
Efficient and Effective Generation of Test Cases for
Pedestrian Detection – Search-based Software

Testing of Baidu Apollo in SVL
Hamid Ebadi∗, Mahshid Helali Moghadam†, Markus Borg†§, Gregory Gay‡, Afonso Fontes‡ and Kasper Socha§

∗Infotiv AB, Sweden
†RISE Research Institutes of Sweden, Sweden

‡Chalmers and the University of Gothenburg, Sweden
§Lund University, Sweden

Abstract—With the growing capabilities of autonomous vehi-
cles, there is a higher demand for sophisticated and pragmatic
quality assurance approaches for machine learning-enabled sys-
tems in the automotive AI context. The use of simulation-based
prototyping platforms provides the possibility for early-stage
testing, enabling inexpensive testing and the ability to capture
critical corner-case test scenarios. Simulation-based testing prop-
erly complements conventional on-road testing. However, due
to the large space of test input parameters in these systems,
the efficient generation of effective test scenarios leading to the
unveiling of failures is a challenge.

This paper presents a study on testing pedestrian detection
and emergency braking system of the Baidu Apollo autonomous
driving platform within the SVL simulator. We propose an
evolutionary automated test generation technique that generates
failure-revealing scenarios for Apollo in the SVL environment.
Our approach models the input space using a generic and flexible
data structure and benefits a multi-criteria safety-based heuristic
for the objective function targeted for optimization. This paper
presents the results of our proposed test generation technique
in the 2021 IEEE Autonomous Driving AI Test Challenge. In
order to demonstrate the efficiency and effectiveness of our
approach, we also report the results from a baseline random
generation technique. Our evaluation shows that the proposed
evolutionary test case generator is more effective at generating
failure-revealing test cases and provides higher diversity between
the generated failures than the random baseline.

Index Terms—Search-Based Test Generation, Evolutionary
Algorithm, Advanced Driver Assistance Systems, Pedestrian
Detection, Automotive Simulators

I. INTRODUCTION

The capabilities of autonomous vehicles have increased
remarkably in recent years. A self-driving car is arguably
the most tangible example of what the European Commission
(EC) defines as an Artificial Intelligence (AI) system [1]. From
an AI perspective, the automotive industry has successfully
harnessed the disruptive potential of machine learning over the
last decade. Driven by the availability of big data and comput-
ing power, deep neural networks (DNNs) have enabled new
levels of vehicular perception. However, performing effective
quality assurance of systems that rely on DNNs requires a
paradigm shift [2]. No longer do human engineers explicitly
express all logic of the system in source code. Instead, DNNs

are trained using enormous quantities of manually annotated
data and perform actions probabilistically based on patterns
observed in that data. The research community has put sub-
stantial effort into making DNN-based systems trustworthy in
the automotive AI context, spurring major R&D projects and
global safety standardization efforts.

The concept of Trustworthy AI receives particular attention
in the EC’s AI Strategy [3]. EC defines AI systems as
“software (and possibly also hardware) systems designed by
humans that, given a complex goal, act in the physical or
digital dimension by perceiving their environment through
data acquisition, interpreting the collected structured or un-
structured data, reasoning on the knowledge, or processing
the information, derived from this data and deciding the
best action(s) to take to achieve the given goal” [1]. Novel
ways to test AI systems, including autonomous vehicles, are
urgently needed—and the research community has taken up
the challenge [4], [5].

The use of virtual prototyping platforms for automotive
software engineering has rapidly grown in recent years [6].
The use of virtual methods allows testing and validation at
early development stages, which leads to fewer development
cycles and faster time-to-market. Simulation-based testing is
required to complement conventional on-road testing due to
severe drawbacks in the use of on-road testing [7], i.e., system
testing on public roads is costly and does not scale to the
quantity of scenarios needed—in addition, it can be dangerous
to provoke a critical situation on the road. Testing autonomous
vehicles in simulators is fundamental to quality assurance in
the automotive sector—as indicated in the evolving standard
ISO 21448 Safety of the Intended Functionality [8].

Efficient and effective testing in simulated environments
require sophisticated approaches to automatically generating
test cases. Several authors have demonstrated that search-based
software test generation (SBST) [9] is a feasible approach to
generate critical test scenarios in the automotive context [10]–
[14], i.e., test scenarios that lead to the violation of safety
requirements. SBST formulates test input selection as a search
problem, where optimization algorithms attempt to systemati-
cally identify the test input that meet goals of interest. Given a



scoring function denoting closeness to the attainment of those
goals—called objective function—optimization algorithms can
sample from a large and complex set of test inputs as guided
by a chosen sampling strategy (a metaheuristic—in our case,
a genetic algorithm) [9].

In the 2021 IEEE Autonomous Driving AI Test Challenge
competition, our contribution—ScenarioGenerator—
uses SBST to generate test scenarios that cause the Baidu
Apollo’s autonomous driving platform to fail. While different
scenarios can be tested using ScenarioGenerator, for the
purpose of this work, we assume a scenario with a pedestrian
crossing a street with the following high-level safety goal:
“The ego car shall not crash into pedestrians on collision
course.” We refer to any crashes between an ego car and
pedestrians as a safety violation or failure.

Our work relies on a test strategy involving the following
steps of simulation-based automotive testing using SBST. We:

1) Build a scene in the virtual environment.
2) Define the parameters involved in creating a varied set

of test cases.
3) Define ranges for each parameter, representing the test

input space to explore.
4) Define an objective function that measures the quality

of a generated test case, in terms of its potential to
demonstrate a safety violation. In our case, lower scores
indicate more dangerous scenarios.

5) Apply a genetic algorithm to generate test cases that
minimize the objective function, leading to safety-
critical scenarios.

To accomplish this, we first import a pre-existing map
into the SVL Visual Scenario Editor and create an initial
movement path for a pedestrian using fixed waypoints—a
set of coordinates (points) showing the initial path of the
pedestrian’s movements. Then, during the simulation, in the
designed scene, the ego car moves forward toward a target
and a pedestrian crosses the road from the right.

The proposed evolutionary test case generation formulates
the search space using a generic noise vector data structure and
minimizes a multi-criteria objective function that combines
(1) distances between the ego car and other road agents, (2)
the distance of the journey taken by the ego car towards the
target, and (3), the number of accidents detected. Using the
noise vector, as a generic and flexible structure for representing
the search space of the problem, facilitates the use of a wide
variety pf search algorithms. This paper presents the results
of our proposed test case generation technique in the 2021
IEEE Autonomous Driving AI Test Challenge. To provide
the comparative results and demonstrate the efficiency and
effectiveness of our evolutionary text case solution, we also
compare our results to random generation of test scenarios.

The rest of the paper is organized as follows: Section II
presents the details of the proposed search-based test case
generation approach. Section III elaborates on the empiri-
cal evaluation, including the research method, test scenario
execution and experiment setup, results, and threats to the
validity of the results. Section V presents an overview of

related work, and Section VI summarizes our findings in light
of the importance of simulation-based testing of autonomous
vehicles and potential research directions for future work.

II. SEARCH-BASED TEST CASE GENERATION

This section present how we use an evolutionary search-
based technique to generate test cases. Since each scenario
takes a few seconds to execute, it is not feasible to try all
possible test scenarios. Our approach is to adopt a generic
data structure, i.e., a data vector called a “noise vector”, to
represent the test input domain for producing test scenarios.
Each element of this vector represents a parameter that defines
a test scenario, e.g., waypoints, illumination, and weather.
The values of these parameters do not lie within the same
range, so to bind the values within a specific range, the
input representation also scales the concrete real values to
values within the range [−1,+1]. The values in the noise
vector are manipulated by the search algorithm to produce test
cases. In our approach, we use a genetic algorithm to explore
the search space and produce test cases that are judged as
more valuable using an objective function based on potential
pedestrian collisions.

A. Scenario Creation and Manipulation

We use SVL Visual Scenario Editor as the first step to
create a basic scheme of the test scenarios that are going to
be executed by SVL simulator. SVL Visual Scenario Editor is
a GUI application that can be used to create basic scenarios
specifying where agents (pedestrians, vehicles, ego vehicle,
etc.) are positioned in a map and the basic scheme of the path
that they should take through the map, which is specified in
the form of waypoints.

The basic scenario is created and exported from SVL
Visual Scenario Editor to SVL simulator. This scenario is then
manipulated by ScenarioGenerator to produce new test
scenarios. In ScenarioGenerator, a derived test scenario
is specified by a vector of real numbers, the noise vector, with
values between −1 and +1.

B. Scenario specification

A test scenario is defined as a set of parameters used for
test scenario generation, i.e., modeling the test inputs, which
is shown as follows:

TS = 〈S1, S2, · · · , Sm〉 , Rimin ≤ Si ≤ Rimax

Rimin, Rimax ∈ R
(1)

Where TS indicates a test scenario and Si denotes a test input
parameter. The values of the test input parameters often vary
over different ranges. Rimin and Rimax represent the upper
and lower boundaries of the value range for parameter Si.

For example, the scenario may define a variable Stod

representing the time of day. In the base scenario, the time
of day may be defined as 12:00. Rtodmin and Rtodmax are
used to limit the change in this value in a generated test
scenario (e.g., values of −5 and 5 would allow the time to vary
from 7:00 to 17:00). The values of parameters representing the



positions of the agents would have different ranges—e.g., the
position points in a path that the vehicle takes may change by
±2 (meters).

C. Noise vector

The proposed representation for a test case is a vector, which
is defined as follows:

noise vector = 〈N1, N2, · · · , Nm〉 , −1 ≤ Ni ≤ +1 (2)

where each element, Ni, corresponds to a test input parameter,
Si, and the values of components of the noise vector are scaled
to values in R using a linear scaling function to create a test
scenario, TS.

Si = (Ni + 1)× (Rimax −Rimin)/2 +Rimin (3)

This transformation allows the use of a generic representation
that can be uniformly manipulated by the test generator with-
out detailed knowledge of each input parameter. All elements
of the noise vector fall within the range [−1,+1], and are
scaled appropriately using Rimin and Rimax for that Si.

Extending the above scenario, a noise vector value of 0.5
for the entry representing the time of day, Stod, would result
in the following concrete value in a test case: Stod = (0.5 +
1)× (17− 5)/2 + 5 = 1.5× 6 + 5 = 14, or 14:00.

D. Objective Function

In order to generate valuable test scenarios, we must identify
scenarios that are more likely to lead to safety violations.
Safety violations can occur then the ego car moves toward
its target at a reasonable speed. Specifically, the objectives to
be optimized are as follows:
• The total distance1 of the ego vehicle from other non-ego

traffic during scenario execution. This objective should be
minimized—we want to examine ego vehicle behavior in
potentially dangerous scenarios.

ego agents distance =∑
agent∈agents

∑
s∈(1,...,steps)

d(ego.poss, agent.poss) (4)

• The total distance of the journey. This should be maxi-
mized, as longer journeys are preferred.

journey distance = d(ego.pos1, ego.posfinalstep)
(5)

• acc : the number of accidents. This should also be
maximized, as we seek failures in ego vehicle behavior.

Since the aforementioned objectives do not conflict with
each other, we merge them to form a single objective function.
This function is minimized—lower scores are preferred. The
objective function that we seek to minimize is defined as:

E = ego agents distance−journey distance−1000×acc
(6)

1Euclidean distance

d(p1, p2) =

√
(p1x − p2x)

2 + (p1y − p2y)
2 + (p1z − p2z)

2)

We put high values on the number of accidents, as we are
interested in generating test scenarios leading to crashes.

E. Search Algorithm

It is not possible to execute every possible test scenario that
can be defined by an instance of the noise vector. Instead, we
seek a systematic means to sample from the space of possible
scenarios in search of those that could lead to safety violations.
This can be done by using an optimization algorithm to sample
the space, as guided by the objective function.

The optimization algorithm used to minimize the objective
function is a Genetic Algorithm (GA). Genetic Algorithms are
modeled on the evolution of a population over time. Initially,
a random population of solutions (noise vector instances)
is generated. Then, at each generation, a new population is
formed based on the best solutions resulting from the previous
generations of evolution. This population is formed by:
• Identifying good solutions using tournament selection,

where a subset of the population is selected at random
and the best member of the subset is identified.

• Breeding “child” solutions by combining elements of
“parent” solutions through crossover, where the child
solutions are formed by selecting genes (elements) from
each parent solution.

• Introducing mutations into the population by making
small, random adjustments to solutions.

Tournament selection is performed to identify parent solu-
tions, then crossover and mutation are performed at user-set
probabilities. Either, or both, may be applied to transform the
identified solutions. Finally, the resulting solutions are added
to the new population. This process continues until a new
population is formed. The objective function is calculated for
each member of this population, and the score is stored for
that solution. This process is performed each generation, until
a user-set number of generations has been exhausted. At the
end, the best solutions are returned.

In our case, we have three objectives—
ego agents distance, journey distance, and acc, which
have been merged into a single formula. Tournament
selection picks the best solution among the solutions in
each tournament. The number of individuals participating in
each tournament denotes the size of the tournament. In our
approach, we omit the crossover operation, as the noise vector
contains the values for the parameters of the test scenarios
in a certain order, and crossover could violate this ordering.
Instead, we apply mutation with a high probability. We use
Polynomial Bounded mutation, as proposed and implemented
in NSGA-II [15]. It is a bounded mutation operation for
real-valued parameters and uses a polynomial function for the
probability distribution. It uses a parameter, eta indicating the
crowding degree of the mutation, which is used to encourage
diversity in the resulting population. A high eta yields a
mutant resembling the original solution, while a small value
for eta produces a solution more divergent from the original.
The GA algorithm used for generating test scenarios is
configured as presented in Algorithm 1.



Fig. 1: Overview of the experimental setup.

Algorithm 1 GA for Test Scenario Generation
Initialize population with solutions from random seeds;
Evaluate the population;
repeat

1. Select offspring using Tournament Selection with
replacement;
2. Mutate the resulting offspring using Polynomial
Bounded mutation operation with a certain probability
(mutation rate = 0.95);
3. Evaluate the offspring using the objective function.

until meeting the stopping criteria (reaching the maximum
number of generations or other limitations specified in the
test budget);

III. IMPLEMENTATION AND EMPIRICAL EVALUATION

We perform an empirical evaluation of the proposed test
case generation technique, ScenarioGenerator2 by run-
ning experiments on our experimental setup on a desktop PC
with the following specifications:
• Ubuntu version 18.04
• Intel Core i7-10700K CPU @ 3.80GHz × 16
• 32GB RAM
• GeForce RTX 2070 SUPER/PCIe/SSE2
• SVL simulator 2021.1 (linux64) with modular testing

setup (3D Ground Truth sensor and Signal sensor publish
ground truth perception data to Apollo via CyberRT
bridge)

• Baidu Apollo (r6.0.0 branch)
The experiments are simulations that are controlled by a
Python scenario runner which uses our test case generation
technique for generating the scenarios in the simulation envi-
ronment. Baidu Apollo is the autonomous driving software

2Available from https://github.com/ebadi/ScenarioGenerator.

platform that controls the ego vehicle. It connects to the
simulator through its customized bridge and drives the ego
vehicle (Fig. 1).

We design a set of experiments to assess the efficiency
and effectiveness of the proposed test case generation for
testing Apollo in the SVL simulation environment. Pedestrian
detection and proper responding is the target use case of
Apollo in our experiments. For a comparative analysis, we also
report results from a random testing technique as a baseline
approach. In random testing, the test cases are generated
randomly, which means that the set of noise vector instances
are generated by setting the test input parameters to random
values within the allowed range. The target is to generate the
highest number of diverse valid test cases leading to failures,
i.e., collisions between the ego vehicle and pedestrians. We
use the following quality criteria for evaluating the proposed
test case generation technique:
• Detected Failures: The number of test cases that lead to

a collision.
• Failure Diversity: The dissimilarity between the gen-

erated test cases leading to failures. We are interested
in generating diverse test cases, as triggering similar
failures lead to waste of the test budget, e.g., compu-
tation resources. To measure failure diversity, we use the
Euclidean distance between failing noise vectors.

A. Test Scenario Execution

The testing budget (including, e.g., execution time) is a
limited resource. While not as expensive to perform as on-
road testing, running test scenarios in simulators also takes
time. In our experiments, each scenario takes about 10 seconds
to execute and evaluate. Therefore, for the purpose of this
competition, we set the limit for the number of simulation
executions to 200 in the Genetic Algorithm. This would
correspond, for example, to 20 generations with a population
size of 10.

https://github.com/ebadi/ScenarioGenerator


0

5

10

15

20
GA Random

Detected Failures

(a) Number of detected failures.

0

10

20

30

40
GA Random

Average Journey Distance

(b) Objective values for the average journey
distance during failure-revealing test cases.

0

100

200

300

400
GA Random

Average Distance from Ego Car

(c) Objective values for average distance from
ego car during failure-revealing test cases.

Fig. 2: Comparisons between GA and random generation.

Fig. 3: Collision between pedestrian and the ego vehicle on a
rainy night.

In ScenarioGenerator, the user-controllable parame-
ters for test scenario creation and manipulation are as follows:

• Initial JSON file created by SVL Visual Scenario Editor.
• Test case generation strategy, which is used for scenario

generation. Currently, Differential Evolution, Powell Op-
timization, Genetic Algorithm, and random generation
strategies are supported. Meanwhile, the capability of
replaying a scenario is also supported by passing the
JSON file and setting the action to replay. A specific
noise vector in combination with replay action can also
be used. In this mode, in addition to all the previous
parameters, a specific noise vector is given to be played.

• The ego vehicle destination.
• Acceptable range of changes in the values for the position

of each waypoint (x, z).
• Acceptable range of changes in the color of each agent

(r, g, b).
• Acceptable range of changes in the weather in the simula-

tion (e.g., rain, fog, wetness, cloudiness, road damages).
• Acceptable range of changes in the time of day.
• Acceptable range of changes in the speed of each agent.
In a test case, the generated noise vector is used to impose

changes to the position of each waypoint, the color of each
agent, the weather, the time of day, and the speed of each
agent. The base scenario defines a value for each of these
parameters. The user-controllable parameters are used to con-
strain the range of changes made by the voice vector between
minimum and maximum values, as discussed in Section II.

IV. RESULTS AND DISCUSSION

This section presents the experimental results and assesses
the proposed test case generation compared to the random
testing with regard to the quality criteria.

Detected Failures: Fig. 2(a) shows the number of detected
failures (test cases leading to collisions) by the GA-based test
case generation and random testing. The proposed GA-based
technique trigger twice as many failures than random testing
on the same configuration and test budget, and consequently, in
this regard, works more effectively. Fig. 3 also shows a sample
of a generated test scenario leading to a collision between the
pedestrian and the ego vehicle.

In order to investigate the characteristics of the detected
failures, we can examine the values of two of the objec-
tives in the objective function—ego agents distance and
journey distance. These can show the characteristics of the
detected failures. Fig. 2(b) and (c) show the average values
of the two objectives in failure-revealing test cases for both
techniques. These average values do not differ significantly
between the two approaches. This indicates that the GA reveals
more failures, but the failures revealed by the two techniques
fall in similar objective ranges. However, both distances are
somewhat higher in the GA—i.e., the GA generates tests
with slightly longer journey distances and a slightly higher
distance from the ego car. These tests may be somewhat more
interesting for revealing errors in the ego car functionality,
as—for example—a longer distance between the ego car and



Fig. 4: Diversity of failure-revealing test cases generated by
the GA.

Fig. 5: Diversity of failure-revealing test cases generated by
random testing.

TABLE I: Failure diversity in GA and random testing, shown
as the range in the average pairwise Euclidean distance for
test cases.

Genetic Algorithm Random
Range of Euclidean Distances 4.1− 4.7 3.2− 4.2

a pedestrian should offer more time to make corrections. In
future work, we will examine failing scenarios more closely
and discuss them with domain experts.

Failure Diversity: We use pairwise Euclidean distance be-
tween the noise vectors to show diversity between the failure-
revealing test cases. Fig. 4 and 5 show the average pairwise
Euclidean distance for each of the failure test cases generated
by GA and random testing respectively. The average pairwise
Euclidean distance refers to the average difference between a
test case and the other test cases. Table I shows the range of
average pairwise Euclidean distance for the failure-revealing
test cases from the GA and random testing. In this regard, the
GA technique also promotes more diversity between generated
failure-revealing test cases than random testing.

A. Threats to Validity

Some of the main sources of threats to validity of the
experimental results are as follows:

Internal Validity: During the experiment, we noticed that
many of the failures that are captured are not completely
reproducible. In fact, the simulation execution often does not
produce identical results given identical input parameters and
configuration setup. One of the main reasons is that Apollo
does not function in a deterministic manner. We tried to
mitigate the effects of this by reporting average values from the
experiments, and conducting the experiments in a controlled
manner, i.e., using the same experimental setup and keeping
the user-controllable parameters fixed between executions.
Another source of threat is the fact that as the simulator runs
a large number of test cases, the simulations become slower
and less responsive probably due to performance bottlenecks.
External Validity: We have focused on a single scenario. As
we have used a generic data structure consisting of variables
scaled in a certain range, i.e., the noise vector with variables
within the range [−1, 1], we believe that the representation
model and test case generation approach could be used for
simulation-based testing of more complex scenes and other
use cases. However, the variables in the noise vector might
need to be modified (e.g., extended) for different use cases.

V. RELATED WORK

Simulators as a form of digital twins play a key role
for different purposes in testing and verification, control
and monitoring, and improvement of cyber-physical systems
(CPS). For ADAS and autonomous-driving cars, this is even
more significant and there is a higher demand for high-
fidelity simulators. Simulation-based testing is one of the most
effective approaches for system-level testing of ADAS and acts
as a suitable complementary solution to on-road testing, since
it provides the possibility for early stage testing, capturing
critical corner test scenarios and enabling inexpensive testing.
Field testing of such systems is expensive, inefficient and even
dangerous, in some cases. Recently, various simulators such
as those ones using physics-based models, e.g., SVL simulator
[16], PreScan [17] and Pro-SiVIC [18] or the ones relying on
game engines, e.g., BeamNG [19] and CARLA [20], have
been developed to meet the need for realistic simulation of
the functions in autonomous driving.

Accordingly, various system-level testing approaches rely-
ing on the simulators have been proposed in the recent years.
One of the common intended purposes in those studies is
generating critical test cases (scenarios) that lead the system
to fail. This is a challenging problem, due to the large search
space of input parameters in these systems. Covering all
possible simulation test scenarios is not feasible in practice.
Therefore, in this regard SBST techniques have been widely
used to generate effective test simulation scenarios for those
systems. In recent studies, multi-objective search algorithms
like NSGA-II [10], many-objective algorithms like MOSA
[21] using a combination of different objectives based on
branch coverage and failure-based heuristics [22], and learn-
able evolutionary algorithms [23] have been used to generate
critical test cases leading to violations of safety requirements
in autonomous driving cars. Moreover, there have also been



studies focusing on the role of simulators and the type of
test data. In [24] a comparison between testing of DNN-
based ADAS using real-world and simulator-generated data is
conducted and it is also showed that how on-line and off-line
testing of these systems can differ and meanwhile complement
each other. Markus et al. studied the consistency between the
results obtained from two different simulators and investigated
whether the obtained results could be mutually reproducible
in both simulators [13].

VI. CONCLUSION AND FUTURE WORK

Efficient and effective test case generation for use in virtual
environments is essential for testing AI-based automotive sys-
tems. In this paper, we presented a SBST approach to generate
test scenarios that lead to detection of failures and safety
violations of the Baidu Apollo pedestrian emergency braking
system. We have made three primary observations. First, our
results show that the proposed GA-based test case generation
is more effective than random testing, i.e., it is more effective
in generating failure revealing test cases and provides higher
diversity between the generated test cases compared to random
testing. Second, unfortunately, many of the captured failures
could not be reproduced given the same configuration and
user-controlled parameters due to the non-deterministic nature
of Apollo. Third, we see great potential in simulation-based
testing of different functions of autonomous driving systems
using SVL simulator and Baidu Apollo. In future work, we
will broaden the scope of the research into additional safety
scenarios. We will also extend SBST approaches with machine
learning-based techniques (e.g., reinforcement learning) for
test case generation in system-level testing of ADAS. We are
also interested in the use of Generative Adversarial Networks
(GANs) as a technique for enabling the discovery of failure-
revealing test cases.

ACKNOWLEDGMENT

This project has received funding from the ECSEL Joint Un-
dertaking (JU) under grant agreement No 876852 (VALU3S).
Furthermore, this work received support from the ITEA3
European IVVES project (https://itea3.org/project/ivves.html)
and the SMILE III project financed by Vinnova, FFI, For-
donsstrategisk forskning och innovation under the grant num-
bers 2019-05871 and the AIQ Meta-Testbed project funded
by Kompetensfonden at Campus Helsingborg, Lund Univer-
sity, Sweden. Additional support was provided under Veten-
skapsrådet grant 2019-05275. The authors would like to thank
INFOTIV AB for their support and cooperation.

REFERENCES

[1] “A definition of artificial intelligence: Main capabilities and scientific
disciplines,” High-Level Expert Group on Artificial Intelligence, Brus-
sels, Belgium, Tech. Rep., 2018.

[3] “Communucation from the commission to the european parliament, the
european council, the europan economic and social commitee and the
commitee of the regions - artificial intelligence for europe,” Eurpean
Commision, Brussels, Belgium, Tech. Rep., 2018.

[2] M. Borg, C. Englund, K. Wnuk, B. Duran, C. Lewandowski, S. Gao,
Y. Tan, H. Kaijser, H. Lönn, and J. Törnqvist, “Safely entering the
deep: A review of verification and validation for machine learning and a
challenge elicitation in the automotive industry,” Journal of Automotive
Software Engineering, vol. 1, no. 1, pp. 1–19, 2019.

[4] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.

[5] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and
P. Tonella, “Testing machine learning based systems: a systematic
mapping,” Empirical Software Engineering, vol. 25, no. 6, pp. 5193–
5254, 2020.

[6] F. Bock, C. Sippl, S. Siegl, and R. German, “Status report on automotive
software development,” in Automotive Systems and Software Engineer-
ing. Springer, 2019, pp. 29–57.

[7] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, no. 1, pp. 15–24, 2016.

[8] “Road Vehicles - Safety of the Intended Functionality,” International
Organization for Standardization, Tech. Rep. ISO/PAS 21448:2019,
2019.

[9] P. McMinn, “Search-based software testing: Past, present and future,”
in 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, 2011, pp. 153–163.

[10] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing ad-
vanced driver assistance systems using multi-objective search and neural
networks,” in Proc. of the 31st IEEE/ACM International Conference on
Automated Software Engineering, 2016, pp. 63–74.

[11] ——, “Testing vision-based control systems using learnable evolutionary
algorithms,” in Proc. of the 40th International Conference on Software
Engineering, 2018, pp. 1016–1026.

[12] A. Gambi, T. Huynh, and G. Fraser, “Generating effective test cases for
self-driving cars from police reports,” in Proc. of the 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 257–267.

[13] M. Borg, R. B. Abdessalem, S. Nejati, F.-X. Jegeden, and D. Shin,
“Digital twins are not monozygotic–cross-replicating adas testing in two
industry-grade automotive simulators,” in 2021 14th IEEE Conference
on Software Testing, Verification and Validation (ICST). IEEE, 2021,
pp. 383–393.

[14] M. H. Moghadam, M. Borg, and S. J. Mousavirad, “Deeper at the sbst
2021 tool competition: ADAS testing using multi-objective search,” in
2021 14th Intl. Workshop on Search-Based Software Testing (SBST).
IEEE, 2021.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE transactions on evo-
lutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[16] LG Electronics, “SVL Simulator,” https://www.svlsimulator.com/, Re-
trieved July, 2021.

[17] TASS International, “. PreScan Simulator,” https://tass.plm.automation.
siemens.com/prescan-overview, Retrieved July, 2021.

[18] A. Belbachir, J.-C. Smal, J.-M. Blosseville, and D. Gruyer, “Simulation-
driven validation of advanced driving-assistance systems,” Procedia-
Social and Behavioral Sciences, vol. 48, pp. 1205–1214, 2012.

[19] BeamNG GmbH., “BeamNG.research,” https://beamng.gmbh/research/,
Retrieved July, 2021.

[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[21] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch
coverage as a many-objective optimization problem,” in 2015 IEEE 8th
international conference on software testing, verification and validation
(ICST). IEEE, 2015, pp. 1–10.

[22] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter,
“Testing autonomous cars for feature interaction failures using many-
objective search,” in 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2018, pp. 143–154.

[23] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing vision-
based control systems using learnable evolutionary algorithms,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 1016–1026.

[24] F. U. Haq, D. Shin, S. Nejati, and L. C. Briand, “Comparing offline
and online testing of deep neural networks: An autonomous car case
study,” in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST). IEEE, 2020, pp. 85–95.

https://itea3.org/project/ivves.html
https://www.svlsimulator.com/
https://tass.plm.automation.siemens.com/prescan-overview
https://tass.plm.automation.siemens.com/prescan-overview
https://beamng.gmbh/research/

	Introduction
	Search-based Test Case Generation
	Scenario Creation and Manipulation
	Scenario specification
	Noise vector
	Objective Function
	Search Algorithm

	Implementation and Empirical Evaluation
	Test Scenario Execution

	Results and Discussion
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

