
Developer Views on Software Carbon Footprint
and its Potential for Automated Reduction

Haozhou Lyu1, Gregory Gay1[0000−0001−6794−9585], and Maiko Sakamoto2

1 Chalmers | University of Gothenburg, Gothenburg, Sweden
haozhou@student.chalmers.se, greg@greggay.com

2 University of Tokyo, Tokyo, Japan
m-sakamoto@k.u-tokyo.ac.jp

Abstract. Reducing software carbon footprint could contribute to ef-
forts to avert climate change. Past research indicates that developers
lack knowledge on energy consumption and carbon footprint, and ex-
isting reduction guidelines are difficult to apply. Therefore, we propose
that automated reduction methods should be explored, e.g., through ge-
netic improvement. However, such tools must be voluntarily adopted and
regularly used to have an impact.
In this study, we have conducted interviews and a survey (a) to explore
developers’ existing opinions, knowledge, and practices with regard to
carbon footprint and energy consumption, and (b), to identify the re-
quirements that automated reduction tools must meet to ensure adop-
tion. Our findings offer a foundation for future research on practices,
guidelines, and automated tools that address software carbon footprint.

Keywords: Carbon Footprint · Energy Consumption · Sustainability ·
Genetic Improvement · Genetic Programming

1 Introduction

The carbon dioxide emitted through development and use of software may con-
tribute to climate change. In 2015, data centers accounted for an estimated
3.00% of global energy consumption—double that of the United Kingdom and
matching the airline industry [2]. Training a single neural network can emit as
much carbon as the entire lifetime of five cars [8]. That carbon footprint must
be reduced, but this is not a straight-forward task. There are sources of emis-
sions at multiple stages of development, produced through development and use
of software [18]. Further, while carbon footprint is largely a product of energy
consumption, the quantity, sources, and location of consumption are important.

Researchers have begun to make recommendations on how to reduce carbon
footprint (e.g., [10, 19, 22]). Such guidelines are highly important, but can be
difficult to apply—especially after the code has been written. Further, it is not
clear that developers have a clear understanding of carbon footprint, energy
consumption, or how either can be reduced during development [12–14].

Therefore, we are interested in exploring automated reduction of carbon foot-
print. There are multiple stages of development that could benefit from such



2 H. Lyu et al.

reduction—e.g., design, implementation, or maintenance—and multiple practices
or development artifacts that could be optimized—e.g., source code, processes,
or design models. To ground this study, we focus on one example—where a tool
would transform the existing source code of the project-under-development to
reduce the carbon footprint caused by the usage of the software. This tool could
take measurements, e.g., of energy consumption, data transfer, and other factors
related to the carbon footprint—measured during test case execution—to assess
the impact of the attempted transformations.

Such transformations should preserve semantic meaning while reducing the
carbon footprint by, e.g., reducing energy consumption or controlling where en-
ergy is consumed. A promising technique to impose such changes is genetic
improvement (GI) [3], where populations of program patches are scored accord-
ing to qualities of interest, then evolved over many generations to maximize
or minimize these scores. GI has been applied to reduce energy consumption
(e.g., [3, 6, 10, 11, 20]), and other researchers have recently suggested the poten-
tial of GI with regard to carbon footprint reduction [7, 15]. We, similarly, propose
that such approaches could be extended, or new approaches could be developed,
specifically to target carbon footprint.

The development of such tools could improve the sustainability of the IT
industry. However, such tools must be voluntarily adopted and regularly used by
developers. The goals of this study are (a) to explore developers’ existing opin-
ions, knowledge, and practices in this area, and (b), to identify the requirements
that automated tools must meet to ensure voluntary adoption. We conducted a
set of initial interviews, followed by a broader survey of software developers, and
performed thematic and quantitative analyses of the collected data.

This study provides a foundation for future research by exploring require-
ments for automated carbon footprint reduction tools. We also offer insights to
those interested in the existing opinions, knowledge, and practices of developers.
To help enable future research, we also make a replication package available [9].

2 Background and Related Work

Carbon Footprint and Energy Consumption of Software: Carbon foot-
print is the total quantity of carbon dioxide emissions associated with an individ-
ual, product, or organization’s activities. This can include direct (e.g., fuel con-
sumed during production) or indirect emissions (e.g., energy consumption) [21].

Software is a source of carbon emissions.There are sources of both direct and
indirect emission at multiple phases of development, including implementation,
testing, delivery, usage, and maintenance [18]. In this research, our scope is
primarily restricted to indirect emissions associated with energy consumption
during software usage—i.e., when interactions take place with the software.

Within this scope, carbon footprint is affected both by the quantity of en-
ergy consumed and where and how that energy is produced or consumed, as
some energy sources have a greater carbon footprint than others. Calculating
and reducing software carbon footprint is not simple, as it is affected by energy
usage on both the client-side (i.e., on consumer devices) and server-side (i.e.,



Dev. Views on Software Carbon Footprint Reduction 3

at data centers in disparate geographic areas), as well as on network transmis-
sions between the two [1]. Automated approaches must consider not just energy
quantity, but also aspects such as the location of computing elements.
Genetic Improvement: GI is the automated improvement of non-functional
qualities (e.g., performance) of software through transformations to the source
code [3]. Population of patches are produced and then judged using one or more
fitness functions related to the qualities of interest. The patches that yield the
best scores form a new population through mutation—where stochastic changes
are introduced—or crossover—where aspects of “parent” patches combine to form
new “children”. Carbon footprint can be considered a quality, improved through
appropriate program transformations and fitness functions.
Related Work: Researchers have found that most programmers are largely
unaware of energy consumption, lack knowledge on the causes or how to mea-
sure consumption, and rarely address energy issues [13, 14, 12]. Some developers
even regard green software design as a “threat” that could disrupt their work-
flow [12]. Our study yields similar findings on energy consumption, but extends
our understanding with regard to developer opinions on carbon footprint, cur-
rent practices regarding both carbon footprint and energy consumption, and
opinions on automated improvement tools.

Past research has offered guidelines on how to reduce energy consumption and
carbon footprint (e.g., algorithm selection [10], code structure [22], considering
server distribution and location [10], or controlling image quality [19]). Such
guidelines are highly important, but are not always easy to apply. Nor is it
simple to manually improve code after it has been written. Therefore, we are
interested in automated carbon footprint reduction techniques.

To date, we are unaware of any automated tools specifically targeting carbon
footprint. However, there have been several approaches targeting energy con-
sumption, mostly based on genetic improvement (e.g., [3, 20, 11, 10, 6]). Other
approaches include specialized compilers [16] and data migration strategies [5].
We hypothesize that GI can also reduce carbon footprint, potentially by extend-
ing existing approaches to consider both client and server-side components and
additional fitness functions. Other researchers have also recently suggested the
use of GI in this area, e.g., to improve Machine Learning frameworks [7, 15].

3 Methodology

Our study is guided by the following research questions:

– RQ1: What knowledge do developers have about the carbon footprint or
energy consumption of software?

– RQ2: How do developers assess and control the carbon footprint or energy
consumption of their software?

– RQ3: What requirements and constraints must be satisfied for developers
to trust carbon footprint reduction tools?

– RQ4: How should a reduction tool fit into the development workflow?
– RQ5: How can voluntary adoption of reduction tools be encouraged?



4 H. Lyu et al.

Table 1: Demographic information on interviewees, including location, position,
job responsibilities (self-described), and development experience (years).

ID Country Position Responsibility Exp.
P1 Sweden Manager Overlook technical road maps 25
P2 Japan Developer Data analysis and development 5
P3 Sweden Student Developer testing televisions 4
P4 Sweden Manager Technical strategy and development process 20
P5 Japan Developer Develops software 5
P6 Japan Developer Network operation and maintenance tools 4
P7 Japan Developer Service planning and development 7
P8 Japan Researcher AI and robotics development 6
P9 Sweden Student Machine Learning development 4
P10 Sweden Developer C software development 4

To answer these questions, we conducted semi-structured interviews, then
performed thematic analysis following Cruzes and Dyba’s guidelines [4], to gain
an initial understanding. Then, based on the interview results, we developed a
survey to gain additional insights from a broader range of participants.

We do not collect personal information, but rather data on participants’ per-
ceptions and practices. All collected information was fully anonymized. Partici-
pation in the study was voluntary. Given these considerations, obtaining ethical
approval was deemed unnecessary at our institutes.

3.1 Interviews

Population Definition: Our population consists of participants with experi-
ence developing software, including professionals and university students study-
ing a related discipline.
Sampling: We interviewed 10 participants. The sampling method was a mix
of purposive and convenience sampling. The professionals were gathered from
companies in Sweden and Japan using LinkedIn, as well as through personal
contacts. After 10 interviews, we had achieved result saturation.
Demographics: Table 1 shows information on participants. To maintain con-
fidentiality, we omit participants’ names. These participants come from various
roles, with experience ranging from 4–25 years, and experience in a variety of
domains (e.g., robotics, machine learning, web applications).
Interview Guide: The interview questions can be found in our replication
package [9]. The questions were open-ended, so we could ask follow-up questions
if needed, while ensuring we answered the core research questions. The 13 ques-
tions were divided into three sections: (1) prior knowledge, (2) experiences and
opinions, and (3), requirements for automated carbon footprint reduction tools.
Data Collection: During interviews, we introduced the background and pur-
pose of the research. We then conducted the semi-structured interview. Following
completion, we answered their questions and shared information on the project.
From November to December 2022, all interviews were conducted online and
lasted between 20 and 30 minutes. Participants were interviewed in English.
To analyze the results, we recorded both video and audio. We transcribed our
records using a denaturalism approach. Transcriptions were performed using a
speech-to-text tool. We referred to the recordings to make clarifications.



Dev. Views on Software Carbon Footprint Reduction 5

Table 2: Survey respondent demographics.
ID Country Position Software Domain Experience
I1 China Developer Embedded system 1-3 years
I2 Japan Developer Sever web service 1-3 years
I3 Denmark Researcher Web applications 9 years+
I4 Japan Developer Internal tools 4-6 years
I5 Sweden Developer Embedded system 7-9 years
I6 Ireland Researcher Programming environment 9 years+
I7 Japan Manager Web applications 7-9 years
I8 Sweden Student Embedded system 4-6 years
I9 UK Developer Web applications <1 year
I10 China Student Embedded system 1-3 years
I11 UK Developer Web applications 1-3 years
I12 Sweden Student Various 1-3 years
I13 USA Developer Web applications <1 year
I14 Sweden Manager Analytics 9 years+
I15 Sweden Developer Web and desktop applications 7-9 years
I16 Romania Developer Web and desktop applications 1-3 years
I17 Sweden Developer Data analytics 1-3 years
I18 Sweden Developer Various applications 1-3 years
I19 Sweden Manager Web applications 9 years+
I20 Sweden Developer Data analysis application 4-6 years
I21 Sweden Developer Web applications 9 years+
I22 India Manager Web applications 9 years+
I23 Ireland Developer Windows and Web applications 9 years+
I24 Sweden Manager Enterprise software 9 years+
I25 Sweden Manager Business intelligence 9 years+
I26 Sweden Developer Visual analysis software 9 years+
I27 Sweden Developer Visual analysis software 9 years+
I28 Sweden Developer On-prem client, cloud service 9 years+
I29 France Developer Web applications 4-6 years
I30 Japan Developer Mobile mini applications <1 year
I31 Japan Developer Embedded system 1-3 years
I32 Japan Developer System software 1-3 years
I33 Japan Developer Web applications <1 year
I34 Japan Developer Web applications 1-3 years
I35 Japan Developer Cloud web applications 1-3 years
I36 Japan Developer Web applications 1-3 years
I37 Japan Developer Artificial Intelligence 1-3 years
I38 Japan Developer Web applications 1-3 years
I39 Japan Unemployed N/A 1-3 years
I40 Sweden Developer SAAS 1-3 years

Data Analysis: We adopted thematic coding. We familiarized ourselves with
the data by reading the transcript repeatedly and identifying relevant segments
(codes). These codes were organized and aggregated into themes and sub-themes.
After each interview, we modified the codes and themes, and paused for discus-
sion. We stopped when no new codes were found in transcripts. Attention was
paid to ensuring that each code was accurate to the original response.

Coding was conducted by the first author. However, the second author in-
dependently coded one interview to ensure reliability. As only minor differences
were observed, coding of the remaining interviews proceeded.

3.2 Survey
Population and Sampling: Our population and sampling methods are the
same as in the interviews. We sent the questionnaire directly to some partici-
pants, and also distributed it on LinkedIn, Facebook, Twitter, and Mastadon.
Between November–December 2022, 40 respondents completed the survey.



6 H. Lyu et al.

Some Knowledge
20.0%

A Little
37.5%

Nothing
42.5%

Very Familiar
2.5%
Some Knowledge
35.0%

Nothing
35.0%

A Little
27.5%

Fig. 1: Knowledge of carbon footprint (left) and energy consumption (right).

Participant Demographics: Table 2 shows demographic information. The
participants come from various countries—although most are still from Japan
and Sweden—with varied roles, experience levels, and development domains.
Survey Guide: The survey questions are in our replication package [9]. To
ensure a high response rate, the survey was designed to be as brief—lasting
between 10-15 minutes. The 26 questions consist of open-ended, multiple choice,
ordinal scale, and interval scale questions [17].
Data Collection: The partially-structured questionnaire design method was
adopted to ensure participants had freedom to express their opinions. The ques-
tionnaire is divided into three parts, mapped to the same topics as the interviews.
Data Analysis: We use descriptive statistics to analyze quantitative data. Qual-
itative data was incorporated into our previous thematic mapping.

4 Results and Discussion
In this section, we answer the research questions using data from both the in-
terviews and survey.

4.1 Existing Knowledge (RQ1)

As shown in Figure 1, 80% of survey participants are either unfamiliar with
or only have a little knowledge on carbon footprint. Participants had somewhat
more knowledge on energy consumption, but 63% still had no or little knowledge.
Encouragingly, however, many interviewees had—at least—basic knowledge of
factors that impact energy consumption or carbon footprint. For example:

“That’s not something that I think about daily. The only thing I can think
about is all the things that we store on service, in the cloud, of course,
those computers need electricity. There’s been a lot of talk about mining
cryptocurrency. It’s not a sustainable way of handling money.” - P4

Another noted how sources of energy affect carbon footprint:
“[Carbon footprint] depends on where the energy comes from. If the energy
is carbon neutral, then the footprint is still small, even if you consume lots
of energy ... Most of our customers are not in Sweden, but most of our
development is in Sweden. I would say majority of the energy in Sweden is
not carbon-based ... water, wind, nuclear, and so on.” - P1
As shown in Figure 2, as the experience of developers grows, there is also some

increase in their median level of knowledge on both topics. Over time, developers
tend to acquire knowledge of specialized topics and be more confident in their
knowledge. The median knowledge of carbon footprint remains at a relatively low
level—between “little” and “some” knowledge—but does rise. The median level
of knowledge on energy consumption rises more noticeably to “some” knowledge.



Dev. Views on Software Carbon Footprint Reduction 7

0

2

4

<1y 1-3y 4-6y 7-9y >9y

Knowledge (Carbon) Knowledge (Energy)

Fig. 2: Median knowledge versus experience (1=“Nothing”, 4=“Very Familiar”).

0
20
40

1 2 3 4 5
0
20
40

1 2 3 4 5
Fig. 3: Degree of agreement on whether software carbon footprint contributes to
climate change (left) and whether software carbon footprint should be considered
and controlled (right) (1 = “strongly disagree”, 5 = “strongly agree”).

Individual Developers
Development Org.

Regulatory Agencies
No One

0 20 40 60
Fig. 4: Percentage that believe entity is responsible for controlling footprint.

4.2 Developer Opinions and Practices (RQ2)

Developer Opinions: Figure 3 (left) shows a largely balanced view on whether
software carbon footprint contributes to climate change, with a plurality (48%)
expressing a neutral view. However, somewhat more participants agree (30%)
than disagree (23%). Figure 3 (right) also shows that more participants (40%)
agree that carbon footprint should be considered than disagree (18%). Again,
however, a plurality are neutral (43%). In both cases, there was no discernible
change in opinion as developers gained experience.

Figure 4 shows participants’ views on who holds responsibility for considering
or controlling energy consumption or carbon footprint. Participants could select
more than one option. The majority of respondents felt that both organizations
(65%) and regulatory agencies (63%) should bare responsibility. Only 10% be-
lieved that no one holds responsibility. Interviewees noted that developers must
comply with the company’s development rules, business goals, and release crite-
ria. Therefore, they may not have the option of reducing energy consumption.

We suggest that development organizations could take a larger responsibil-
ity by raising awareness among their staff, e.g., hosting seminars or training
programs that teach sustainable development practices. Companies could also
prioritize energy consumption or carbon footprint as part of project goals and
impose policies to control their impact on the environment. Regulatory agencies
can also formulate stronger policies regarding the IT industry.
Development Stages: Carbon footprint and energy consumption can be con-
sidered during multiple development stages. Interviewees considered both during
design, testing, and maintenance. During design, developers estimate the num-



8 H. Lyu et al.

Requirements
Design

Implementation
Testing

Deployment
Maintenance

Never

0 20 40 60 80

Energy Carbon

Fig. 5: Percentage that considered energy or carbon footprint at a stage.

ber of end users and specify resources (e.g., number and capability of servers):

“During the design phase, we’re going to make some estimations. We’re
going to decide what technologies are we going to use, how many servers
we are going to have, what is the load that we are expecting.” - P2

Additionally, problematic energy consumption can be observed and mitigated
after the system is deployed:

“... When we actually run something in production and see that ... we are
overloading the systems, we need to do something about that.” - P3

Figure 5 illustrates when survey participants considered energy consumption
and carbon footprint. In both cases, the largest percentage of participants—
48% for energy consumption and 63% for carbon footprint—never took action.
For energy consumption, the most consideration is given during design (40%)
and implementation (38%) phases. During design, decisions are made on the
system architecture, which often must incorporate consideration of energy. These
decisions are realized during implementation.

Many also considered carbon footprint during design (23%). However, de-
ployment (25%) was the most common phase for carbon footprint. Gaining an
accurate estimation of carbon footprint may be difficult before the system is in
operation, where usage statistics can be gathered as well as knowledge of where
users and data centers are located. Some energy decisions can be made without
such information, so energy consumption could be considered early in develop-
ment to also limit carbon footprint. Once the system is deployed, statistics on
carbon footprint can be gathered and changes can be made, if needed.

Automated tools could be deployed at different stages to improve various de-
sign and implementation artifacts. The example we proposed—automated source
code transformation to reduce carbon footprint from software usage—would be
used during the implementation, deployment, or maintenance phases—i.e., any
point where source code exists and appropriate measurements can be gathered.
Actions Taken: Most interviewees have not taken concrete actions to address
energy or carbon footprint. However, many had reduced resource usage, e.g., by
compressing elements or bypassing unnecessary interactions:



Dev. Views on Software Carbon Footprint Reduction 9

Improve Performance

Reduce CPU Usage

Reduce Memory Usage

Reduce Disk Usage

Reduce Download 
Frequency

Reduce Download Size

Reduce Upload Frequency

Reduce Upload Size

Change GUI

Change Architectural 
Element Location

None

Avoid Technologies (e.g., 
Blockchain)*

Elastic Scaling*

Efficient Programming 
Language*

Change CDN*

0 10 20 30 40 50

Fig. 6: Percentage of participants that took actions to reduce energy consumption
(* indicates a participant-added response).

“To make the web pages faster, or save time or resources, we reduced our
resources, e.g., we compressed images or music, or [added] some easier way
to click to the bottom or go to the next pages.” - P6

These actions indirectly affect carbon footprint:

“If I’m a good engineer ... I indirectly reduce cost, indirectly improve code,
indirectly reduce carbon footprint.” - P5

Figure 6 illustrates the percentage of participants that took certain con-
crete actions to reduce energy consumption. The most common practice was
to improve performance (50%), followed by reducing CPU (38%) and memory
consumption (28%) or data upload frequency (28%). Survey participants were
also asked what actions they had taken to reduce carbon footprint. They dis-
cussed energy and resource consumption, mentioning low-power device states,
elastic scaling, memory consumption, and data reuse through instances. Many of
these same actions could be invoked by automated tools to improve the software.
Performance improvement is already a common target of GI tools [3].

Another participant noted actions developers can take to reduce the footprint
of the development process:

“I have taken steps to reduce energy needed for developing software (by
shutting down unused machines and reducing background processes and
other things on development machines).” - I21

Measurement and Evaluation: While most interviewees have not directly
evaluated energy or carbon footprint, several evaluate cost and resource usage:



10 H. Lyu et al.

CPU Usage
GPU Usage

Memory Usage
Electricity/Battery 

Downloads
Uploads

Never Measured

0 20 40 60 80

Energy Carbon Footprint

Fig. 7: Percentage that applied a particular measurement.

Automated Testing

Manual/Exploratory 

Measurement in CI

Never Evaluated

Monitoring*

0 25 50 75

Energy Carbon Footprint

Fig. 8: Percentage that applied a particular evaluation technique.

“We don’t evaluate energy consumption, but we evaluate cost, which is
directly related ... [To reduce] cost of service, we design systems ... which
are more efficient, consume less cost, and improve user experience.” - P8

Figure 7 shows the direct or indirect measures survey participants have used
to assess energy or carbon footprint. Many have never measured either (43%
for energy, 70% for carbon). Among the respondents who measured either, CPU
(50%, 23%) and memory usage (45%, 20%) were the most common methods.
These measurements could be used by automated reduction methods to assess
potential code transformations.

As shown in Figure 8, most have also never formally evaluated either (68%
for energy, 90% for carbon). For energy consumption, the most common method
was manual or exploratory testing (23%), followed by measurement during CI
(15%). For carbon footprint, the most common method was during CI (8%).
Code transformation could be implemented as part of the CI pipeline, or could
be manually invoked as long as executable test cases or other ways of simulating
software usage exist.

4.3 Requirements for Automated Tools (RQ3)

During the interviews, all participants expressed a positive attitude toward the
idea of an automated carbon footprint reduction tool and regarded the concept
as exciting and potentially helpful:

“We want to reduce the amount of power our software requires. ... it’s part
of the green message we need to send to the world ... I don’t really like
bitcoin mining and that kind of thing, so I like what the theory is doing,
changing to a much more energy-reduced algorithm for the mining.” - P1



Dev. Views on Software Carbon Footprint Reduction 11

0
20
40

1 2 3 4 5

(a) Willingness (1 = “Strongly
Unwilling”, 5 = “Strongly Willing”).

0

20

40

1 2 3 4 5

(b) Skepticism (1 = “Highly Skeptical”, 5
= “Highly Unskeptical”).

0
10
20
30

1 2 3 4 5
(c) Likelihood of trust (1 = “Very Unlikely”, 5 = “Very Likely”).

Fig. 9: Willingness, skepticism, and likelihood to trust tool results.
Code Still Correct

Security Maintained
Changes Complete Quickly

Free or Low Price
Easily Integrated in IDE or CI
Minimal Impact on Qualities

Understandable Results*
Readability Maintained*

Verifiable and Interpretable*
Tool is Accurate*

0 25 50 75 100

Fig. 10: Percentage of respondents that believe a requirement must be met to
trust an automated tool (* indicates a participant-added response).

70% of survey participants were willing or strongly willing to try a tool
(Figure 9(a)), and only 8% were unwilling. However, Figure 9(b) shows that 35%
were either skeptical or highly skeptical of the ability of a tool to successfully
reduce carbon footprint, and a further 38% had neutral expectations.

Figure 9(c) indicates that participants may not trust a tool to modify their
code, with 50% either unlikely or very unlikely to trust the tool, and a further
28% neutral. Only one respondent indicated that they would be very likely to
trust a tool. A participant’s experience had little impact on willingness or skepti-
cism. However, participants with <3 years of experience were less likely (median
of 2.00) to trust than those with more experience (median 3.00).

Some skepticism seems reasonable. Even if a tool could reduce carbon foot-
print without supervision, the changes it made could result in incorrect behavior
or reduction in other qualities. Care must be taken to prevent such an occurrence.

Interview and survey respondents were asked about the requirements that
would have to be met to trust a tool. Among survey participants (Figure 10),
the top requirements are that security is maintained (90%), that the code still
operates correctly (88%), and that there is no—or minimal—negative impact on
other qualities (88%). Security is one of the most significant qualities of software,
with major legal and financial implications. Tools should also not introduce
faults, and reducing carbon footprint may not a priority if it comes at the expense
of qualities such as performance.

Others asked that the tool be easily integratable into a CI pipeline, be avail-
able for free or a low price, and complete changes quickly:



12 H. Lyu et al.

Individual Developer (e.g., 
before committing)

CI (Normal Commit)

CI (Non-Peak Times)

CI (Periodically, e.g., 
weekly)

0 20 40 60 80
Fig. 11: Percentage of respondents that would use the tool in a particular point
in the development workflow.

21.6%

16.2%

16.2%8.1%

18.9%

8.1%

Every Commit
Each Coding Session
Once Per Day
Once Per Week
Once Per Month/Peridically
Once Per Project
When Code is Reviewed*
Depends on Code Size*
Depends on Tool Requirements*
After Every Deployment*

Fig. 12: Frequency that survey participants would apply the tool (* indicates a
participant-added response, each 2.5%).

“If I think I can trust it, it depends on how well it will fit into our develop-
ment processes and how easy it is to integrate it ... If it’s very expensive,
then you have to weigh that against how much are we willing to spend on
detecting energy consumption.” - P1

To support integration into CI, the tool should offer an API or CLI, and should
be installable through a package manager, (e.g., pip).

Further, the tool should produce understandable code and interpretable results—
that is, users should understand how and why changes were made. For example,
the tool could provide a report with an explanation of code changes and impact
on carbon footprint. Such data and rationale can enable verification and trust.

4.4 Use in Development Workflow (RQ4)

Participants were asked about how (and how often) they would apply a tool.
Many were interested in integrating this tool into an existing CI pipeline. As
shown in Figure 11, 65% of participants would apply the tool in CI during non-
peak times (e.g., overnight) to not interfere with normal development and to
increase the likelihood that code is in a working state. The tool could also take
more time if results are not needed quickly. 40% would apply the tool as part
of CI after a normal commit. 33% of respondents would also apply the tool
periodically in CI or before committing code.

Many indicated (Figure 12) that they would apply the tool at a relatively high
frequency—split between after every commit (22%), after every coding session
(16%), or daily (16%). However, a significant portion would instead apply it
periodically (19%), possibly to allow code to stabilize before being improved.



Dev. Views on Software Carbon Footprint Reduction 13

Clear and Trustworthy Results
Open Source

Detailed Guidance Available
Easily Integrated in IDE/CI
No Additional Work to Use

Only If Required to Use*

0 25 50 75
Fig. 13: Percentage of respondents that believe that a factor would encourage
voluntary adoption (* indicates a participant-added response)

4.5 Voluntary Adoption (RQ5)
Participants were also asked how to encourage voluntary adoption of tools that
reduce software carbon footprint. The views of survey participants are shown
in Figure 13. The most important factor is that the tool shows a track record
of clear and trustworthy results (93%). Testimonials from existing users could
encourage adoption. One interviewee noted:

“I will wait until the wider community accepts it. First, I will see if this is
doing good. I will try to understand as much as possible what it is doing
before I start using this tool.”- P6

The tool could offer a dashboard or produce a report that visualizes changes to
the source code, CPU usage, RAM usage, and carbon footprint so developers
can easily understand the changes made.

Easy integration of the tool was essential for 75% of the participants. 33%
asked that no additional work be needed to use the tool. An interviewee added:

“I think the main constraint would be that it does not use a lot of resources
and ... should not interrupt any development work. It’s okay if it takes longer
to analyze once the changes are pushed, because it can just run overnight
and I don’t need to worry about that. But if I use it during development,
I would like it to not affect any of my development experience.” - P7

If the tool is open-source, those who are interested can gain a better under-
standing of its algorithm and methods. A community could form that expands
the tool’s capabilities. Additionally, detailed documentation should provide clear
and understandable instructions on how to install and use the tool.

5 Threats to Validity

Conclusion Validity: The number of responses may affect conclusion relia-
bility. However, our thematic findings reached saturation. Further interviews or
surveys could enrich our findings, but may not produce significant additions.
Construct Validity: The interviews or survey could have missing or confus-
ing questions. There is also a risk that participants may not be familiar with
particular terminology. We provided an introduction to reduce this risk. The
use of semi-structured interviews allowed us to ask follow-up questions. We also
conducted pre-testing of the interview and survey.
External Validity: Generalizability of our findings is influenced by the number
and background of participants. Our participants represent many development
roles, experience levels, and product domains. Therefore, we believe that our



14 H. Lyu et al.

results are relatively applicable to the software development industry. We also
contrast results between Sweden and Japan.
Internal Validity: Thematic coding suffers from known bias threats. We mit-
igated these by performing independent coding and comparing results, finding
sufficient agreement. We make our data available, increasing transparency.
6 Conclusions
This study provides a foundation for future research addressing software carbon
footprint. We found that many developers lack knowledge. However, some had
basic understanding of energy-related factors, and knowledge grows with experi-
ence. A plurality were neutral on whether software contributes to climate change
and whether carbon footprint should be controlled. However, more agree than
disagree with both. The majority feel that both development organizations and
regulatory agencies bare responsibility for controlling these factors. Attention
should be paid in future work to increasing developer awareness and exploring
policy implications of software carbon footprint.

In current practice, energy is considered most often during design and imple-
mentation, and is reduced by improving performance or resource consumption.
Carbon footprint is considered during deployment and design. Both energy and
carbon footprint are most commonly measured through CPU or memory usage.
Energy consumption is often evaluated using manual or exploratory testing, car-
bon footprint through measurements during Continuous Integration (CI).

The majority are willing to try an automated carbon footprint reduction
tool. Developers would apply the tool as part of CI, generally on a regular ba-
sis (e.g., daily—possibly at non-peak times). However, many were skeptical of
the potential results. To overcome such skepticism, researchers should also ex-
plore automated carbon footprint reduction solutions that meet the needs iden-
tified by the developers. Such tools must not compromise security, correctness,
or other important qualities. They also must integrate into a CI pipeline, be
well-documented, be reasonably priced or—preferably—open source, and offer
transparent and trustworthy results.

References

1. A. S. Andrae. New perspectives on internet electricity use in 2030. Engineering
and Applied Science Letters, 3(2):19–31, 2020.

2. T. Bawdin. Global warming: Data centres to consume three times as much energy
in next decade, experts warn. The Independent, 2016.

3. B. R. Bruce, J. Petke, and M. Harman. Reducing energy consumption using ge-
netic improvement. In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pages 1327–1334, 2015.

4. D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis in software
engineering. In 2011 international symposium on empirical software engineering
and measurement, pages 275–284. IEEE, 2011.

5. V. De La Luz, M. Kandemir, and I. Kolcu. Automatic data migration for reducing
energy consumption in multi-bank memory systems. In Proceedings 2002 Design
Automation Conference (IEEE Cat. No. 02CH37324), pages 213–218. IEEE, 2002.



Dev. Views on Software Carbon Footprint Reduction 15

6. J. Dorn, J. Lacomis, W. Weimer, and S. Forrest. Automatically exploring tradeoffs
between software output fidelity and energy costs. IEEE Transactions on Software
Engineering, 45(3):219–236, 2017.

7. S. Georgiou, M. Kechagia, T. Sharma, F. Sarro, and Y. Zou. Green ai: Do deep
learning frameworks have different costs? In Proceedings of the 44th International
Conference on Software Engineering, ICSE ’22, page 1082–1094, New York, NY,
USA, 2022. Association for Computing Machinery.

8. K. Hao. Training a single AI model can emit as much carbon as five cars in their
lifetimes. MIT Technology Review, 2019.

9. H. Lyu, G. Gay, and M. Sakamoto. Replication Data for “Developer Views on
Software Carbon Footprint and its Potential for Automated Reduction”, Feb. 2023.
https://doi.org/10.5281/zenodo.7597662.

10. I. Manotas, L. Pollock, and J. Clause. Seeds: A software engineer’s energy-
optimization decision support framework. In Proceedings of the 36th International
Conference on Software Engineering, pages 503–514, 2014.

11. V. Mrazek, Z. Vasicek, and L. Sekanina. Evolutionary approximation of software for
embedded systems: Median function. In Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation, pages
795–801, 2015.

12. Z. Ournani, R. Rouvoy, P. Rust, and J. Penhoat. On reducing the energy con-
sumption of software: From hurdles to requirements. In Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 1–12, 2020.

13. C. Pang, A. Hindle, B. Adams, and A. E. Hassan. What do programmers know
about software energy consumption? IEEE Software, 33(3):83–89, 2015.

14. G. Pinto, F. Castor, and Y. D. Liu. Mining questions about software energy
consumption. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 22–31, 2014.

15. F. Sarro. Search-based software engineering in the era of modern software systems.
Proceedings of the 31st IEEE International Requirements Engineering Conferece.
IEEE, 2023.

16. S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning program and
data objects to scratchpad for energy reduction. In Design, Automation and Test
in Europe Conference and Exhibition, pages 409–415. IEEE, 2002.

17. H. Taherdoost. How to design and create an effective survey/questionnaire; a
step by step guide. International Journal of Academic Research in Management
(IJARM), 5(4):37–41, 2016.

18. J. Taina. How green is your software? In International Conference of Software
Business, pages 151–162. Springer, 2010.

19. N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh. Who killed
my battery? analyzing mobile browser energy consumption. In Proceedings of the
21st international conference on World Wide Web, pages 41–50, 2012.

20. D. R. White, J. Clark, J. Jacob, and S. M. Poulding. Searching for resource-
efficient programs: Low-power pseudorandom number generators. In Proceedings
of the 10th annual conference on Genetic and evolutionary computation, pages
1775–1782, 2008.

21. T. Wiedmann and J. Minx. A definition of ‘carbon footprint’. Ecological economics
research trends, 1(2008):1–11, 2008.

22. Y. Zhu and V. J. Reddi. High-performance and energy-efficient mobile web brows-
ing on big/little systems. In 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), pages 13–24. IEEE, 2013.


