
context that humans use in developing test cases. We must
generate test cases in a more human-like manner—based on
the unique attributes of the CUT or SUT.

III. KNOWLEDGE-INFUSED FITNESS FUNCTIONS

Fitness functions offer equations encoding a set of knowl-
edge and constraints. Contextual knowledge can be encoded
into these equations. Two key research challenges are to
identify the types of knowledge that should be incorporated
and the ideal means of incorporation.

1For each statement that can cause execution to diverge—i.e., if and
case—test input should ensure that at all outcomes are executed [5].



Context-based fitness functions can be co-optimized with
traditional coverage-based functions, taking advantage of their
ability to rapidly explore the code structure. Branch Coverage
offers a powerful feedback mechanism, granting the ability to
reach relevant portions of code. For example, tests generated to
simultaneously maximize Branch Coverage and an exception
count are often more effective than test suites generated using
either function alone [3]. The combination is able to take
advantage of the feedback offered by Branch Coverage and
the input selection bias induced by the exception count.

In that vein, lightweight contextual fitness functions could
produce effective test suites. These functions could be based
on targeted aspects of a SUT or CUT such as:
Product Domain: Mobile battery/data consumption.
Testing Scenarios: Integration prioritization.
Code Attributes: Private code, Boolean masking.
Non-Functional Priorities: Readability, memory usage.
An open research challenge is in discovering a process for
easily formulating new contextual fitness functions.

A more heavyweight, but promising contextual approach
is based around system requirements—constraints on the
behavior of the SUT, usually written as textual statements.
This text can be distilled into Boolean predicates, which could
be incorporated into fitness functions in a way similar to code
coverage. Requirements-based coverage criteria, like Unique-
First-Cause (UFC) Coverage [11], transform predicates into
coverage goals. These goals—path-based constraints over pro-
gram variables—can be translated into numeric cost functions
like those used for fitness functions based on Branch Coverage.

There are challenges associated with the use of requirements
in this manner. Often, requirements require the generation
of a series of actions, rather than a single action—adding
difficulty to the search process [1]. Further, translating natural
language into usable properties may require significant effort,
while code coverage can be completely automated. Recent
advances in natural language processing are promising in this
regard, including recent work that extracts properties from
code documentation [4]. Such techniques could potentially be
used to automatically inform a fitness function.

IV. AUTOMATED TUNING OF FITNESS FUNCTIONS

Implementing new context-infused fitness could help us
achieve a wider variety of testing goals. However, a question
remains—in fact, it becomes more imperative—which fitness
functions should we employ?

This question lacks an obvious answer. Given our hypothesis
that all classes are somewhat unique, different combinations
of one or more fitness functions may best satisfy a given goal
for different systems. It follows that fitness function selection
itself offers a secondary optimization problem. Given a CUT or
SUT, a goal, and an algorithm, which fitness functions should
be employed to best reach the chosen goal?

Hyperheuristic search algorithms automatically tune aspects
of their approach to better solve the current problem of
interest [8]. We propose that hyperheuristic search could be
used to optimize the set of applied fitness functions. Using

optimization, artificial intelligence, or machine learning tech-
niques, we could learn the ideal fitness functions for our
combination of CUT, algorithm and goal.

How to perform this process is an open question, but
there are promising avenues of exploration. Given a machine-
measurable goal, reinforcement learning techniques can iden-
tify fitness functions ideal for improving attainment of that
goal [8]. This could be a reasonable way to choose an
ideal subset of fitness functions for a CUT. Transfer learning
techniques could be employed to observe and extract patterns
from the results of this optimization process, and build models
that can be applied to new classes or systems [7].

Rather than crafting a complex—and needlessly difficult
to optimize—set of functions, we also must consider ways
to directly tune and evolve a single fitness function suited
to the CUT, algorithm, and goal. We could directly craft
and evolve customized fitness functions consisting of goals
relevant to the CUT or SUT—combining elements of structural
coverage, execution properties, problem domain, and system
requirements as appropriate. A promising direction in this
regard has been proposed by McMinn et al., who suggest the
formulation of fitness functions as tree structures, akin to those
used in Genetic Programming [9]. Such a formulation could
be directly optimized by a hyperheuristic search.

V. CONCLUSIONS

We propose that overcoming limitations in the human-
competitiveness of search-based test generation requires in-
fusing contextual knowledge into fitness functions and auto-
matically tuning these functions based on the SUT or CUT,
goal, and algorithm. This agenda presents a number of research
challenges to overcome—how and what type of knowledge to
formulate, how to tune functions, and how to match functions
to new systems and goals. However, we hypothesize that
overcoming these challenges will yield great benefit.
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