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Abstract. In this study, we explore automated reduction of the carbon
footprint of web pages through genetic improvement, a process that pro-
duces alternative versions of a program by applying program transforma-
tions intended to optimize qualities of interest. We introduce a prototype
tool that imposes transformations to HTML, CSS, and JavaScript code,
as well as image resources, that minimize the quantity of data transferred
and memory usage while also minimizing impact to the user experience
(measured through loading time and number of changes imposed).
In an evaluation, our tool outperforms two baselines—the original page
and randomized changes—in the average case on all projects for data
transfer quantity, and 80% of projects for memory usage and load time,
often with large effect size. Our results illustrate the applicability of
genetic improvement to reduce the carbon footprint of web components,
and offer lessons that can benefit the design of future tools.

Keywords: Carbon Footprint · Energy Consumption · Web Develop-
ment · Genetic Improvement · Genetic Programming

1 Introduction

Climate change, caused by increasing concentrations of greenhouse gases in the
atmosphere, is expected to have profound long-term consequences to the human
health, safety, and quality of life. The carbon dioxide emitted through develop-
ment and use of software is a major contributor to climate change [2].

In this study, we focus on the carbon footprint of web pages. Web pages
are some of the most commonly used programs in the world—presently, there
are estimated to be approximately two billion websites, with 400 million ac-
tively maintained, and almost four billion internet users around the world [10].
Therefore, reductions in the carbon footprint of web pages could contribute sig-
nificantly to reducing the overall carbon footprint of the software industry.

Reducing software carbon footprint is not a straight-forward task. Researchers
have begun to make recommendations (e.g., [14, 22, 24]). Such guidelines are
highly important, but can be difficult to apply—especially after the code has
been written. Therefore, we are interested in exploring automated reduction of
carbon footprint through transformation of existing source code—e.g., reducing
energy consumption while maintaining the semantics of the original code.
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A promising technique to impose such changes is genetic improvement [3],
where alternative versions of a program are scored according to qualities of
interest—called fitness functions—then evolved over many generations to opti-
mize these scores. Genetic improvement has been applied to energy consumption
(e.g., [3, 9, 14, 15, 23]), but not to carbon footprint or web pages.

In this study, we have explored the use of genetic improvement to auto-
matically reduce the carbon footprint of web pages through the development
of an extendable tool. This tool imposes transformations to HTML, CSS, and
JavaScript code, as well as image resources, to identify web page modifications
that minimize fitness functions that correlate with carbon footprint—the quan-
tity of data transferred and memory usage—and functions intended to preserve
the user experience—the page load time and number of changes imposed.

In an experimental evaluation on 10 open-source projects of varying com-
plexity, we compare our tool to two baselines—the original, unmodified page
and randomized changes. In the average case, our tool was able to reduce the
quantity of data transferred for all projects, and the memory consumption and
loading time for eight of the projects. Our tool outperformed the random base-
line with large effect size in 92.50% of comparisons. Compressing and converting
images and removing unused CSS were the most common actions performed by
the tool, with major effects on solution fitness.

Our results illustrate the applicability of genetic improvement to reduce the
carbon footprint of web components, and offer lessons that can benefit the design
of future tools for this purpose. We make our tool3, comparison baselines4, and
experiment data5 available to researchers and practitioners to use or extend.

2 Background and Related Work
Carbon Footprint and Energy Consumption of Software: The carbon
footprint of a software product is the quantity of carbon dioxide emissions as-
sociated with its development. There are sources of emission at multiple points,
including implementation, testing, delivery, usage, and maintenance [21]. In this
research, our scope is restricted to emissions associated with energy consumption
during usage—i.e., when interactions take place with the software.

Carbon footprint is affected by the quantity of energy consumed and where
and how that energy is produced or consumed, as some energy sources have a
greater carbon footprint than others. Software carbon footprint is potentially
affected by energy usage on both the client-side (i.e., consumer devices) and
server-side (i.e., data centers in disparate geographic areas), as well as by network
transmissions between the two [1]. In this study, we focus on energy usage.
Genetic Improvement: Genetic improvement is the automated improvement
of non-functional qualities (e.g., performance) of software through transforma-
tions to the source code [3].Transformations are imposed using genetic program-
ming [3], a process where population of patches are produced, their quality is
3 https://github.com/haozhoulyu416/ARCFW-Tool
4 https://github.com/haozhoulyu416/ARCFW-Random-Solution-Generation
5 https://doi.org/10.5281/zenodo.8347915
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measured according to one or more “fitness functions” related to the qualities of
interest, and then patches are evolved over a series of generations. The patches
that yield the best scores in each generation form a new population through
mutation—where stochastic changes are introduced—or crossover—where as-
pects of “parent” patches combine to form new “children”. Carbon footprint can
be considered a quality. Thus, genetic programming could be used to automate
its reduction through appropriate transformation actions and fitness functions.

Related Work: Past research has offered guidelines on how to reduce energy
consumption and carbon footprint (e.g., algorithm selection [14], code struc-
ture [24], considering server distribution and location [14], or controlling image
quality [22]). Such guidelines are highly important, but are not always easy to
apply. Nor is it simple to manually improve code after it has been written. There-
fore, we are interested in automated carbon footprint reduction techniques.

We are unaware of automated tools targeting carbon footprint. However,
there have been several approaches targeting energy consumption. Much of this
research utilizes genetic improvement—for example, Bruce et al. targeted C im-
plementations of MiniSAT [3], Dorn et al. explore trade-offs between energy
consumption and output fidelity [9], Manotas et al. optimize applications that
use Java collections [14], Mrazek et al. targeted microcontrollers [15], and White
et al. targeted pseudorandom number generators [23]. Other approaches include,
e.g., specialized compilers [20] and data migration strategies [6]. None of these
approaches target web pages, despite their prevalence, and their approaches are
not applicable to this domain. Our approach is the first to target web page
carbon footprint using genetic improvement.

3 Methodology

Our study is guided by the following research questions:

– RQ1: What factors of web page design suggest code transformations or
fitness functions for genetic improvement of carbon footprint?

– RQ2: What impact does our prototype genetic improvement tool have on
the carbon footprint of web pages?

– RQ3: Which program modifications are used most often by the tool?

To answer these questions, we applied the Design Science methodology to
develop a prototype automated carbon footprint reduction tool for web pages.
Design science is a systematic, cyclic methodology for the creation and evaluation
of artifacts. This prototype tool was designed over three iterations. In Iteration
I (Section 3.1), we identified factors of web page design that have a potential
impact on carbon footprint. These factors form the basis of fitness functions
and transformation actions in our tool. In Iteration II (Section 3.2), genetic
programming—based on the NSGA-II algorithm—was utilized to develop the
automated carbon footprint reduction tool. In Iteration III (Section 3.3), we
conducted parameter tuning experiments, then we conducted final experiments
comparing the tool against two baselines—the original web page and random
solution generation.
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3.1 Iteration I (Scoping, Fitness Functions, and Transformations)

The purposes of this iteration were to identify the scope of the genetic improve-
ment tool, then—based on that scoping—identify web page design factors that
have a potential relationship with the carbon footprint of a web page and develop
fitness functions and code transformations based on those factors. The identi-
fication of fitness functions and actions was conducted by, first, performing a
literature review of past work in this area. We then implemented actions and
fitness functions and performed exploratory experiments to identify those that
could be performed and measured reliably.

Scoping: A web page can consist of both front-end and back-end components,
implementing user interfaces and underlying functionality, respectively. Front-
end and back-end components can be built using many different programming
or markup languages, and often make use of additional resources such as im-
ages, videos, or audio. Web page components can also be localized to a single
computing unit or geographically distributed.

Our aspiration was to develop a tool that could be expanded over time to
additional web page components, web programming languages, fitness functions,
and code transformation actions. However, for the initial prototype, it was im-
portant to establish a clear scope that could be later enlarged.

In this study, we focus on front-end, localized web page components.
Specifically, we modify HTML, CSS, and JavaScript components related
to the user-facing interface of a web page. We also include images in this scope.
In the current prototype, we focus on the quantity of energy consumed, and
not the sources of energy (e.g., some geographic areas may use more renewable
sources of energy than others).

Fitness Functions: To identify factors affecting a web page’s carbon footprint,
it is necessary to identify factors affecting its energy consumption. After exam-
ining past literature and exploring the feasibility of implementing measurement
in a manner that (a) could be performed reliably6, and (b) could be performed
without specialized equipment7, we implemented the following fitness functions:

– Memory Usage: Philippot et al. [17] identified a high correlation between
memory and energy consumption for web pages. There is a correlation be-
tween the number of requests, the page size, and the consumed memory on
the client. Selenium, a suite of tools for automating web browsers, is used
to simulate the user environment of the web page to gather memory usage8.

– Quantity of Transferred Data: Wholegrain Digital have developed a
“Website Carbon Calculator” [5]. Their calculation is based on the quan-
tity of data transferred to the end user, the energy intensity of the data, and
the carbon intensity of the energy consumed. The latter two factors take into

6 That yield relatively deterministic readings and are not heavily affected by the spe-
cific hardware and software configuration where the prototype tool is executed.

7 Our desire was to develop a framework that could be used on any computer, without
the need for dedicated equipment that measures energy consumption.

8 https://www.selenium.dev/
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account the locations where energy is consumed. As these are not considered
in the current prototype, we focus solely on the quantity of data transferred.
To measure this factor, we utilize the PageSpeed Insights API9.

We also implemented, but ultimately abandoned, the following:
– CPU Usage: Many researchers use CPU usage to measure energy consump-

tion, e.g., [4, 24]. However, after several experiments, we found that it was
difficult to measure and isolate the CPU usage of the web page accurately.
As a result, we decided to abandon this factor.
Reduction of carbon footprint must not negatively affect the user experience

of the web page. Therefore, we also balance carbon footprint reduction against
the following fitness functions, representing the user experience:
– Page Load Time: Load time is an important aspect of web page perfor-

mance, as slow load times lead to many users leaving the page [19]. Load
time and energy consumption are not strongly correlated [4]. Thus, we ensure
performance is not negatively impacted while reducing the carbon footprint.
We apply Selenium and PageSpeed Insights to capture load time.

– Number of Changes: The automated carbon footprint reduction tool
should not overtly change the original code, as this may negatively affect
the user experience, e.g., reducing usability or readability.

The prototype tool attempts to minimize the selected subset of fitness functions.
This set of functions can be expended in future work as well. To address RQ1:

RQ1 (Factors): The carbon footprint of a web page is affected by the
quantity and location of energy consumed. We focused on quantity, and
identified memory usage and quantity of transferred data as approxima-
tions that could be measured reliably and without specialized equipment.

Web Page Modifications: Through modification of code and resource ele-
ments, carbon footprint can potentially be reduced. These actions are intended
to be applied to one compatible element at a time, e.g., a single image, HTML
tag, or file. That way, the minimal set of actions that most strongly affect the car-
bon footprint can be identified. We have identified the following actions through
analysis of literature and exploratory experimentation:
– Change Image Format: Energy consumption of image formats varies [22].

The WebP format has been found to yield smaller images than JPEG and
PNG formats, leading to smaller data transmission quantity and improved
page performance. Therefore, we convert images to WebP.

– Compress Images: Compressing images can reduce energy consumption [16].
Over-compressing images can reduce usability, but high image quality is not
often required and users may not notice a difference after compression.

– Swap HTML Tags: <strong> elements use less energy and load faster
than unstyled <span> tags [18]—the former requires 14% less loading time

9 https://pagespeed.web.dev/
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and energy, and <span> tags are particularly inefficient in mobile device
browsers. Thus, we change the <span> tag to <strong> automatically.

– Remove Unused CSS: When a page is loaded, an HTML file is fetched
and converted into a DOM object model. Afterwards, CSS stylesheets are
fetched by the browser and converted to the CSSOM model [13]. A render
tree is constructed by combining the DOM and CSSOM. The first content
is produced by a browser only after this render tree has been constructed.
Because of this, CSS files heavily affect the rendering time and quantity of
data transferred [8]. When a CSS file contains unused CSS, it takes longer
to build under the render tree. Thus, we remove unused CSS rules.

– Remove CSS Opacity: Translucent elements are rendered more slowly
than opaque elements [18]. Consequently, removing opacity could potentially
reduce energy consumption.

– Move JavaScript Invocation: Moving the JavaScript <script> to the end
of the body can improve performance because the script invocation blocks
parallel downloads, e.g., of image files [12].

We also implemented the following actions, but decided to discontinue their use
following experimentation:
– Remove HTML or CSS Whitespace: Removing whitespace in the HTML

or CSS source code can reduce the file size. This operation could be con-
ducted before deploying the website to the server to avoid negatively impact-
ing the readability of the code. However, due to this potential for reducing
readability, we did not utilize this action in our initial prototype tool.

– Use of async and defer: The async attribute, used when invoking a
JavaScript file in HTML, enables scripts to be loaded asynchronously. If a
script uses this attribute, it will load independently and will not impede load-
ing of other elements. Loading several scripts asynchronously can increase
page loading speed and reduce total resource consumption. Similarly, when
using the defer attribute, the browser will load the script after loading the
page. This can also situationally improve resource consumption. However, we
determined through initial experimentation that these changes could affect
the behaviour of a web page in inadvertent ways.

Like with fitness functions, additional actions can be added in future work.

RQ1 (Factors): The initial prototype attempts to reduce the car-
bon footprint by changing image formats, compressing images, swapping
energy-consuming HTML tags for alternatives, removing unused CSS,
removing opacity from elements, and moving JavaScript invocations.

3.2 Iteration II (Design of the Prototype Tool)
In the second iteration, we developed our prototype genetic improvement tool—
making use of the fitness functions and actions developed in Iteration I. This tool
performs multi-objective genetic improvement based on the NSGA-II algorithm
(Non-Dominated Sorting Genetic Algorithm-II) [7]. The process followed by this
tool is, as follows:
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– An initial population of N solutions—alterations of the original web page—is
generated by making random changes.

– This population is evolved over a series of generations. In each generation:
• The best solutions in the population are identified (selection).
• These solutions (“parents”) are used to create a new “child” population,

using the mutation and crossover operations.
• The best N solutions from the parent and child populations form the

population considered in the next generation, preventing the best solu-
tions from being lost.

– After the final generation, the best solutions—those that cannot be domi-
nated by any other solutions—are returned.

Parameters: The following parameters are user-adjustable:
– Population Size: The number of individuals in the population.
– Search Budget: The number of generations of evolution.
– Fitness Functions: The fitness functions to optimize. NSGA-II is gener-

ally considered efficient with up to three objectives [11]. Thus, we allow the
selection of one to three fitness functions.

Solution Representation: Each individual represents an altered version of a
web page. Solutions are represented using an array, where each item represents an
action that can be applied to an element (e.g., compressing a particular image).
The length of the array is fixed to the number of actions that could be applied
to the particular page being optimized. A value of 0 means the original version
of the element is kept, while a value of 1 means the element should be modified
using the appropriate action.
Selection: NSGA-II uses the selection operator to select the most qualified
candidates from the population as the basis for a new population. Each individual
is evaluated according to how many of the others in the population dominate
it and how many it dominates, measured using the set of fitness function. If no
individual dominates another individual, that individual is considered to be in
the first non-domination level, or Pareto frontier. To create the next population,
individuals with higher non-domination ranks are selected, and if two individuals
have the same non-domination rank, the selection operator favors the one with a
greater crowding distance to preserve diversity. The crowding distance estimates
the density of candidate solutions surrounding a particular individual in a Pareto
frontier, with individuals from a less-dense region of the frontier preferred.

Tournament selection is used to select the parent population for creating
the new child population. In a K -way tournament selection, K individuals are
selected at random and compared from the previous population. The best two
candidates are identified from this subset of the population.
Mutation and Crossover: At a certain probability, the mutation and crossover
operations are applied to transform the “parent” solutions identified by the tour-
nament selection into new, potentially improved, “child” solutions.

Mutation selects one action from a solution randomly and swaps the value in
the array, i.e., replaces 0 with 1 or 1 with 0. Crossover creates two child solutions



8 H. Lyu et al.

Table 1: Project name and GitHub link for the final experimental subjects.
Project Name Project Link

Poke-Dex https://github.com/AM1CODES/Poke-Dex
Ecommerce-Website-main https://github.com/MOUSTAFAAMIN25/Ecommerce-Website-main

htmlBurger-website https://github.com/Marius-MPA/htmlBurger-website
complex-storm-html https://github.com/kasumaputu06/complex-storm-html

module1-capstone-project https://github.com/MahdiAghaali/module1-capstone-project
awesome-portfolio-websites https://github.com/smaranjitghose/awesome-portfolio-websites

OpenWISP-Website https://github.com/openwisp/OpenWISP-Website
project-website-template https://github.com/yenchiah/project-website-template

ProjectSakura https://github.com/ProjectSakura/ProjectSakura.github.io
Books-bootstrap-website https://github.com/akashyap2013/Books-bootstrap-website

Table 2: Metadata on the web pages used for the final experiment.
Project Name Num. Images CSS Lines HTML Lines JS Lines

Poke-Dex 41 324 6713 111
Ecommerce-Website-main 33 275 415 319

htmlBurger-website 26 750 730 91
complex-storm-html 53 125 519 318

module1-capstone-project 10 206 192 83
awesome-portfolio-websites 2 1696 217 20

OpenWISP-Website 3 396 243 402
project-website-template 64 1841 1086 7

ProjectSakura 19 706 473 36
Books-bootstrap-website 6 422 355 51

by blending elements from the parent solutions. A simple form of crossover is
utilized where two indexes are chosen at random, and the items at those indexes
are swapped between the two parents. In the current prototype, the mutation
probability is 0.4 and the crossover probability is 0.7. These values were identified
through exploratory experimentation.

3.3 Iteration III (Refinement and Final Evaluation)

In the final iteration, we performed parameter tuning experiments for the tool,
then used the identified parameter settings in a final evaluation. There are two
main aims for conducting the evaluation. The first is to see if the prototype tool
is able to reduce the carbon footprint of web pages. To this end, we compare
to the baseline of the initial fitness values for each web page with no changes
made. The second aim is to see if the prototype tool is more effective than pick-
ing transformation actions at random. The corresponding baseline is imposing
changes with a random generation tool. That is, we generate a random solution
and compare to the final solution produced by our tool.

Experiment Subjects: We evaluate our tool and the baselines using ten web
page projects, selected from GitHub to represent varying degrees of complexity.
Table 1 shows the project names and GitHub links, Table 2 presents metadata
on each subject, and Table 3 shows the fitness values for the unmodified pages.

Experiment Configurations: We execute two configurations of our tool, each
targeting three fitness functions: (1) (Data Transferred Quantity) + (Number of
Changes) + (Page Load Time) (Configuration DNT), and (2), (Data Trans-
ferred Quantity) + (Number of Changes) + (Memory Usage) (DNR).
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Table 3: Baseline fitness values of the web pages used for the final experiment.
Project Name Data Transferred (KB) Load Time (ms) Memory Usage (KB)

Poke-Dex 5158908 3372 275528
Ecommerce-Website-main 3021120 1870 189700

htmlBurger-website 1907546 1937 163008
complex-storm-html 645713 2476 406188

module1-capstone-project 947203 1540 228976
awesome-portfolio-websites 843424 5802 238592

OpenWISP-Website 1238487 6077 172708
project-website-template 5141268 1743 273548

ProjectSakura 1422532 7052 223280
Books-bootstrap-website 1734210 2119 173412

The number of generation of evolution and population size found optimal
by the parameter tuning were employed—a population of 20 solutions and a
20-generation search budget.

We perform 20 trials for each subject for each fitness function configuration.
For every trial of our tool, we also perform one trial where the random baseline is
executed. We refer to random trials paired with DNT-trials as “Random-DNT”
and random trials paired with DNR-trials as “Random-DNR”.
Data Collection and Analysis: We record the final value for each selected
fitness function. Based on the collected data, we compared the performance of
multi-objective optimization to the two baselines defined above first using the
median fitness values for each fitness function and each experimental subject.

In addition, we compared the performance of the tool and the random base-
line using statistical analysis for each fitness function. Data collected for each
subject are drawn from an unknown distribution, and normality cannot be as-
sumed. The Mann-Whitney Wilcoxon rank-sum test is used, with α = 0.05, to
determine whether the multi-objective tool and the random baseline yield fit-
ness values drawn from different distributions. The following null hypothesis and
alternative hypothesis are proposed for the analysis of the data collected:
– H0: Observations of results from the prototype tool are drawn from the same

distribution as the random generation tool.
– H: Observations of results from the prototype tool are drawn from a different

distribution than the random generation tool.
If the distributions are different, the Vargha-Delaney effect size test is used

to measure the magnitude. We interpret effect sizes > 0.5 as the first technique
performing better than the second. We follow the general interpretation, where
an effect size of 0.56 ≤ A < 0.64 is classified as small, while 0.64 ≤ A < 0.71 is
considered medium, and A ≥ 0.71 is deemed large.

4 Results and Discussion
Median Fitness Values: Table 4 shows the median data transfer quantity for
each baseline and the two configurations of the tool.

Performance (RQ2): In the median case, our tool reduces the quantity
of data transferred by the original web page by 39.14% (DNT) and 40.68%
(DNR) and by randomized changes by 25.42% (DNT) and 15.60% (DNR).
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Table 4: Median quantity of data transferred (KB) for the original page, random-
ized baseline, and our tool. Lower values are better, and the lowest is bolded.

Project Name Original Random-DNT Random-DNR DNT DNR
Poke-Dex 5158908 4942889 5069008 4088047 4181722

Ecommerce-Website-main 3021120 2136636 2167752 1477222 1403839
htmlBurger-website 1907546 1848460 1076644 928236 881270
complex-storm-html 645713 519497 444831 415664 383898

module1-capstone-project 947203 824963 824964 803259 818164
awesome-portfolio-websites 843424 767178 767155 524879 563573

OpenWISP-Website 1238487 766532 721795 736714 716632
project-website-template 5141268 4574004 4179609 4126205 4110037

ProjectSakura 1422532 1218049 1083724 762353 841990
Books-bootstrap-website 1734210 1090758 1026710 651616 1014127

Table 5: Median values for load time and memory usage for the original page,
randomized baseline, and our tool. Lower values are better, the lowest is bolded.

Load Time (ms) Memory Usage (KB)
Project Name Original Random-DNT DNT Original Random-DNR DNR

Poke-Dex 3372 3637 3526 275528 273394 263079
Ecommerce-Website-main 1870 1999 1883 189700 170972 169447

htmlBurger-website 1937 1870 1836 163008 165868 165013
complex-storm-html 2476 2474 1873 406188 444831 402963

module1-capstone-project 1540 1409 1396 228976 148444 139848
awesome-portfolio-websites 5802 6306 5132 238592 195604 182057

OpenWISP-Website 6077 985 937 172708 160578 142629
project-website-template 1743 1409 1403 273548 232752 206689

ProjectSakura 7052 6826 6366 223280 180134 107218
Books-bootstrap-website 2119 1859 1855 173412 182876 176933

Our tool’s performance—generally for both fitness function configurations—
is better than both baselines for all experiment subjects. The random baseline
only attains comparable results for OpenWISP-Website. As discussed in Sec-
tion 3.1, the quantity of transferred data is highly correlated with the carbon
footprint of a web page [5]. Therefore, this is an indication that our tool can
reduce a web page’s carbon footprint significantly.

Table 5 shows the median memory usage for each baseline and the DNR
configuration of the tool.

Performance (RQ2): In the median case, our tool reduces memory
consumption of the page by 10.64% and of randomized changes by 3.96%.

Our tool yields lower memory consumption than both baselines for the ma-
jority of the subject projects, with the exception of the original versions of
htmlBurger-website and Books-bootstrap-website. As memory usage is highly
correlated with energy consumption [17], these results offers further evidence that
our tool can reduce the carbon footprint of a web page.

The page load time was considered not because of a relationship with carbon
footprint—past research found that it was not always correlated [4]—but be-
cause long load times can create a negative user experience [19]. We, therefore,
minimize page load time to balance carbon footprint reductions with potentially
negative changes to user experience. Table 5 also shows the median page load
time for each baseline and the DNT configurations of the tool.
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Table 6: Median number of changes made by randomized baseline and our tool.
Project Name Random-DNT Random-DNR DNT DNR

Poke-Dex 18.00 15.00 18.50 17.50
Ecommerce-Website-main 19.50 17.00 22.00 20.00

htmlBurger-website 13.50 12.50 16.50 16.00
complex-storm-html 9.50 9.50 12.50 13.00

module1-capstone-project 6.00 5.00 9.00 9.00
awesome-portfolio-websites 2.00 3.00 4.00 4.00

OpenWISP-Website 4.00 3.00 5.00 5.00
project-website-template 19.00 30.50 32.50 33.00

ProjectSakura 11.00 11.00 13.00 13.00
Books-bootstrap-website 4.00 8.50 12.00 13.00

Table 7: Effect sizes for data transfer quantity, load time, and memory usage in
cases where a statistically significant difference exists between our tool and the
random baseline. Large effect sizes are in bold.

Project Name Transfer(DNT) Transfer (DNR) Load Time Memory Usage
Poke-Dex 0.99 0.88 0.96 0.76

Ecommerce-Website-main 0.93 0.88 0.80 0.76
htmlBurger-website 0.82 0.84 0.77 -
complex-storm-html 0.88 0.84 0.81 0.75

module1-capstone-project 0.96 0.93 0.91 0.87
awesome-portfolio-websites 0.89 0.94 0.80 0.87

OpenWISP-Website - 0.78 0.70 0.88
project-website-template 0.93 0.99 0.75 0.85

ProjectSakura 0.91 0.82 0.83 0.77
Books-bootstrap-website 0.95 1.00 0.77 0.91

Performance (RQ2): In the median case, our tool reduces the load time
of the original page by 14.05% and of randomized changes by 6.36%.

We can see that our tool also yields lower load times for the majority of the ex-
periment subjects, with the exception of Poke-Dex and Ecommerce-Website-main.
In other words, in many cases, reductions in data transfer quantity can also yield
an improved user experience through faster loading times.

However, we can also see from the deviating cases that improvements to these
fitness functions do not always correlate. Changes intended to reduce the data
transferred can reduce memory consumption and load time as well, but they can
also have a slight negative impact in some cases.

Table 6 shows the median number of changes made by the randomized base-
line and our tool. Our tool tries to balance improvements in other fitness func-
tions against the number of changes made to preserve the usability of the page.
More changes are made by our tool than by random generation in the average
case. However, for many pages, the set of changes is still relatively small.

Statistical Analysis: Table 7 shows that there is a statistical difference in
the data transfer quantity between our tool and random solution generation for
almost all subjects, with the exception of OpenWISP-Website under the DNT
configuration. In all cases where such a difference exists, the DNT configuration
outperforms that random baseline with a large effect size. In all ten subjects,
the DNR configuration outperforms the random generation with a large effect
size with regard to quantity of data transferred.
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Table 8: Effect size results for data transfer quantity when comparing the two
fitness function configurations. Large effect sizes are in bold.

Project Name Effect Size
Poke-Dex 0.07

Ecommerce-Website-main -
htmlBurger-website 0.89
complex-storm-html 0.92

module1-capstone-project 0.03
awesome-portfolio-websites 0.00

OpenWISP-Website 1.00
project-website-template 0.73

ProjectSakura 0.27
Books-bootstrap-website 0.00

With regard to load time and memory usage, Table 7 shows that statistical
differences exist for almost all subject projects, with the exception of the memory
usage of htmlBurger-Website. Our tool outperforms the random baseline in
each case where a statistical difference was observed. In terms of page load
time, the tool outperforms the random baseline with a large effect size for nine
projects and one with a medium effect size. In terms of memory usage, the tool
outperforms the random baseline with a large effect size for nine projects.

Performance (RQ2): Our tool outperforms the random baseline in
95.00% of comparisons with statistical significance—with a large effect
size in 92.50% of comparisons.

We can also compare the two configurations of our tool in terms of the quan-
tity of data transferred—a fitness function shared in both configurations. Table 8
shows that there are statistically significant differences in the results in nine of
the ten projects. However, there is not a clear pattern in which configuration
is better. In four of ten projects, the DNR fitness function combination outper-
forms the DNT fitness function combination with a large effect size. However,
in the other five projects where a distribution difference was detected, the DNT
fitness function combination outperforms the DNR configuration.

It is not clear exactly why one configuration outperforms another in these
cases with regard to the quantity of data transferred. It may be that pursuit of
one of the other fitness functions—memory usage or load time—may offer feed-
back on how to further reduce the quantity of transferred data. Future research
should explore both additional fitness functions as well as different combinations
of fitness functions to identify the tool configurations most widely effective.
Modifications Used: We also examine which modifications are applied most
often. Table 9 shows the percentage of final solutions where a particular type of
action has been taken for at least one compatible element when targeting the
DNT configuration. Table 10 shows the same for the DNR configuration.

As might be anticipated, changes to the images—both compression and for-
mat changes—are applied particularly often and clearly have an impact on the
quantity of transferred data, memory usage, and page loading time. However,
the other actions are applied as well. In particular, unused CSS is frequently
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Table 9: The percentage of final solutions that apply an action of a particular
type to at least one compatible element for the DNT configuration.

Project Name Move Remove Change Remove Compress Convert
Script(%) Opacity(%) HTML(%) Unused CSS(%) Image(%) Image(%)

Poke-Dex 25.00 75.00 65.00 80.00 100.00 100.00
Ecommerce-Website-main 30.00 55.00 55.00 60.00 100.00 100.00

htmlBurger-website 35.00 35.00 55.00 65.00 95.00 100.00
complex-storm-html 45.00 40.00 50.00 50.00 100.00 100.00

module1-capstone-project 35.00 50.00 75.00 80.00 100.00 100.00
awesome-portfolio-websites 25.00 25.00 40.00 90.00 100.00 100.00

OpenWISP-Website 45.00 25.00 65.00 50.00 100.00 100.00
project-website-template 15.00 15.00 60.00 75.00 100.00 100.00

ProjectSakura 10.00 40.00 70.00 70.00 100.00 100.00
Books-bootstrap-website 25.00 55.00 55.00 90.00 100.00 100.00

Overall 28.50 52.00 59.00 71.50 99.50 100.00

Table 10: The percentage of final solutions that apply an action of a particular
type to at least one compatible element for the DNR configuration.

Project Name Move Remove Change Remove Compress Convert
Script(%) Opacity(%) HTML(%) Unused CSS(%) Image(%) Image(%)

Poke-Dex 15.00 40.00 45.00 80.00 100.00 100.00
Ecommerce-Website-main 35.00 50.00 50.00 55.00 100.00 100.00

htmlBurger-website 30.00 50.00 65.00 55.00 100.00 100.00
complex-storm-html 15.00 60.00 65.00 70.00 100.00 100.00

module1-capstone-project 55.00 40.00 50.00 50.00 95.00 100.00
awesome-portfolio-websites 40.00 30.00 40.00 65.00 100.00 100.00

OpenWISP-Website 30.00 15.00 70.00 65.00 100.00 100.00
project-website-template 25.00 30.00 50.00 80.00 100.00 100.00

ProjectSakura 15.00 15.00 55.00 65.00 100.00 100.00
Books-bootstrap-website 10.00 50.00 65.00 80.00 100.00 100.00

Overall 26.50 43.00 57.00 62.50 99.50 100.00

removed, perhaps because many websites make use of existing templates and
their creators do not optimize the templates. Addressing RQ3:

Modifications (RQ3): Compressing, converting images and removing
unused CSS are the most common modifications applied by our tool.

5 Threats to Validity

Conclusion Validity: When using statistical analyses, we have attempted to
ensure the base assumptions behind these analyses are met. We have favored
non-parametric methods, as distribution characteristics are not generally known
a priori, and normality cannot be assumed.

To control experiment cost, we have only performs twenty trials for each tool
configuration and case example. It is possible that larger sample sizes may yield
different results. However, given the consistency of our experiment results, we
believe that this is a sufficient number of repetitions to draw stable conclusions.

External Validity: Our results are specific to HTML and CSS, and our tech-
niques and findings cannot be expected to map to additional languages or file
formats. Our study has also focused on ten subject web pages—a relatively small
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sample. Nevertheless, we attempted to identify open-source web pages represent-
ing a range of sizes and use cases. We believe that our subjects are generally
representative of small-to-medium-sized web pages.

6 Conclusions

We have explored the use of genetic improvement to automatically reduce the
carbon footprint of web pages. In the average case, our tool was able to reduce the
quantity of data transferred for all projects, and the memory consumption and
loading time for eight of the projects. Our tool outperformed the random baseline
with large effect size in 92.50% of comparisons. Compressing and converting
images and removing unused CSS were the most common actions performed by
the tool, with major effects on solution fitness.

In future research, we will expand the range of actions and fitness functions,
as well as the scope of experiment subjects considered. We will also perform
a user study to qualitatively assess the acceptability of the applied transforma-
tions. We are also particularly interested in examining the impact of the location
where components are hosted on the carbon footprint of web applications. We
will also explore ways to encourage users to regularly use and trust such tools
as part of their workflow.
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