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Abstract—In mutation testing, faulty versions of a program are
generated through automated modifications of source code. These
mutants are used to assess and improve test suite quality, under
the assumption that detection of mutants is indicative of a test
suite’s ability to detect real faults—i.e., that mutants and faults
have a semantic relationship. Improving the effectiveness—in
both cost and quality—of mutation testing may lie in better
understanding this relationship, in particular with regard to how
individual mutation operators (types) couple to real faults.

In this study, we examine coupling between 32,002 mutants
produced by 31 mutation operators and 144 real faults, using
a scale based on number of failing tests and reasons for
failure. Ultimately, we observed that 9.92% of the mutants are
strongly coupled to real faults, and 51.03% of the faults have
at least one strongly coupled mutant. We identify and examine
mutation operators with the highest median coupling, as well
as the operators that tend to produce non-compiling mutants,
undetected mutants, and mutants that cause tests other than those
that detect the actual fault to fail. We also examine how coupling
could be used to filter the set of operators employed, leading to
potentially significant cost savings during mutation testing. Our
findings could lead to improvements in how mutation testing is
applied, improved implementation of specific mutation operators,
and inspiration for new mutation operators.

Index Terms—Software Testing, Mutation Testing, Mutation
Analysis, Fault Analysis, Mutation Operators

I. INTRODUCTION

Software testing—the process of applying stimuli to software
and judging the resulting reaction—is the most common means
of ensuring that software operates correctly. When designing
test cases, past experience can be used to estimate the potential
effectiveness of the test suite. If we have known software
faults—mistakes in the source code [1]—we can use detection
of these faults to predict whether test cases will be effective
against unknown future faults. Essentially, this is an estimation
of the sensitivity of the test suite to changes in the source code.
In practice, we typically lack a sufficiently large collection of
faults to draw reasonable conclusions. Instead, we make use
of synthetic faults, known as mutants [2].

Mutation testing [3] is a technique in which a user generates
many mutants through automated modifications of the original
code [2], [4]. Mutation operators define types of transforma-
tions over code structures [5]. For example, an operator may
change one arithmetic operation into another—turning A+B

into A ∗ B—permute the order of two statements, or remove
a static modifier. There are many mutation operators [5],
[6]. These operators vary in complexity and effect, but are
intended to reflect mistakes that developers make.

Mutation testing is common technique in both research and
practice to compare testing techniques [4] and suggest areas
of improvement in test design [7] under the hypothesis that
test suites that detect mutants will also detect real faults, as
they are sensitive to these small changes in the code [8]. This
hypothesis hinges on the idea that mutants can stand in for
real faults. Mutants clearly bear little syntactic resemblance to
real faults [9]—they tend to be simple, one-line changes to
the code [10], [11]. Real faults often affect multiple lines of
code and require complex changes to fix [9].

Instead, the idea that mutants can substitute for real faults
is based on the assumption of a semantic relationship, built
on two hypotheses. The first, the “competent programmer
hypothesis”, suggests that many programs are close to correct,
with only minor changes required to fix them. The second,
the “coupling effect”, suggests that detection of many simple
mutants will enable detection of a complex fault affecting
the same code [1], [11]. However, the exact nature of the
relationship between mutants and real faults is not clear.
Past studies have found that many factors affect the potential
correlation between mutant and fault detection [2], [4], [12]–
[14]. Further, even if mutation testing can improve test quality,
the immense cost of applying mutation to a large codebase [11]
suggests the need for improvement in the implementation and
application of the practice.

We hypothesize that improving the effectiveness—in terms
of both cost and quality—of mutation testing lies in better
understanding the semantic relationship between mutants and
real faults, also known as their coupling. In particular, and
in contrast to past studies, we focus on examining different
mutation operators. That is, what degree of coupling do
specific mutation operators have with real faults?

We investigate the degree of coupling by executing developer-
written test suites against both mutated and faulty versions
of classes from multiple open-source Java projects, based on
144 case examples from the Defects4J fault database [15]. In
particular, we focus on the trigger tests—the tests that detect



the real fault. A mutant that is most strongly coupled to a
real fault will be detected only by the trigger tests, and those
tests will fail for the same reasons—i.e., the same exception
or error. Mutants that are more weakly coupled may cause
additional—or fewer—tests to fail or cause tests to fail for
different reasons. We have defined a scale rating the strength
of the coupling between a mutant and a corresponding fault,
based on number of failing tests and reasons for failure. This
scale, in turn, allows us to contrast 31 mutation operators.
Ultimately, we observed:

• 61.08% of mutants are detected. 9.92% of the mutants
are strongly coupled to faults, and a further 9.03% are
strongly coupled with additional tests failing. 51.03% of
the faults have at least one strongly coupled mutant.

• The level of coupling of individual mutants is relatively
low—a median score of 2.00 (of 10.00). 16 mutation
operators (45.71%) have a median score < 2.00.

• EMM , ASRS, ISD, COI , PRV OUSMART , and
EOC yield mutants with the highest median coupling.
The average EMM or ASRS mutant strongly substitutes
for corresponding faults.

• ISI , JTI , AMC, OAN , and LV R have the lowest
median scores. They largely produce mutants resulting
in compilation errors.

• JTD, SOR, AODU , PRV ORSMART , and AORU
have the largest percentage of mutants not detected.
PRV ORSMART yields subtle mutants with, often,
strong coupling. The other operators could be selectively
useful, but may yield equivalent mutants or cause non-
trigger tests to fail.

• SOR, PRV ORREFINED, AORB, AOD, and EOA
have the largest percentage of mutants that are only
detected by non-trigger tests. These mutants lack a sig-
nificant relationship with their corresponding faults.

• Using past coupling to filter operators could offer cost
reductions while retaining the power of mutation testing
to assess test suite sensitivity. In our experiment, a ≥ 4.0
threshold yields an 81.48% reduction in the number of
mutants while retaining a diverse subset of operators and
mutants with strong coupling.

Understanding this semantic relationship could enable im-
provements in how mutation testing is applied. For example,
identifying strongly-coupled operators allows prioritization
during testing. Exclusion of weakly-coupled operators could
lead to cost savings and filtering of ”noise” from test suite
adequacy estimation. In addition, understanding semantic cou-
pling enables potential improvements in the implementation of
existing mutation operators—e.g., ensuring that mutants will
compile—and may suggest new mutation operators. To inspire
future research, we also make our data available1

1Available from https://doi.org/10.5281/zenodo.7261554.

II. BACKGROUND

Mutation Testing: Mutation testing [3] is a technique where a
user generates many faulty versions of program through mod-
ifications of the original code, generally through automated
code transformation [2], [4]. Usually a single modification is
made to form each mutant, such as changing an expression
(e.g., substituting addition for subtraction). The mutations
introduced match one or more models of mistakes that de-
velopers make (mutation operators). Each mutation operator
reflects a repeatable program change that can be automatically
imposed on statements that fit the correct pattern.

While mutations are individually simpler than real faults, two
hypotheses suggest that, together, mutants are helpful for
determining the thoroughness of a test suite. The “Competent
Programmer Hypothesis” [8], [16] states that programmers
tend to develop programs that are close to correct. Although
there may be faults, such faults can be corrected with a
few simple changes. Mutations are intended to represent
simple changes that are made in practice [16]. The “Coupling
Effect” [8] states that tests that distinguish a large number
of mutants from the original program are so sensitive that
they also will implicitly distinguish more complex errors as
well. This hypothesis postulates that mutation testing is an
effective sensitivity analysis, and that test suites that detect
more mutants are sensitive to even subtle real-world faults.

Generally, mutants are introduced with the intent that they
not be trivially detected—they are both syntactically valid
and semantically useful [1]. That is, effective mutants will
compile, and will not trivially cause test cases to fail [1].
Mutations can be used to assess the effectiveness of a test
suite by examining how many mutants are killed (that is,
detected) by the tests within the test suite. The mutation score
divides the number of killed mutants by the total number of
mutants. Mutants are considered equivalent if no test can
corrupt program state for that mutant. Deciding equivalence
is generally undecidable [17], but techniques exist that can
determine equivalence for a subset of mutations [11].

Fault Analysis: It is important to first establish concepts and
terminology related to faults and fault analysis. We broadly
adopt the same conventions followed by our experimental
subject, Defects4J [15]. In this study, each fault meets the
following three properties:

1) Each case example consists of faulty and fixed source
code versions. Changes imposed by the fix must be to
source code, not to other artifacts(e.g., build files).

2) Each fault must be reproducible—all tests pass on the
fixed version and at least one test fails on the faulty
version, exposing the fault.

3) Each fault is isolated—faulty and fixed versions differ
only by a minimal set of changes related to addressing
the fault, free of unrelated changes (e.g., refactoring).

When discussing faults, we use the following terminology:

https://doi.org/10.5281/zenodo.7261554


• Trigger tests are developer-written test cases that fail
only on the faulty version.

• Modified classes are classes altered to fix the fault.
• Relevant tests are all test cases that load at least one

of the modified classes. These are the full set of tests
that could detect mutations of modified classes. Relevant
tests include all trigger tests, as well as additional tests
that pass on both the fixed and faulty versions of modified
classes (but could still detect mutants).

• Loaded classes are classes loaded by the Java Virtual
Machine during execution of relevant tests.

III. METHODOLOGY

We hypothesize that improving the quality and cost effec-
tiveness of mutation testing requires examining the semantic
relationship between mutation operators and real faults. In this
study, we investigate this semantic relationship by assessing
the degree of coupling between mutants and real faults using a
spectrum of outcomes, based on the number of failing trigger
tests and the reasons for failure. A mutant that is strongly
coupled will be detected by only the trigger tests, and those
tests will fail for the same reasons—i.e., will trigger the same
exception or error. Mutants that are more weakly coupled may
cause additional—or fewer—tests to fail or cause tests to fail
for different reasons. Specifically, we address the following
research questions:

• RQ1: What is the degree of coupling between mutants
and real faults?
– RQ1.1: Which mutation operators yield mutants that

most strongly couple to faults?
– RQ1.2: Which mutation operators yield mutants that

tend to result in compilation errors or lack of detection?
– RQ1.3: Which mutation operators yield mutants that

tend to be detected only by non-trigger tests?
• RQ2: What potential cost savings could be achieved by

selectively omitting weakly coupled mutation operators?

To answer these questions, we performed the following:

1) Collected Case Examples: We have used 144 case
examples, from five Java projects, as case examples
(Section III-A).

2) Generated Mutants: For each fixed modified class for
each case example, we generated mutants for the specific
lines of code that differ between the faulty and fixed ver-
sions of the classes. We perform this generation using 31
mutation operators offered by the muJava++ framework
(Section III-B).

3) Executed Test Suites: For each mutant, we execute
all relevant tests from the developer-written test suite
(Section III-C).

4) Recorded Failure Information: For each mutant, we
measure the number of failing trigger tests, number of
failing non-trigger tests, and the reasons for failure (i.e.,
exceptions or error messages) (Section III-C).

Table I: ID numbers of studied faults from Defects4J. Faults
in bold lacked strongly-substituting mutants.

Project Bugs
Chart 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24,

25, 26
Closure 9, 12, 23, 34, 52, 56, 65, 77, 85, 99, 100, 102, 123, 124, 128, 131,

147, 161, 162, 164, 169, 173
Lang 2, 4, 5, 7, 11, 12, 16, 19, 20, 22, 23, 24, 27, 28, 29, 30, 31, 34, 37,

39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 57, 58, 59, 60,
61, 62, 63, 65

Math 3, 5, 8, 9, 11, 15, 17, 19, 22, 23, 24, 27, 29, 30, 37, 40, 41, 43, 46,
47, 48, 49, 51, 53, 54, 56, 60, 64, 66, 67, 68, 69, 70, 72, 73, 82, 84,
85, 89, 95, 96, 97, 98, 102, 103, 105, 106

Time 2, 3, 4, 5, 6, 7, 12, 14, 15, 16, 18, 27

5) Assessed Coupling: For each mutant, we use the infor-
mation gathered above to assess the degree of coupling
of that mutant to the real fault using a scale that reflects
the outcomes of relevant test execution (Section III-D).

A. Case Examples

Defects4J is an extensible database of real faults extracted
from Java projects [15]2 used extensively in test genera-
tion [18], automated program repair [19], and fault local-
ization [20] experiments. We generate mutants for modified
classes for 144 faults from five projects: Chart (22 faults),
Closure (22), Lang (41), Math (47), and Time (12). The
specific faults are listed in Table I. Some faults from the
version used, 1.5.0, were excluded because (a) the lines of
code that differ between the faulty and fixed versions of classes
yielded no mutants for the employed mutation operators, (b)
the lines of code that we attempted to mutate used Java
features not supported by muJava++, or (c), muJava++ failed
to produce usable mutants due to errors.

B. Mutant Generation

We used the muJava++ mutation framework, an extended
version of muJava3. We employ muJava++ because (a) it offers
a large number and variety of mutation operators, (b) it can be
applied to user-specified lines of code, and (c), it can export
mutants as Java files for execution and analysis.

Mutation Operators: muJava++ supports 62 mutation op-
erators, although some operators have multiple variations.
We were able to produce compiling mutations for 31 of the
operators. These operators are explained in Table II.

Mutant Generation: We generate mutants by applying all
operators to the specific lines of code that differ between the
fixed and faulty versions of all modified classes. We apply
this restriction because we are interested in the mutants that
could semantically replicate an actual fault. It is unlikely that
a mutant in another class or an unrelated portion of a modified
class could replicate the real fault. Therefore, mutants outside
of these lines potentially mislead the analysis.

We generate all possible mutants for all mutation operators for
these lines of code. We apply operators to the fixed code, as

2Available from http://defects4j.org
3Available from https://github.com/saiema/MuJava.

http://defects4j.org
https://github.com/saiema/MuJava


Table II: Mutation operators used from muJava++.

Operator Name Description
AMC Changes the access modifier of methods and class

fields.
AOD Replaces an arithmetic operation with one of its

members. For example, (a = b + c) becomes (a = b)
or (a = c).

AODU Deletes basic unary arithmetic operators. (+, -)
AOIS Inserts short-cut arithmetic operators (++, --).
AOIU Inserts unary arithmetic operators (+, -).
AORB Replaces arithmetic operators (*, /, %, +, -) with

other operators.
AORS Replaces short-cut arithmetic operators (++, --) with

other operators.
AORU Replaces unary arithmetic operators (+, -)
ASRS Replace short-cut assignment operators (+=, -=, *=,

/=, %=, &=, |=, ˆ=, <<=, >>=, >>>=) with
other operators.

COD Deletes conditional operators (&&, ||, &, |, ˆ).
COI Inserts conditional operators (&&, ||, &, |, ˆ).
COR Replaces conditional operators (&&, ||, &, |, !) with

other operators.
CRCR A constant C in the code is mutated to be one of

(1, 0, -1, -C, C+1, C-1).
EAM Changes an accessor method name for other com-

patible accessor method (where methods have the
same signature).

EMM Changes a setter method name for other compatible
setter method (where methods have the same signa-
ture).

EOA Replaces an assignment of an object reference
with a copy of the object, using the clone()
method. Only performed if the object has a declared
clone() method.

EOC Changes an object reference check to object content
comparison through Java’s equals() method.

ISD Deletes occurrences of the super keyword so that
a reference to a variable or method is no longer to
the parent class’ variable or method.

ISI Inserts the super keyword so a reference to a
variable or method in a child class uses the parent
variable or method.

JTD Deletes uses of the keyword this.
JTI Inserts uses of the keyword this.
LOI Inserts logical operators (&, |, ˆ).
LV R Replaces a literal with a default value. Numeric

literals become (0, 1, -1), Booleans become (true,
false), Strings are replaced with an empty string.

OAN Changes the number of arguments in method invo-
cations, but only if there is an overloading method
that can accept the new argument list.

PRV OLSMART The PRV O operator changes object references
in assignment statements to instead refer to other
objects of a compatible type. PRV OL mutates
references on the left-hand side of the assignment,
and mutations must be compatible with the right
side. PRV OLSMART only uses references to
reachable variables.

PRV ORSMART Same as PRV OLSMART , except applied to the
right-hand side of the assignment, and mutations
must be compatible with the left side.

PRV ORREFINED Same as PRV ORSMART , except it also uses
literals found inside the method.

PRV OUSMART Same as PRV ORSMART , except applied to
return expressions.

PRV OUREFINED Same as PRV ORREFINED , except applied to
return expressions.

ROR Replace relational operators with other relational
operators (==, !=, <, ≤, >, ≥), or replace an entire
predicate with true and false.

SOR Replaces shift operators (>>, <<, >>>>) with
other operators.

the mutants represent alternative “buggy” versions. Table III
lists the number of mutants produced for each operator.

muJava++ exports each mutant as a Java file that can be
substituted for the real file during test execution. This allows

Table III: Number of mutants produced for each operator
across each project from Defects4J (and overall).

Operator Chart Closure Lang Math Time Overall
PRV OUREFINED 5287 4880 3125 3663 1724 18679
PRV OUSMART 540 299 53 2760 54 3706
PRV ORREFINED 121 31 297 940 226 1615
AOIS 185 120 492 295 68 1160
ROR 139 152 489 223 113 1116
ISI 142 121 312 338 66 979
PRV ORSMART 92 159 24 368 77 720
LOI 68 44 278 262 51 703
JTI 84 63 211 269 42 669
CRCR 51 27 223 236 59 596
AORB 4 4 160 204 24 396
PRV OLSMART 95 0 57 216 4 372
COI 44 47 149 67 22 329
AOIU 27 5 73 147 22 274
COR 9 90 129 18 6 252
AOD 6 2 57 112 12 189
EAM 11 1 40 0 44 96
COD 5 8 13 2 0 28
ASRS 0 0 0 18 0 18
EOC 7 2 6 1 1 17
EOA 8 0 4 0 4 16
LV R 0 4 10 2 0 16
AMC 0 0 12 3 0 15
AORS 5 1 3 6 0 15
AORU 4 0 1 10 0 15
AODU 4 0 1 8 0 13
OAN 0 1 5 5 0 11
SOR 0 0 0 4 0 4
ISD 1 0 2 0 0 3
JTD 1 0 0 1 0 2
EMM 0 0 0 2 0 2
Overall 6932 6061 6223 10169 2617 32002

us to execute mutants using Defects4J’s test execution capa-
bilities. This also enables further qualitative analysis through
inspection of mutated code.

C. Data Collection

To examine the relationship between mutants and faults, we
execute the relevant tests against all mutated versions of
the modified classes for each case example. To perform test
execution, we use the defects4j test utility, which exe-
cutes the relevant tests in a controlled execution environment
that ensures that expected behavior is preserved and that all
constraints and assumptions of the dataset hold. Specifically,
we perform the following for each mutant:

• We checkout the fixed version of the case example and
exchange the modified class for the mutant.

• We execute defects4j compile. If the mutant does
not compile, we abort execution and record the result.

• We execute defects4j test and record any tests that
fail or result in an error, as well as the stack trace and
any error messages.

• We compare the test failures and reasons for failure to
the trigger tests for that case example. The metadata for
Defects4J includes the stack traces and messages for each
trigger test, preserving the reasons that trigger tests fail
for the real fault.

We check that the same assertions fail or that the same
exceptions are thrown. However, we do not check that the
same output is issued. For example, an assertion might check



Table IV: Number and percentage of detected mutants for
each project (and overall).

Project Detected Total Percentage
Chart 4175 6932 60.23

Closure 3072 6061 50.68
Lang 4160 6223 66.85
Math 6625 10169 65.15
Time 1515 2617 57.89

Overall 19548 32002 61.08

that the return value is 10. If a mutant returns 7 and the fault
returns 12, we consider the “reason” to be the same—the
return value was not 10—even though the mutant and fault
do not return the same incorrect value.

Based on the test executions, we create a dataset with one line
per mutant execution. For each mutant, we record:

• Basic metadata: the project, fault ID, modified class,
mutant ID, mutation operator, and number of trigger tests.

• Test failure data: the number of tests that failed or
resulted in an error, the number of trigger tests that failed
or resulted in an error, the number of trigger tests that
failed for the same reason, and the number of failing
non-trigger tests.

D. Coupling Categorization

To assess the coupling of mutants to faults, we employ the
following scale. This scale accounts for all possibilities when
executing relevant tests against each mutant:

• Strong Substitution: All trigger tests fail for the same
reasons that they failed for the real fault. No additional
tests fail. This represents a semantic replacement of the
real fault, given the developer-written test suite.

• Test Substitution: All trigger tests fail, but one or more
fail for differing reasons. No additional tests fail.

• Partial Substitution: Some, but not all, trigger tests fail.
All failing trigger tests fail for the same reasons. No
additional tests fail.

• Partial Test Substitution: Some, but not all trigger tests
fail. Not all failing trigger tests fail for the same reasons.
No additional tests fail.

• (Strong/Test/Partial/Partial Test) + Additional Tests
Fail: The same definitions as above apply, but additional
non-trigger tests fail.

• No Substitution: Only non-trigger tests fail.
• Mutant Not Detected
• Compilation Error

For each mutant, we assign a categorization from this spectrum
of possibilities. In some analyses, we also assign a numeric
value: (0) Compilation Error, (1) Not Detected, (2) No Substi-
tution, (3) Partial Test + Additional, (4) Partial Test, (5) Partial
+ Additional, (6) Partial, (7) Test + Additional, (8) Test, (9)
Strong + Additional, and (10), Strong Substitution.

Table V: Number of faults with at least one corresponding
“strongly substituting” mutant.

Project With Strongly Substituting Mutants Total Percentage
Chart 12 22 54.55%

Closure 6 22 27.27%
Lang 23 41 56.10%
Math 28 47 59.57%
Time 5 12 41.67%

Overall 74 144 51.03%

IV. RESULTS AND DISCUSSION

A. Coupling Between Mutants and Real Faults (RQ1)

Table IV presents an overview of the number and percentage
of mutants detected by the relevant test cases for each project
from Defects4J. As a baseline, we observe:

Overall, 61.08% of mutants are detected.

This percentage is relatively consistent across projects, with
the lowest percentage being 50.68% in Closure. The remain-
ing mutants either are not detected (18.31%) or resulted in
compilation errors (20.58%).

Table VI categorizes each result according to the scale pre-
viously defined in Section III-D. We also assign a numeric
score to each category, with higher scores indicating closer
coupling. Table V further indicates the number of faults with
at least one mutant categorized as “strong substitution”.

9.92% of mutants are strongly coupled to real faults,
and a further 9.03% are strongly coupled with addi-
tional tests failing. 51.03% of faults have at least one
strongly coupled mutant.

The strongly-substituting mutants can serve as stand-ins for the
real faults, yielding the same failing test cases and the same
test outcomes. Approximately half of the studied faults have
at least one strongly-substituting mutant, with relatively con-
sistent results across all projects—other than Closure, where
only 27.27% of faults have strongly substituting mutants.

The overall percentage of strongly-substituting mutants falls
behind compilation errors (20.58%), not detected (18.31%),
no substitution (11.39%)—where only non-trigger tests fail–
and partial substitution (12.73%)—where only a subset of
trigger tests fail, but those that fail offer the same reasons
for failure. Test substitution cases—where trigger tests fail,
but for alternative reasons—are rarer than strong substitutions,
but still present. Mutations to these lines still cause test cases
to fail, but they do not replicate the semantic effect of the
fault. Commonly, these are cases where a mutation causes an
exception to be thrown when one was not expected.

The distribution of mutants belonging to each category varies
somewhat between projects. The Closure project particularly
stands out, as only 0.94% of mutants strongly couple to
the faults. In this project—among the detected mutants—the
largest category is test substitution (with additional failing



Table VI: Categorization of coupling for each mutant, for each project (and overall).

Category Score Chart Closure Lang Math Time Overall
Compile Error 0 1405 (20.23%) 2724 (44.94%) 785 (12.60%) 1440 (14.16%) 237 (9.05%) 6591 (20.58%)
Not Detected 1 1352 (19.47%) 265 (4.37%) 1278 (20.52%) 2104 (20.68%) 866 (33.07%) 5865 (18.31%)

No Substitution 2 68 (0.98%) 486 (8.02%) 647 (10.39%) 1778 (17.48%) 669 (25.54%) 3648 (11.39%)
Partial Test + Additional 3 74 (1.07%) 251 (4.14%) 436 (7.00%) 40 (0.39%) 18 (0.69%) 819 (2.56%)
Partial Test Substitution 4 453 (6.52%) 0 (0.00%) 256 (4.11%) 110 (1.08%) 0 (0.00%) 819 (2.56%)

Partial + Additional 5 21 (0.30%) 401 (6.62%) 305 (4.90%) 143 (1.41%) 279 (10.65%) 1149 (3.59%)
Partial Substitution 6 2071 (29.82%) 107 (1.77%) 541 (8.69%) 1345 (13.22%) 13 (0.50%) 4077 (12.73%)
Test + Additional 7 131 (1.89%) 1276 (21.05%) 148 (2.38%) 467 (4.59%) 212 (8.10%) 2234 (6.98%)
Test Substitution 8 25 (0.36%) 0 (0.00%) 362 (5.81%) 333 (3.27%) 11 (0.42%) 731 (2.28%)

Strong + Additional 9 374 (5.39%) 494 (8.15%) 568 (9.12%) 1296 (12.74%) 159 (6.07%) 2891 (9.03%)
Strong Substitution 10 958 (13.80%) 57 (0.94%) 897 (14.40%) 1113 (10.94%) 153 (5.84%) 3178 (9.92%)
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Figure 1: Percentage of mutants for each operator matching each category, sorted by the percentage strongly substituting.

tests). The Closure compiler has complex validity checking
code4 for the abstract syntax tree produced during compilation.
Many mutations are caught by this code. This produces a
large number of test failures, often for alternative reasons than
expected by the test designers.

The percentage of mutants belonging to each category is
depicted for each mutation operator in Figure 1. Using the
assigned values, we also note the median and average “scores”,
as well as the standard deviation and number of mutants, for
each operator in Table VII. Overall, we observe:

The level of coupling of individual mutants is low—
a median of 2.00 of 10.00. 16 mutation operators
(45.71%) have a median score < 2.00.

4e.g., https://github.com/google/closure-compiler/blob/
ca23c597fc17c95ece2aae07f4e503a34c88c61f/src/com/google/javascript/
jscomp/ValidityCheck.java.

We will discuss specific operators in more detail in the
coming subsections. However, we can make initial observa-
tions about variance. We observe the highest variance from
the LV R, PRV OLSMART , PRV ORREFINED, COD, and
PRV ORSMART operators. EMM , JTD, ISD, ISI , and
SOR have the lowest variance. The level of variance does not
suggest a particular relationship with the level of coupling.
Operators with low variance can tend towards strong coupling
(e.g., EMM ) or not being detected at all (e.g., JTD or
SOR). Operators with high variance tend to span the range of
outcomes—e.g., COD is split between compilation errors/lack
of substitution and strong substitution/strong with additional
tests. However, operators with high variance should be consid-
ered further in future research. Implementation details of such
operators could be considered. Certain types of statements
could potentially be avoided or prioritized with the goal of
increasing the potential coupling.

https://github.com/google/closure-compiler/blob/ca23c597fc17c95ece2aae07f4e503a34c88c61f/src/com/google/javascript/jscomp/ValidityCheck.java
https://github.com/google/closure-compiler/blob/ca23c597fc17c95ece2aae07f4e503a34c88c61f/src/com/google/javascript/jscomp/ValidityCheck.java
https://github.com/google/closure-compiler/blob/ca23c597fc17c95ece2aae07f4e503a34c88c61f/src/com/google/javascript/jscomp/ValidityCheck.java


Table VII: For each mutation operator, the number of
mutants, median and average coupling score, and standard

deviation in coupling score.

Operator Mutants Median Average Std. Dev.
EMM 2 10.00 10.00 0.00
ASRS 18 10.00 8.83 2.79
ISD 3 7.00 7.67 0.47
COI 329 6.00 5.69 3.36

PRV OUSMART 3706 6.00 5.21 3.44
EOC 17 6.00 4.65 2.95
COD 28 5.00 5.79 3.73
EAM 96 5.00 5.69 3.38
AORS 15 4.00 5.33 2.33
CRCR 596 4.00 4.73 3.46
ROR 1116 4.00 4.65 3.41

PRV OLSMART 372 3.00 4.73 3.94
AOIU 274 3.00 4.42 3.44

PRV ORSMART 720 3.00 4.38 3.72
PRV OUREFINED 18679 3.00 3.97 3.50
PRV ORREFINED 1615 2.00 4.62 3.79

AOD 176 2.00 4.09 3.52
AORB 396 2.00 3.98 3.29
AOIS 1160 2.00 3.81 3.57
LOI 703 2.00 3.55 3.54
COR 252 1.00 3.24 3.23
AORU 15 1.00 2.73 2.65
AODU 13 1.00 2.39 2.68
EOA 8 1.00 1.63 2.18
SOR 4 1.00 1.50 0.50
JTD 2 1.00 1.00 0.00
LV R 16 0.00 3.63 4.01
OAN 11 0.00 1.64 3.02
AMC 15 0.00 1.33 2.65
JTI 669 0.00 0.14 0.51
ISI 976 0.00 0.04 0.48

Overall 32002 2.00 4.01 3.58

B. Strongly-Coupled Mutation Operators (RQ1.1)

EMM , ASRS, ISD, COI , PRV OUSMART , and
EOC yield mutants with the highest median coupling.
The average EMM or ASRS mutant strongly substi-
tutes for its fault.

The EMM operator replaces a setter method reference for
another compatible setter. EMM mutants are very rare—both
mutations were for fault Math-1065, where setIndex(...)
was changed to setErrorIndex(...) in different occur-
rence. ISD mutants—which delete the super keyword—are
also quite rare. It is difficult to generalize from few examples,
so both should be further examined in future work.

EOC changes == to .equals(). For example, in Lang
396, replacementList[i] == null is changed to
replacementList[i].equals(null). EOC mutants
are also relatively rare—with only 17 examples, mostly in
Chart and Lang. While some of these strongly substitute, the
majority result in partial substitution.

The ASRS operator replaces short-cut assignment operators,
e.g., changing += to /=. All 18 mutants for this operator

5https://github.com/rjust/defects4j/blob/master/framework/projects/Math/
patches/106.src.patch

6https://github.com/rjust/defects4j/blob/master/framework/projects/Lang/
patches/39.src.patch

appear in the Math project. Because the Math project focuses
on mathematical functions, such mutants may also be more
likely in this project to match the actual mistakes made
by developers. For example, in Math 1027, multiple ASRS
mutations led to the same result as the fault.

COI and PRV OUSMART both yield a much larger number
of faults. Naturally, the median coupling for both is lower
than the three rarer operators, but is still high. COI inserts
conditional operators. For example, in Math 848, COI changes
an instance of true to !true. This causes a return in the
same (incorrect) location as the real fault.

PRV OUSMART replaces object references with other com-
patible references—variables or methods—in return ex-
pressions. For example, in Math 59, it replaces a refer-
ence to INF with calls to float-returning methods (e.g.,
this.atan()) from the class-under-test. Because both COI
and PRV OUSMART are widely applicable—but still tend to-
wards a strong relationship to real faults—they are potentially
useful for use in assessing and expanding test suites.

C. Compilation Errors and Non-Detection (RQ1.2)

We observe two primary reasons for very low median scores—
either a large percentage of mutants result in compilation
errors or are not detected. We discuss both situations below.

ISI , JTI , AMC, OAN , and LV R have the lowest
median scores. They largely produce mutants resulting
in compilation errors.

All five operators have a median score of 0.00, indicating that
the majority of mutants result in compilation errors. This is
confirmed in Figure 1. These operators make changes that can
easily “break” code without proper precautions. For example,
ISI inserts the super keyword, JTI inserts the this
keyword, and AMC changes access modifiers for methods
and fields. All three can yield useful mutants, but they also
assume conditions of the code that may not be true—e.g., in
the case of ISI , not all classes have parents.

Mutations resulting in compilation errors—for these and other
operators—are not useful for evaluating the strength of a test
suite. Although some time is saved by not needing to execute
the test suite against these mutants, time and effort are still
wasted on attempting compilation and analyzing the resulting
failure. Cost savings could be achieved from either avoiding
the use of such mutation operators altogether or improving
their implementation such that compilation errors are avoided.

The developers of mutation frameworks should explore mea-
sures that would prevent generation of non-compiling mutants.

7https://github.com/rjust/defects4j/blob/master/framework/projects/Math/
patches/102.src.patch

8https://github.com/rjust/defects4j/blob/master/framework/projects/Math/
patches/84.src.patch

9https://github.com/rjust/defects4j/blob/master/framework/projects/Math/
patches/5.src.patch
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For example, certain types of code structures could be avoided.
At the very least, mutation testing frameworks should check
whether assumptions are met. In the above examples, the ISI
operator implementation should check that a class has a parent
before inserting the super keyword or the implementation of
the JTI operator should check whether a call is to a static
method before inserting this.

JTD, SOR, AODU , PRV ORSMART , and AORU
have the the largest percentage of undetected mutants.
PRV ORSMART yields subtle mutants with, often,
strong coupling to real faults. The other operators
could be selectively useful, but may yield many equiv-
alent mutants or cause non-trigger tests to fail.

Mutants that do not compile detract from the effectiveness
of mutation testing. Those that are not detected can either
detract—if they are equivalent to the original code—or can be
very useful—if they are subtle and require sensitive test cases
to detect.

The JTD operator deletes uses of the keyword this. There
were only two mutants of this type in our set, and both
were equivalent. There are many situations where this operator
could yield equivalent mutants. Therefore, we would suggest
only employing this operator in cases where behavior might
be affected significantly when the keyword is removed.

The AODU operator—which deletes unary arithmetic oper-
ators, e.g., changing −1 to 1—and AORU operator—which
replaces such operators—may also be selectively useful when
unary operators are employed. However, both also lack strong
coupling with faults. When such mutants are detected, tests
outside of the trigger tests tend to fail.

SOR replaces shift operators (e.g., >>) with other operators.
This operator produced four mutants for Math 4010, where two
were not detected and two caused non-trigger tests to fail. Shift
expressions are typically only used in specialized code, but it
seems this operator could be useful for assessing test suite
adequacy when such operators are used.

PRV ORSMART is similar to the previously-discussed
PRV OUSMART . It replaces object references with other
compatible references on the right-hand side of assignment
expressions. When mutants are detected, they often strongly
substitute for real faults. Some of the not-detected mutants are
equivalent. Many, however, could be detected with the addition
of further test cases. Therefore, this operator could be useful
in improving test suite quality.

D. Detection By Non-Trigger Tests (RQ1.3)

One further situation to examine is when mutation operators
tend to yield mutants only detected by non-trigger tests. This
is the “no substitution” category in our scale.

10https://github.com/rjust/defects4j/blob/master/framework/projects/Math/
patches/40.src.patch

SOR, PRV ORREFINED, AORB, AOD, and EOA
have the the largest percentage of mutants that are only
detected by non-trigger tests. These mutants lack a
significant relationship with their corresponding faults.

PRV ORREFINED is an extended version of
PRV ORSMART , discussed previously. The difference
between these operators is that PRV ORREFINED is able to
also reference literals found in the method. The use of literals
seems to lead to a large number of cases where tests outside
of the trigger tests fail, including both “no substitution” and
“additional tests fail” outcomes.

AORB—which replaces arithmetic operators—and AOD—
which replaces an entire arithmetic expression with one of its
member variables—yield mutants that span the entire spectrum
of possibilities. These operators lead to many “no substitution”
outcomes, as well as many cases where mutants are not
detected or strongly substitute. Based on these observations,
as well as the earlier observations of similar operators often
producing mutants that are not detected, it seems that mutation
operators related to arithmetic expressions lack a predictable
semantic relationship with real faults. Arithmetic expressions
are common when programming. Developers do make mis-
takes involving such expressions. However, such expressions
also are not predictive of the existence of a fault.

The EOA operator replaces an assignment of a object ref-
erence with a clone of that object, in situations where the
clone() operation is defined. Such mutants are relatively
rare, but largely fall into the “not detected” and “no substi-
tution” categories. This operator may be of selective use in
cases where clone() is implemented.

E. Potential Cost Savings Through Filtering Operators (RQ2)

Mutation testing is a notoriously expensive practice, as test
cases must be executed against each mutant [7]. For mutation
testing to be a viable technique in industrial development, that
cost must be reduced. Past research has examined methods of
filtering the set of mutants or mutation operators employed
(e.g., [21], [22]).

Similarly, the degree of coupling of an operator to a set of
known faults could be used to select a subset of mutation
operators—focusing on operators that have previously been
observed to have a close relationship to real faults. If a
threshold is carefully selected, this could lead to a small subset
of mutants that are—we hypothesize—useful for assessing the
strength of existing test cases and for targeting in the design
of additional test cases because weakly-coupled operators have
been filtered.

There are many possible methods of using the assessed cou-
pling for selecting a subset of operators for assessing the test
suites of new projects. We explore one such method—using
the median “score” of an operator to determine its inclusion
in the subset employed. In this scenario, we would select a

https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/40.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/40.src.patch
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Figure 2: Number of operators remaining if the median level
of coupling is used as a threshold for determining the subset
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Figure 3: Number of mutants remaining if the median level
of coupling is used as a threshold for determining the subset

of operators employed.
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Figure 4: Percentage of mutants in the remaining subset (if
median level of coupling is used as a threshold) belonging to

each coupling category.

score threshold and compare the median score for an operator
to this threshold. If it falls above this threshold, we would
include it in the subset employed. If not, the operator would
be removed.

Figure 2 indicates the number of mutation operators that would
fall in this subset for all thresholds (0–10). Figure 3, then,
indicates the number of mutants in the set considered in our
experiment that would be included in that subset. Finally,
Figure 4 indicates the distribution of mutants in this subset
matching the different levels of coupling.

Figure 2 shows a steady drop in the number of operators.
However, there are massive reductions in the number of
mutants in the subset (Figure 3) when the threshold moves
from 3–4, due to the loss of the PRV OUREFINED operator,
and from 6–7, due to the PRV OUSMART operator.

There are multiple thresholds that could make sense. Ulti-
mately, a developer should utilize a subset with a reasonable
variety of operators to ensure that tests are sensitive to different
types of faults. In addition, that subset should still contain
a reasonably high number of mutants—while still remaining
cost-effective—to ensure that tests are robust across a wide
span of the codebase. If a threshold is too low, the set of
mutants will remain unreasonably expensive to assess. If it
is too high, the set of mutants will be too small and lack
diversity—reducing the power of mutation testing to assess
the sensitivity of a test suite across the codebase.

Based on Figures 2–3, a threshold of 4–6 seems most rea-
sonable. In the scale defined previously, we would expect
the “average” mutant in this subset to range from “partial
test substitution” to “partial substitution”. These threshold
yield a reasonably-sized set of mutants compared to lower
thresholds, while still retaining a variety of operators. As
shown in Figure 4, the distributions of coupling categories
for the mutants in the subsets considered in our experiment
are relatively stable in this range, with approximately 25%
being strongly coupled and approximately 75% being detected.
Higher thresholds yield an increasing percentage of strongly
coupled mutants, but the total number of mutants in the subset
becomes so small that the subset would lose its utility to assess
the sensitivity of test cases to changes to the code.

Using median level of coupling to filter operators could
offer cost reductions while retaining the power of
mutation testing to assess test suite sensitivity. In our
set of mutants, a ≥ 4.0 threshold yields an 81.48%
reduction in the number of mutants while retaining a
diverse subset of strongly coupled operators.

V. THREATS TO VALIDITY

External Validity: Our study has focused on five open-
source Java projects—a relatively small number—from a sin-
gle benchmark. Therefore, we cannot claim that our results
will generalize to all fault types, projects, or languages.
Nevertheless, we believe that the projects studied are repre-
sentative of, at minimum, other small to medium-sized Java
systems. The projects are popular case examples, used in past
research. We also believe that Defects4J offers enough fault



examples that our results are generalizable to similar projects.
As Defects4J has been applied in many studies and we have
made data available, our results can be compared with related
research, replicated, and extended.

Internal Validity: We have used 31 mutation operators from
a single framework. Other frameworks may offer different
operators. muJava++ was the only framework that met our ex-
perimental constraints. It offers a large variety of operators—
more than Major, and substantially overlapping with PIT.
muJava++ also offers operators not available in PIT. We
believe that the operators employed are sufficiently varied.

We use only developer-written test suites to examine coupling.
These tests do not form a complete specification of behavior,
meaning that strong coupling with respect to the existing
tests may not hold with additional test cases. However, the
developer-written tests reflect the intent and priorities of the
developers. For the studied case examples, the test suites are
often extensive. Therefore, these tests are appropriate for use
for determining the coupling between mutants and faults.

VI. RELATED WORK

Many researchers have examined whether tests that detect
mutants also detect real faults (e.g., [2], [4], [13], [14], [23]–
[25]). Andrews et al. suggest that, when using appropriate
mutation operators and removing equivalent mutants, mutant
detection predicts for fault detection [4], [24]. Just et al.
found a significant correlation between mutant and fault detec-
tion [2]. They examined the relationship between mutants and
faults using a simple definition of coupling—if any test fails,
for any reason, there is coupling. They find that 73% of real
faults are coupled to at least one mutant, but the number of
mutants coupled to each fault is small. Moreover, conditional
operator replacement, relational operator replacement, and
statement deletion mutants are more often coupled than other
operators. In contrast, Papadakis et al. found that—when test
suite size is controlled—the correlation between mutant and
fault detection is weak [13]. They also examine coupling,
using a similarity measurement based on test failures and code
coverage. Mutants that affect the same statements as a real
fault and that are detected by tests that detect the real fault
are considered more similar. They find that less than 1% of
mutants represent the behavior of real faults. In contrast to our
study, they do not consider the reasons that tests fail, consider
tests independent, and do not examine mutation operators.

Gopinath et al. [9] found that the syntactic differences be-
tween fixed and buggy program are usually not equivalent
to traditional mutation operators. They dispute the competent
programmer hypothesis—observing that syntactic difference
between faulty and fixed programs is often significant. A
common assumption is that mutants that are syntactically
similar to real faults will also be semantically similarity. Using
the same notion of semantic similarity as Papadakis et al.,
Ojdanic et al. found that syntactic similarity has no predictive
relationship to semantic similarity [26].

Broadly, we differ from prior work in our methodology for
examining coupling. Our focus is on semantic similarity, rather
than syntactic. In addition, we use a complex scale, rather than
a simple binary assessment or a score that does not account
for failure reasons. Past work did not tend to differentiate
operators. We also employ a larger number of mutation opera-
tors. We additionally perform a large-scale experiment, making
use of many real faults for multiple, complex Java projects,
each containing many different classes. Collectively, these
factors enable a thorough analysis of how specific mutation
operators relate to real faults. We do not examine whether
there is a correlation between mutant and fault detection.
However, our research is complementary in that the degree
of coupling between an operator and faults could impact the
correlation between mutant and fault detection. Future work
should consider this factor.

VII. CONCLUSION

We hypothesize that improving the effectiveness—in terms of
both cost and quality—of mutation testing lies in better under-
standing the semantic relationship between mutants and real
faults. Ultimately, we observed that 9.92% of the mutants are
strongly coupled to real faults, and 51.03% of the faults have
at least one strongly coupled mutant. EMM , ASRS, ISD,
COI , PRV OUSMART , and EOC yield mutants with the
highest median level of coupling. ISI , JTI , AMC, OAN ,
and LV R have the lowest median scores. They largely produce
mutants resulting in compilation errors. JTD, SOR, AODU ,
PRV ORSMART , and AORU have the largest percentage
of mutants that are not detected. SOR, PRV ORREFINED,
AORB, AOD, and EOA have the largest percentage of
mutants that are only detected by non-trigger tests. These
mutants are detected, but lack a significant relationship with
the corresponding real faults. We also found that using the
median coupling to filter operators could offer cost reductions
while retaining the power of mutation testing to assess test
suite sensitivity. In our set of mutants, a ≥ 4.0 threshold yields
an 81.48% reduction in the number of mutants while retaining
a diverse subset of operators and mutants with strong coupling.

Understanding this semantic relationship could enable im-
provements in how mutation testing is applied, improved
implementation of specific mutation operators, and inspiration
for new mutation operators. We plan to explore all three
further in future work by (1) further analyzing the operators
identified above in experiments on additional fault examples,
(2) expanding the range of mutation operators considered
and contrasting implementations of operators from different
frameworks, (3) empirically evaluating cost savings and impact
on mutation score from different filtering methods, and (4),
exploring how coupling could be used to design and generate
(e.g., via machine learning [27]) new mutation operators.
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