
Mutation Testing in Continuous Integration: An
Exploratory Industrial Case Study

Jonathan Örgård, Gregory Gay, Francisco Gomes de Oliveira Neto
Chalmers | University of Gothenburg

Gothenburg, Sweden
orgardj@student.chalmers.se, greg@greggay.com, francisco.gomes@cse.gu.se

Kim Viggedal
Zenseact

Gothenburg, Sweden
kim.viggedal@zenseact.com

Abstract—Despite its potential quality benefits, the cost of
mutation testing and the immaturity of mutation tools for many
languages have led to a lack of adoption in industrial software
development. In an exploratory case study at Zenseact—a com-
pany in the automotive domain—we have explored how mutation
testing could be effectively applied in a typical Continuous
Integration-based workflow. We evaluated the capabilities of C++
mutation tools, and demonstrate their use in GitHub Actions-
based CI workflows. Our investigation reveals that Dextool
and Mull could be used in a CI workflow. Additionally, we
conducted an interview study to understand how developers
would use mutation testing in their CI workflows. Based on
our qualitative analysis and practices proposed in literature,
we discuss recommendations to integrate mutation testing in a
CI workflow. For instance, visualising trends in the mutation
score enable practitioners to understand how test quality is
evolving. Moreover, tools should have a balance between offering
fast feedback and keeping or flagging relevant mutants. Lastly,
practitioners raised the need that the mutation should be applied
at commit level, and that developers inexperienced with mutation
testing should be trained in the implications of the practice.

Index Terms—Mutation Testing, Continuous Integration, C++

I. INTRODUCTION

Structural coverage criteria have been an important source
of evidence that code is thoroughly tested in many domains,
including safety-critical domains such as the automotive in-
dustry, because they offer clear checklists of testing goals that
can be objectively evaluated and automatically measured [1].
For example, branch coverage mandates that all outcomes of
control-diverting statements, such as if-statements, be executed
by test cases. A challenge with traditional coverage metrics
is that they mandate that code be executed, but only lightly
constrain how that code is executed [1]. The resulting tests
may be insensitive to subtle problems in the code.

An alternative approach that has gained attention is mutation
testing [2], where many small code changes, named “mutants”,
are seeded into the code, and tests are executed to determine
which mutants are detected (“killed”). Mutation operators seed
simple syntactic adjustments—e.g., changing < to ≤—by
identifying appropriate patterns in the code. The proportion of
detected mutants is known as the mutation score. This score
can be used to indicate the thoroughness of testing [3]. If the
test suite can kill a large proportion of the mutants, then it is
likely that the tests are sensitive to small changes to the code.

If a large percentage of the mutants survive, then the test suite
should be augmented with additional or improved test cases.

An open question is how best to integrate mutation test-
ing into a typical industrial testing process. For example,
developers often test code as part of Continuous Integration
(CI) workflows that executes when code is committed to a
repository. Mutation testing could be applied either locally
or as part of a CI workflow to assess the adequacy of a
test suite. In either case, it could be applied across the code
base, or selectively to code elements that have been changed
in the commit. It is not clear how developers can most
effectively apply mutation testing. In particular, two issues
hinder widespread industrial adaptation of mutation testing.
The first is that mutation testing is notoriously expensive [4]–
[6]. Code is expected to be built, tested, and packaged within
reasonable time limits so that the developer can get rapid
feedback. Mutation testing generally requires tests to be re-
executed for each mutant, incurring significant machine cost.
If a mutant survives, a developer must examine both the mutant
and the test suite, incurring further human cost. The second
challenge is that mutation testing tools must operate on a
variety of languages—even within a single project. Mutation
testing research has largely focused on Java (e.g., PIT [7]
and MuJava [8]) to the relatively exclusion of even common
languages such as C++. Tools may not even exist for some
languages. In others, they may not be sufficiently mature, offer
a sufficient variety of mutation operators, or be suitable for use
in a automated or CI workflow.

This study focuses on mutation testing as part of CI from the
perspective of industrial software development. We conducted
this exploratory case study at Zenseact, a company in the
automotive domain focusing on autonomous vehicle software.
While previous research has been done on mutation in indus-
trial settings (e.g., at Google [5], [6] and Facebook [4]) these
studies relied on proprietary software, making it difficult to
fully implement their suggestions. In addition, Zenseact uses
C++ as its primary development language. Therefore, we focus
on existing open-source tools for C++ mutation testing.

We evaluated the capabilities of five C++ mutation tools.
We found that Dextool [9] and Mull [10] are potentially
suitable for application in a CI workflow, with both offering
benefits and drawbacks. To illustrate the use of these tools
in CI, we have implemented proof-of-concept demonstrations

1



using GitHub Actions workflows. In addition, we performed
an interview study at Zenseact to explore how developers
feel mutation testing should be applied in the testing process.
Based on the developers’ views of effective mutation testing
and applicable features proposed by research and tool authors,
some our recommendations discuss how to use mutation score
as a coverage and acceptance criteria, as well as creating a bal-
ance between efficient and effective mutation during feedback
loops in CI. Lastly, offering different options for mutations
(e.g., focusing on commits, or choosing subsets of operators)
can allow the developer to receive specific feedback to aid
test maintenance. In short, this study contributes to knowledge
of how to apply mutation testing as part of a developer’s
workflow, previously identified as an outstanding challenge
in the maturation of mutation testing as a practice [2].

II. BACKGROUND AND RELATED WORK

Mutation Testing judges the quality of a test suite by
evaluating the ability of the tests to detect subtle changes
in the code [11]. A tool generates altered versions of the
code, called mutants [12], containing subtle changes based on
common syntactic mistakes made by programmers. Mutation
operators introduce those syntactic changes to the original
code based on grammatical patterns such as changing arith-
metical or conditional operators. Mutants are introduced with
the intent that they are syntactically valid and semantically
useful. Effective mutants will compile (“valid”), and will be
“useful” for improving the test suite [13]. Mutants that are not
useful include those with equivalent behavior to the original
code [14], mutants that trivially cause tests to fail, and mutants
whose detecting tests would add no value to the suite (e.g.,
modifying a statement printing debugging information).

Continuous Integration (CI) is an automated process that
executes when code changes are pushed to a repository [15]. A
workflow (e.g., GitHub Actions) defines a set of scripted tasks
that take place once triggered by the repository update, such
as compilation, test execution, and packaging. Instructions
for how to perform tasks are defined in build scripts, e.g.,
a Makefile for C or C++ projects [16]. The intended use of
CI is to offer rapid feedback to developers. If compilation or
testing fails, code can be rolled back so that other developers
are not blocked by the failure. Feedback is often provided
from the results of test execution, but other analyses can also
be incorporated (e.g., code style checks).

An outstanding problem to solve is how to integrate muta-
tion testing into the development process [2]. Experimental
integrations have occurred (e.g., [4]–[6]). However, more
observations are needed to make clear recommendations.
Our study contributes to this need, and in contrast to past
studies, focuses on open-source tools in CI—enabling wider
application—and the C++ language—a language that has not
been overlooked in mutation research. While tools have been
proposed for C++ (including those in our study) [17], we
perform the first comparison of the tools.

A common theme in mutation testing research—and in
attempts to apply it in industry—is cost, both in human and

computational effort. The quantity of mutants generated can
cause make mutation testing infeasible at scale [4], [6], [18]
However, Google [5], [6] and Facebook [4] have applied
mutation testing. Ramler et al. also reported an application
at a company developing safety-critical systems [18]. Google
only applies mutation to new lines of code that are covered by
tests and only generates one mutant per line. They present a
limited number of mutations to developers to prevent fatigue.
The number of tests executed is restricted to a minimal set.
They also apply rules for which code structures are used to
generate mutants (e.g., omitting logging code) applying only
simple operators such as replacing arithmetic, conditional or
relational operators. They further limit operators based on
historical data. In turn, Facebook uses machine learning to
extract mutation operators from real faults, with the hypothesis
that these mutants will be more useful to testers than those
generated using traditional operators. Similar approaches have
been studied in other research [19].

There has been research on improving the speed of mutation
testing. For example, mutation schema encode multiple mu-
tants into one program, in contrast to the standard approach,
where each mutant contains a single change [20]. Parts of
the code where a mutant could be inserted are replaced with
a meta-procedure that determines which mutation to apply.
Instead of recompiling between every execution, the program
can instead be compiled once and be instantiated to function as
any of the mutants. Usaola et al., proposed only executing test
cases that reach mutated statements, and using a loop counter
to stop execution of mutations with infinite loops [21]. Offut
et al., proposed that selection of a subset of mutation operators
relevant to a SUT can be almost as effective as using all
operators [22]. In addition, Ma et al., propose use of machine
learning to predict the operators most likely to produce useful
mutants for lines changed in a commit [23].

III. RESEARCH METHOD

We investigate the following research questions:
• RQ1: What are the capabilities of existing C++ mutation

testing tools, and are any of the existing tools appropriate
for use in continuous integration?

• RQ2: How can mutation testing be best used within
continuous integration?
– RQ2.1: What do developers see as the most effective

use of mutations in their workflow?
– RQ2.2: How can mutation tools be applied to meet the

goals of developers?
– RQ2.3: What guidelines should be applied for the use

of mutation testing in CI?
We answer these questions through an exploratory case

study conducted at Zenseact. Figure 1 gives an overview of
our steps to answer each RQ. We share the artifacts of our
study in Github and figshare [24]. We have:

1) Evaluated tools (RQ1): We evaluated mutation tools
for C++ on their capabilities (e.g., mutation operators,
generation speed) and applicability in a CI workflow. We

2



Identify C++ 
Mutation Tools

Identify C++ 
Case 

Examples

Conduct 
Interviews

Review Literature 
and Tool 

Documentation

Analyze 
Findings

Perform Tool 
Comparison

RQ1 (Tool 
Evaluation)

RQ2.1 
(Developers’ 

Views)
RQ2.2 

(Proposed 
Techniques)

RQ2.3 
(Guidelines)

Fig. 1: Overview of the case study process.

also built a proof of concept integration of C++ mutation
tools into CI workflows based on GitHub Actions.

2) Interviewed developers (RQ2.1): We conducted semi-
structured interviews to explore how developers feel
mutation testing can be used effectively.

3) Identified potential solutions (RQ2.2): We performed a
lightweight literature review and analyzed tool documen-
tation to identify techniques or practices that potentially
meet developers’ needs.

4) Developed guidelines (RQ2.3): We synthesise the results
of RQ2.1 and RQ2.2 to identify mutation guidelines.

A. Case Study Context

Zenseact uses CI to build code and execute test cases. When
new code is pushed to the repository, a process is started that
involves both automatic and manual actions. The automated
actions (jobs) are divided into sequential stages—the more
expensive a job, the later it is run in the sequence. If any job
within a stage fails, the next stage is not started. Build and test
jobs are skipped if the affected code has not changed since the
last execution of the job. The results from the jobs are reported
to relevant parties. Failure in early stages will block a merge
of new code, and a manual code review is needed before the
final merge can be done. Later stages, containing the most
expensive jobs, are run after the merge to catch additional
problems. Most jobs are run during the day, but some are run
at night to avoid blocking other jobs.

Test quality is assessed through manual code review. How-
ever, code coverage is measured to ensure that test cases
execute all code. Mutation could be used at different points
in this pipeline, with varying results. For example, results of
other jobs could be used to determine which mutants to use,
e.g., static analyses could be used to suggest code to mutate
or to filter mutation operators that may not add value.

B. Evaluation of C++ Mutation Tools (RQ1)

We identified five mutation tools. Table I shows a list of
tools and versions used1. In general, mutation tools work in
three phases: code analysis to determine where mutants can
be inserted, mutant generation, and test execution to calculate
the mutation score [25]. We detail each tool below.

CCmutator is intended to mutate concurrency constructs in
multi-threaded applications, and is based on the Clang/LLVM
compiler framework [27]. CCmutator generates mutants, but

1MuCPP does not have a version number or changelog.

TABLE I: C++ mutation tools examined.

Name Version Updated Source

Dextool 4.1.0-4-g2b5bc097 25 Mar 2022 [9]

Mull 0.17.1 17 Mar 2022 [10]

MuCPP N/A 7 Jan 2021 [25]

Mutate++ bb341d7 (commit) 25 Nov 2020 [26]

CCmutator 66eca5c (commit) 27 Sep 2013 [27]

does not handle test execution itself. The tool applies one
mutation operator at a time on a given file and allows the
user to specify which statements to mutate.

Dextool stores mutants and testing results in a SQL database
file, which can be reused in future runs. Mutants are only
used during test execution if a file has changed. The tool has
partial support for mutant schema, where multiple (but not
all) mutants are embedded in a single file [20]. However, the
schema do not always compile. In such situations, mutants are
compiled and tested individually [9].

MuCPP uses the Clang API to find mutation points [25].
It requires a Makefile to function that includes rules to clean
up, compile a mutant and test suite, and execute testing. Any
testing framework can be used, as long as it can report the
mutation testing result in a specific format. The tool uses Git
to store mutants in branches. If the existing project uses Git,
it must be extracted from its own repository to use MuCPP.
The mutation operators to be used can be specified in a config
file, and specific files to mutate can be specified.

Mull is a Clang compiler plugin [10], [28] that can be en-
abled while compiling code to generate mutants. Mull operates
on LLVM bitcode, and mutates the program in memory. Mull
makes use of mutation schemas, where all mutants are injected
into the program while it is being built. Mutants are enabled
during execution using conditional flags, activating desired
mutations without re-compilation. Mull can also run mutation
testing in separate sub-processes, allowing mutations to be
tested simultaneously in isolation. A report is then generated
to display the result of mutation testing. A configuration file
specifies which files to mutate and mutation operators to use.
A limitation of Mull is that it can only execute a single test
binary, so all test cases must be in a single file.

Mutate++ is a GUI-based web application that runs lo-
cally [26]. The user manually uploads files to mutate. The
version of the tool used in this study is not mature, and mutants
often failed compilation.

To understand the tools, they were applied to a set of
C++ projects on a computer with an Intel Core i9-10885H
processor, 32GB RAM, and Ubuntu 20.042. MuCPP and
CCmutator were installed in a Docker container using the
Ubuntu 20.04 image because they had dependencies on a
version of Clang incompatible with the remaining tools3.

2The settings used for Dextool and Mull can be found at https://github.
com/Orgardj/mutation testing.

3Docker has a negligible overhead on I/O operations and CPU performance.
Therefore, use within Docker should not affect our observations.

3

https://github.com/Orgardj/mutation_testing
https://github.com/Orgardj/mutation_testing


TABLE II: C++ projects used, with size, GitHub stars, and
commit. Only C and C++ files are counted.

Name LOC Files Commit ID Updated Stars

Corrade 15 359 141 3643585 30 Jan 2022 400

FMT 42 229 65 afbcf1e8 8 Feb 2022 13900

JSON 60 366 104 eec79d4 30 Jan 2022 29300

TimSort 1 584 8 e782512 30 Jan 2022 300

TinyXML-2 5 581 3 a977397 4 Sep 2021 4000

yaml-cpp 18 210 54 edadfec 17 Feb 2022 3200

The tools were applied to a set of six C++ projects of
varying size. These projects were either used in previous
research [25], [29], or were chosen from popular C++ repos-
itories on GitHub. For a project to be selected, it had to have
been updated within the last two years, able to compile, and
had to have a unit test suite. Table II gives an overview of
the projects used, including the size in lines of code (LOC),
C/C++ files, commit version, and stars on GitHub (rounded
up)—as a way to gauge popularity.

To compare the tools, we gathered data from both inspection
of tool documentation, and by executing the tools on the
projects described above. The collected data includes:

• Whether the tool could be installed and can generate
mutations for each project.

• Whether the tool can be used within CI, and what
features each tool offers for customization within a CI
environment (e.g., the ability to selectively mutate files
or to choose the mutation operators applied).

• Which mutation operators are offered by each tool.
• How many mutants are generated for each project.
• The time to generate mutants.
• The time to execute mutation testing.
• The mutation score attained by test suites.

Using the collected data, we could compare functionality of
the tools, as well as their speed and capability at different
tasks. This gave us an overview of the capabilities of the
tools, including their limitations and applicability within CI.
To illustrate the application of mutation testing for C++ in
CI, we created two example workflows for the TinyXML-2
project using GitHub Actions4. One workflow is triggered by
pushes to the repository and only mutates the git diff. The
second workflow is triggered periodically, mutating the entire
project using the mutation tool(s).

C. Usage of Tools in CI (RQ2)

We conducted seven semi-structured interviews at Zenseact
to understand how stakeholders feel mutation testing could
best help them in their practice (RQ2.1). The stakeholders
were a mix of software developers, architects, and managers.
An overview of the participants is shown in Table III5.

4https://github.com/Orgardj/tinyxml2
5Zenseact was founded in 2020. Experience totals include employment at

predecessor Zenuity.

TABLE III: Overview of interview participants.

ID Role Time at Zenseact Mutation Experience

P1 Software developer 4 yr, 9 mn Using it actively at work.

P2 Software developer 1 yr, 6 mn Read about it.

P3 Cloud architect 6 mn Academic experience.

P4 SCRUM master and
software developer

1 yr, 11 mn Read about it.

P5 Software developer 4 yr, 9 mn Read about it.

P6 System architect 2 yr, 4 mn Read about it.

P7 Chief safety manager 4 yr, 10 mn Seen others use it at work.

A short introduction was offered to ensure that all partic-
ipants had a basic understanding of the topic. We tried to
identify how they thought mutation testing could be effectively
used in practice6. Participants were asked, among other things,
about when and how mutation testing should be applied in
the testing process, the usefulness of mutation score data over
time, adverse effects of mutation testing, and how much time
should be spent integrating mutation testing or analyzing mu-
tation results. If the participant had prior experience applying
mutation testing, we also asked about this. The semi-structured
format allowed stakeholders to present ideas.

Thematic analysis was used to analyze the qualitative data
from the interviews. Meaningful or expressive pieces of data
were identified from the data, called codes. A group of authors
coded one interview independently and compared results. The
group extracted a very similar set of codes, hence indicating
agreement among the reviewers. The remaining coding was
done by the first authors. Codes were then given labels
summarizing their topic. Those labels were also discussed
in two meetings between all authors to ensure reliability
of the analysis. The codes were organized into themes and
the analysis stopped after three iterations where we notice
saturation of the themes.

We conducted a literature review and analyzed tool doc-
umentation to identify whether—and how—mutation testing
could be applied to effectively and efficiently meet the goals
of developers, particularly within a CI/CD context (RQ 2.2).
This was intended to be a lightweight review of past re-
search to provide inspiration, not an exhaustive review. The
literature review was conducted by searching IEEE Xplore
for mutation testing articles. Multiple search strings were ap-
plied, combining “mutation testing” with “C++”, “continuous
integration”, “practice”, “industry”, “at scale”, “case study”,
“cost reduction”, and “LLVM”. Backward snowballing was
also used to identify additional articles. The retrieved articles
were filtered for relevancy by first screening the article’s title
and abstract for relation to our research topic and questions.
The title or abstract needed to relate to using mutation testing
in industry, optimizing mutation testing, mutation testing in CI,
or a mutation tool. After an article was deemed relevant, the
article’s content was coded and labeled. The same process was
applied to the documentation of the tools analyzed in RQ1.

6The interview guide can be found in our supplementary material [24].

4

https://github.com/Orgardj/tinyxml2


TABLE IV: Summary of each tool’s capabilities that are
relevant to CI integration.

Features Dextool Mull MuCPP Mutate++ CCmutator

Command line interface. X X X X

External usable mutants. X X X X

Execute mutation testing. X X X X

Select mutation operator subset. X X X X

Specify lines of code to mutate. X X

Only mutate changed code. X

Only mutate code/execute mu-
tants covered by test suite.

X X

Stop executing after a specific
number of mutants remain live.

X

Skip previously-killed mutants
if no relevant code changed.

X

Detect redundant tests that do
not uniquely kill mutants.

X

Resume after interruption. X X

Supports mutation schema. X X

Can parallelize mutation testing. X X

Can flag mutants to ignore. X X

Can specify timeout. X X X X

Tool updated within two years. X X X X

Num. of Traditional Operators 9 10 9 8 1

Could install/compile tool. X X X X X

Could install/compile by follow-
ing installation guide.

X X X

Could generate mutants without
modifying project (except com-
pile commands).

X X X X

Could perform mutation testing. X X X

Lastly, we answer RQ2.3 by identifying guidelines for
mutation testing in industrial development from the combined
results of all RQ. The guidelines are based on the developers’
goals at Zenseact, but can still be informative for developers
at other companies. The techniques and practices identified in
RQ2.2 were matched with the themes and sub-themes from
RQ2.1 to see which of the techniques and practices could
help achieve the developers’ goals. This took place as part
of the inductive process of thematic mapping. The practices
were connected with the themes and sub-themes. For example,
the practices timeout tests and selective mutation selection
matched with the sub-theme time-aware feedback.

IV. RESULTS AND DISCUSSION

A. Evaluation of C++ Mutation Tools (RQ1)

Table IV compares functionality of the five tools that could
be of potential benefit in a CI workflow. For example, CI
requires a command-line interface, or we may wish to only
mutate code that has been changed in the latest commit. The
features of the different tools differed substantially. Dextool
seemingly offered the most features relevant to CI, with
Mull also offering a reasonable subset. The other tools have
limitations that make them less effective in CI. MuCPP lacks
features related to specifying a subset of code to mutate or for

TABLE V: Number of mutants per project, and average time
to generate a mutant. Mull may under-report mutant quantity
if template functions present (*). MuCPP requires a Makefile.

Project LOC Dextool Mull MuCPP

Corrade 15359 9573 (4.12e-03s) 2314 (3.11e-02s) —

FMT 42229 9815 (6.71e-03s) 1998* (0.52s) —

JSON 60366 6407 (7.01e-03s) 528* (1.09s) 9266 (5.86e-02s)

TimSort 1584 1073 (3.39e-02s) 279 (0.34s) —

TinyXML-2 5581 1907 (1.94e-03s) 698 (3.00e-03s) 3158 (1.87e-02s)

yaml-cpp 18210 6235 (4.80e-03s) 2147 (2.93e-02s) —

skipping mutants not covered by tests. Mutate++ relies on a
GUI. CCmutator cannot execute test cases on mutants itself.

The tools offered different mutation operators7. Four of the
five tools offered a subset of traditional mutation operators
from literature, albeit with different implementations. CCmu-
tator is intended for multi-threaded C++ programs [27] and has
support for 38 specialized operators (as well as the traditional
statement deletion operator). MuCPP has the largest variety of
supported operators, with 30 class-level operators in addition
to traditional operators.

Table IV summarises the outcomes of our attempts to
compile, install and run the mutation tools. We experienced
the following limitations. Certain mutation operators in Mull
had to be disabled. Mutate++ specified incompatible versions
of certain Python libraries, and two tools lacked correct or
sufficiently detailed installation guides. We were not able
to perform mutation testing using Mutate++ and CCmutator
because both tools raised errors during, respectively, the test
execution and the mutation generation. Therefore, We chose
not to proceed further with either tool.

Table V presents the number of mutants generated for each
project and the average time to generate each mutant for each
tool8. MuCPP generates the most mutants, because it supports
the most operators. However, it could not be applied to all
examined projects. MuCPP requires a Makefile to function,
hence hindering its application in projects without their own
Makefile. Dextool had the fastest generation time, while still
yielding a larger number of mutants than Mull.

After the results from installing and running the tools, we
decided to proceed RQ2 only with Dextool and Mull, as they
could be applied to all projects without modification. Table VI
indicates the time spent on mutation testing and the resulting
mutation score. Note that Mull can only accept one “test
binary”, i.e., a file containing compiled test cases, at one time.
Therefore, we execute the same test binary for Dextool as well.

Mull is significantly faster in some scenarios, as it does not
have to recompile the entire project between test executions.
In many cases, compilation is a major contributor to the time
of mutation testing. For example—for the TimSort project—
Mull executed mutation testing in 2.25 seconds, while

7Operators are explained in our supplementary material [24].
8Note that Mull under-reports the number of actual mutants when template

functions are present. Therefore, the average generation time is likely lower
than reported for Mull in the JSON and FMT projects.

5



TABLE VI: Mutation execution results. Only one test binary
could be executed at a time due to limitations in Mull.

Baseline represents execution time of the test suite.

Project Test Suite Baseline Dextool Mull

Time Score Time Score

Corrade MainTest 0.1s 47009.9s 2.35% 1.5s 5.23%

FMT core-test 0.1s 66364.6s 2.30% 1.0s 1.80%

JSON unit-algorithms 0.1s 12980.1s 2.32% 10.1s 9.00%

TimSort cxx 98 tests 0.4s 5398.9s 59.30% 2.3s 1.43%

TinyXML-2 xmltest 0.1s 2146.1s 77.00% 368.4s 82.00%

yaml-cpp yaml-cpp-tests 0.8s 29208.0s 72.90% 7254.5s 75.41%

Dextool took more than one hour to execute. TinyXML-2 and
Yaml-cpp had a single test binary that included all project
tests. Here, we can see that Mull is also faster, but not to the
same magnitude as in the other projects.

Clang dependencies: Similarly to any entry in a toolchain,
mutation tools have their own dependencies. Such depen-
dencies may be incompatible with the project-under-test or
another element of the toolchain. A notable dependency is
Clang, a compiler front-end for C/C++. During our study,
Dextool was compatible with most versions of Clang (v4.0–
13.0), followed by Mull (v9.0–12.0). In turn, CCmutator was
only compatible with version Clang 3.2.

Our original intent was to integrate mutation directly into
the CI workflow at Zenseact. However, we could not integrate
any of the examined tools, as Zenseact relies on a newer
version of Clang that are not compatible with any of the
tools. Compatibility with Clang was an important revelation,
as it is easy to ignore the maintenance burden of introducing
a new tool. The project and mutation tool—as well as other
components of the CI workflow—may need to be in lockstep
on their dependencies. Unfortunately, many mutation tools
are developed as part of research projects and are abandoned
after the project ends. While a separate toolchain could be
maintained to support the older compiler version required to
run the tool, the project would also have to be compatible
with multiple compiler versions.

Evaluating tool suitability: We were unable to generate
mutants using CCmutator and Mutate++. In addition, CCmu-
tator has not been updated in nearly 10 years, and Mutate++
relies on a graphical interface. While MuCPP supports many
mutation operators, it requires a Makefile following specific
rules and test execution that reports results in a specific format.
The tool also has no changelog, making it hard to judge update
frequency, and it is unclear what license it has been released
under—potentially preventing use in a commercial setting.
Therefore, out of the evaluated tools, only two seemed suitable
for integration into CI: Dextool and Mull.

Both tools have benefits and drawbacks. Dextool offers a
wider variety of options for customizing how mutation testing
is performed and selectively mutating code. It is able to
generate a greater variety and quantity of mutants than Mull,

GitHub Actions Workflow
Developer

Trigger Find 
Runner

Pull 
Changes

Install 
Dependencies

Run Mutation 
Tool

Save Mutation 
Testing Result

Fig. 2: Generic mutation testing CI workflow. Rectangles
represent actions performed by the back-end, rounded
rectangles represent actions performed by the tester.

Setup 
Job

Checkout 
Code

Install 
Dextool

Install Dependencies 
(e.g., Clang)

Build 
Project

Dextool 
analyze

Dextool 
test

Dextool 
report

Dextool 
analyze

Upload 
Results

Clean 
up Job

Fig. 3: Overview of the steps for the Dextool CI job.

and can execute the project’s full test suite in one invocation.
Dextool is also the most mature tool examined, is updated
regularly, and had the fewest observed defects.

Mull is not updated as regularly, and its documentation
was out of date when examined. However, Mull’s support
for mutation schemas mitigates the need to re-compile the
project for each mutant, such that it can offer faster feedback
than Dextool when performing mutation testing on the full
project9. Therefore, it should remain in consideration when
exploring integration of mutation testing into a C++ project.

CI workflow proof-of-concept: We created two CI workflows
for the TinyXML-2 project using GitHub Actions as proof-
of-concept for the use of mutation testing for C++ in CI.
An overview of a generic workflow is shown in Figure 2.
After being triggered, GitHub finds a suitable runner for the
jobs in the workflow. The worker pulls the relevant commit,
then installs all dependencies (along with the mutation tool).
The mutation tool(s) are executed on relevant portions of the
project. The result of mutation testing is then stored.

The first workflow is triggered on a schedule and uses
Dextool or Mull, depending on the configuration, to perform
mutation testing on the entire project. The second is triggered
by pushes to the repository and uses Dextool to mutate the
git diff introduced by the push. The workflows are run
using the GitHub Docker runner image based on Ubuntu
20.04. Figure 3 shows the concrete actions taken by the worker
in the Dextool job.

RQ1 (Tool Evaluation): Dextool and Mull are suitable
for application in a CI workflow. Dextool is the most
mature, offers high configurability, and was able to
generate a large variety of mutations. However, Mull’s
support for mutation schemas enables faster feedback
when performing testing with many mutants.

9While Dextool offers support for schemas, it generates partial schemas
that require re-compilation. In many cases, these partial schemas also failed
to compile, requiring the use of individual mutants.

6



B. Usage of Tools in CI (RQ2)

The purpose of the interviews was to obtain the developers’
view of how mutation testing can be used effectively in
the testing process. Identified themes and sub-themes are
presented in Figure 4 and explained below.

Test Quality: Mutation testing can be used to assess and
improve the quality of a test suite.

• Verify Test Quality: When developing a test suite, the
mutation score can indicate the overall quality of the
suite, and live mutants can be used to identify edge cases
that have been missed. The mutation score functions as
a sanity check on testing efforts.

• Quality Maintenance: When modifying or extending
code, tests should be updated or added to reflect new
behavior. Participants suggested using the mutation score
to examine the change over time in suite quality. This is
especially important for delivered code, where faults not
caught by the test suite could impact the customer. It is
not just new or changed code that could benefit. Surviving
mutants can be seen as technical debt that needs to be
reduced through the addition of test cases.

• Mutation Score as a Coverage Metric: Similar to line
or branch coverage, the mutation score can be calculated
for different parts of the code to indicate coverage. A
developer can investigate code with low mutation scores
to identify problems with how that code is tested.

• Mutation Score as an Acceptance Criterion: The
mutation score can be used as an acceptance criterion for
new commits to the repository. Using a threshold could
encourage developers to maintain and improve the test
suite. Commits below a set threshold could be rejected
or require motivation for accepting the change without
“sufficient” testing. A threshold is not always ideal—
enforcing a threshold could result in wasted testing effort
for code that does not end up in the final product. It must
also be possible to exclude mutants from consideration,
e.g., if they are unreachable. Developers should also not
be encouraged to “cheat” the threshold (e.g., writing tests
centered around specific mutants that add little value to
the overall suite). Care must be taken, and the threshold
should be updated as the code and suite change.

Mutation 
Testing

ImplementationWhen to use

Risks Prioritisation

Test quality Ease of use

Initial effort

Mutation operators

Time-​aware feedback

Developer feedback

Incorrect focus

Developer motivation

Diminishing returns

Code important

Task prioritisation

Outside of CI

Optional step

With test coverage

Run periodically

Code Review,
Pair programming

Verify
test quality

Quality
maintenance

Mutation Score as 
acceptance criteria

Mutation Score as 
coverage metric

Fig. 4: Themes and sub-themes from our thematic analysis.

RQ2.1 (Summary 1): Mutation testing should be used
to verify and maintain quality, and mutation score
should be tracked over time.

Prioritization: Mutation testing should be selectively applied,
based on either code or task priority.

• Code Importance: When first applying mutation testing
on a large codebase, there could be many living mutants,
making it difficult to know which to focus on. Developers
prefer to apply mutation testing selectively to the most
important parts of the code before applying it widely.
As stated by Participant 3 “We can’t really use mutation
testing on a full pipeline that has like 10000 lines of code.
Because if we try to use it in that context, then it can
be really hard to work with.”. Which code segments are
important could be determined by the product domain, or
could vary over the lifetime of a project (e.g., dictated by
the current development sprint or testing activity). In the
context of a company like Zenseact, the most value may
come from focusing on safety-critical code.

• Task Prioritization: Mutation testing can consume
development time both in execution and in test suite
improvement. Mutation testing should not block
important tasks, such as deploying a critical bug fix.

Risks: There are risks to consider that may affect the effec-
tiveness of mutation testing:

• Developer Motivation: If a tool provides false posi-
tives or does not work, it will cause interruptions and
frustration. Furthermore, results that are not interesting
can discourage a developer from further use of mutation
testing. For developers to be motivated to use mutation
testing, it should work seamlessly and produce productive
results. Additionally, the tool should be easy to use, as
to not add additional mental fatigue on the developer.

• Incorrect Focus: There is a risk that the developer
focuses on killing particular mutants without considering
the context, potentially missing a bigger problem in the
code or tests. If a developer blindly focuses on killing
mutants, a test suite could become strictly tied to a
particular implementation. This could make it challenging
to implement alternative solutions. A developer may over-
focus on white-box (code-based) testing—in an effort to
increase the mutation score—to the exclusion of tests
based on the intended functionality of that code.

• Diminishing Returns: Mutation testing is expensive, but
that expense is acceptable if the test suite is improved
substantially. The value of mutation testing diminishes
over time when applied repeatedly to the same code, as
developers may not gain any new insight. Consequently,
developers should be careful not to over-apply mutation
testing to segments of the codebase.

Implementation: The implementation of mutation testing in a
developer’s workflow will affect the effectiveness with which

7



developers can use the tool.

• Ease of Use: It should be easy for a developer to
use mutation testing. As much as possible should be
automated—e.g., when tests are added or changed, they
should be factored into the mutation score.

• Initial Effort: Considerable effort may be needed to get
mutation testing to work within a toolchain. PIT, a Java
mutation tool, can be easily added to a Maven build script.
However, the C++ tools require more effort. Developers
unfamiliar with mutation testing would have to be trained
in use of the technique.

• Developer Feedback: Feedback from execution should
show which mutants survived, what operators they repre-
sent, why they survived, and what parts of the code are
affected. It should be easy for the developer to get an
overview and perform an efficient analysis.

• Time-Aware Feedback: Developers do not want to wait
long for feedback. If used in CI, then mutation testing
should take approximately as much time as other jobs in
that stage. Even a minute of additional waiting time can
be cumbersome. The same advice applies when mutation
testing is performed on a developer’s local machine.

• Mutation Operators: Generating mutants for a subset
of operators could save time and offer better feedback.
Mutation operators could be prioritized based on the
project context or past productivity.

When to Use: Mutation testing could be applied in multiple
stages of development or testing.

• Code Review and Pair Programming: Mutation testing
could be used as part of the code review process. Muta-
tion score could be used as a metric to get an indication
of the quality of the test suite or code. Sometimes,
pair programming is used to review code continuously.
Mutation testing can be used after a pair-programming
session to check the quality of created tests and indicate
the need for follow-up actions.

• Run Periodically: Due to the high machine cost of
performing mutation testing, it could delay other jobs,
especially on a large codebase. However, not all jobs
have to be run on commit. Mutation testing could be
run as a post-merge job when there are free computing
resources—e.g., at night or on weekends—and results
could be sent to the commit author or affected parties.

• Outside of CI: CI jobs can be slowed by overhead or
limited machine time. It is beneficial to allow developers
to run a mutation testing job on their machine, not just in
CI. This would also enable the developer to get feedback
as soon as they write the test case, without the need to
push the code to a repository.

• Optional Step: Mutation testing could be an optional
step—in CI or locally—for developers or teams who
want and have time to improve test quality. The devel-
oper would not necessarily have to use mutation testing
regularly—it could be used when new tests are added or
when there is spare time.

RQ2.1 (Summary 2): Mutation can provide feedback
during code review or as a local job executed period-
ically or with a reduced set of operators. It should be
applied selectively based on code and task importance.
It must provide rapid and productive feedback, be easy
to use, and not require undue setup effort.

Based on a lightweight literature review and comparison of
the features of existing C++ mutation tools, we have identified
techniques and practices that may enable developers’ vision
of effective mutation testing. We briefly define the identified
techniques and practices in Table VII.

RQ2.2 (Proposed Techniques): Literature and exist-
ing tools offer means to decrease the cost of mutation
testing. In general, literature focuses on reducing quan-
tity of mutants, while tools focus on increasing speed,
e.g., parallelization or skipping tests.

In Figure 5, we map the themes and sub-themes from
RQ2.1 to the techniques and practices from RQ2.2 to devise
guidelines for applying mutation testing in a CI workflow
(RQ 2.3). We detail each guidelines below:

Time-Aware Feedback: Developers want feedback as soon
as possible. Most of the techniques from RQ2.2 address this
challenge. Techniques that speed mutation testing without
decreasing the effectiveness of the practice should be applied
to the fullest extent possible, especially those that do not
discard mutants (e.g., paralelisation). Mutants will still likely
need to be discarded. If so, measures should be taken to ensure
productive mutants are kept such as flagging useful mutants
to inform selection based on data.
Test Quality Maintenance: Mutation testing can be used to

Time-​aware
Feedback

Mutate
covered code

Stop after N
executions

Specify
code

Timeout test 
execution

Mutation 
schemas

Parallelisation

Flag
mutants

Mutate changes
One mutant 

per line

Pattern-​based 
filtering

Operator 
selection

Skip killed 
mutants

Prioritise code

Run 
periodically

Quality 
maintenance

Detect 
redundant tests

Resume 
mutation testing

Specify test 
subsets

Code review, Pair 
programming

Mutation Score as 
coverage metric

Diminishing 
returns

Developer 
Feedback

Present 
subset

Selection 
based on data

Mutation 
operators

Learned 
mutation 

operators.

Fig. 5: Mapping techniques/practices (RQ2.2) to sub-themes
from RQ2.1 (bold rectangles)

8



TABLE VII: Mutation techniques and practices from
literature and mutation tools.

Technique Description Citation Tool

Operator
Selection

A sub-set of effective mutation operators are
selected.

[6], [20],
[30]

Dextool, Mull,
MuCPP,

CCmutator

One Mutant
Per Line

Only generate one mutant per line of code,
as exposure of one mutant in a line often
implies exposure of most mutants.

[13]

Selection
Based on
Data

Select mutation operators or specific
mutations based on past effectiveness for
similar statements/the project

[6], [23]

Learned
Mutation
Operators

Train a ML model using historical data to
create realistic mutants replicating real-world
faults from similar code.

[4], [19]

Present
Subset of
Mutants

To prevent fatigue, only present a limited
subset of live mutants to the developer for
inspection (e.g., suggested by metrics).

[6]

Flag
Mutants

Flag mutants as irrelevant, so that they will
be ignored in future executions. Useful
mutants can also be flagged as helpful, and
emphasized in future executions.

[6] Dextool,
Mutate++

Only Run
Relevant
Tests

Only execute tests that cover mutated lines. [13]

Covered
Code

Only mutate code that is covered by test
cases.

[6] Dextool, Mull

Specify
Tests Subset

Specify subset of tests to execute during
mutation testing. Generally also limits
mutation to covered lines.

[6] Dextool, Mull,
Mutate++

Specify
Code

The user can specify what lines of code to
mutate.

Mutate++,
CCmutator

Mutate
Changes

Only mutate code changed in latest commit. [13],
[23]

Dextool

Pattern-
Based
Filtering

Mutate or omit code that matches
pre-specified patterns (e.g., omitting
debugging or logging code).

[6]

Mutant
Schema

Multiple mutants inserted in single file,
activated using flags, avoiding re-compilation.

[20],
[21]

Dextool, Mull

Live Mutant
Threshold

After a specific number of live mutants have
been detected, mutation testing stops.

Dextool

Skip Killed
Mutants

Mutation result is stored between runs, so
killed mutants can be skipped if there has
been no change to the code or test suite.

Dextool

Redundant
Tests

Redundant tests that do not uniquely kill
mutants are flagged for inspection.

Dextool

Resume
Mutation
Testing

Mutation testing can be resumed after an
interruption. Enables pausing, e.g., if
machine resources are needed.

Dextool,
Mutate++

Parallel
Mutation

Parallelization of mutation testing execution. [6] Dextool, Mull

Timeout
Execution

Avoid infinite loops by stopping test
execution based on a specified time bound.

Dextool, Mull,
Mutate++

Stop After
N
Executions

Avoid potential infinite loops by stopping
test execution after a line is executed a
specific number of times.

[21]

understand how test quality changes over time and maintain
quality, by using mutation scores as a coverage metric. Further-
more, with a large codebase, the essential areas of the code
should be prioritized for mutation testing. Mutation testing
should be run run periodically when there is free machine
time to not block critical jobs.
Mutation Testing at Commit: Mutation testing could be
used as a optional or mandatory quality check when code is

committed or a pull request is made. This could be as part
of a code review process or after a pair programming session.
Only the changed code should be mutated, and only tests that
cover the code should be executed. The mutation score could
be used as a coverage or acceptance metric to judge the quality
of tests covering changed code.
Developer Motivation: The mutation tool should be easy
to use, work correctly, and provide sufficient and productive
feedback. The mutation reduction techniques mentioned for
time-aware feedback can, if configured correctly, ensure that
the developers get both faster and more productive feedback.
Risks: Inexperience with mutation testing can lead developers
to misplace their focus or over-emphasize tests tied to a
specific implementation. To avoid these problems, developers
should be trained to understand mutation testing and its results.
Similarly, the initial setup of the mutation tool should be
possible without extensive experience or effort.

RQ2.3 (Guidelines): Our recommendations include,
among others, that mutation testing should offer feed-
back as fast as possible (while taking care not to
discard productive mutants), that essential areas of the
code should be prioritized for mutation testing, that
the mutation score be tracked over time to under-
stand evolving test quality, that mutation be applied
to changed code at commit, and that developers inex-
perienced with mutation testing should be trained in
the implications of the practice.

V. THREATS TO VALIDITY

Regarding the validity of our interview study, the terms
related to mutation testing could have different meaning to
different interview participants. Therefore, interviewees were
offered an introduction to the topic and term definitions. We
conducted interviews at a single company, which limits the
generalizability of the results. We also acknowledge that the
limited number of interviews risks biasing our conclusions.
However, we argue that the interview participants have offered
sufficiently detailed and consistent responses to capture how
mutation testing could be effectively employed, at least, at
Zenseact. We also saw connections between our interview data
and evidence supported by previous empirical studies (RQ2.3).
Therefore, we believe that our findings are applicable to other
companies employing a similar CI-based development process.

Lastly, our experiments used open source technologies,
and were applied to multiple sample projects, increasing the
potential applicability of our findings. Documentation quality
differed significantly between the evaluated mutation tools.
This hinders understanding of their use and applicability.
However, we applied significant effort to document and apply
tools consistently. Our proof-of-concept workflows are built on
the popular GitHub Actions framework and can be adapted to
other projects and version control platforms (e.g., gitlab). We
could not integrate the mutation tools directly with Zenseact
projects due to limitations in the mutation tools. This limited

9



our ability to evaluate our guidelines. We aim to implement
our guidelines as part of future work.

VI. CONCLUSION

We evaluated the capabilities of existing C++ mutation
tools, demonstrating that Dextool and Mull are potentially
suitable for application in a CI workflow. On the other hand,
the lack of compatibility with newer versions of clang hindered
applicability of those tools at our industry partner. Addition-
ally, we performed a literature study and an interview study at
Zenseact to identify suggestions on how mutation testing can
best be used within CI. Based on the developers’ views of
effective mutation testing and the features proposed in litera-
ture and existing tools, we discuss many recommendations for
using mutation testing in CI. For instance, mutation score can
be incorporated into the CI pipeline to offer insights on test
adequacy and quality of test maintenance, particularly when
looking at trends of the score over various builds. Practitioners
should also be strategic when optimising mutation tools for
timely feedback. For instance, strategies such as parallelisation
or running over downtime (e.g., overnight or weekends) are
preferred over those that would discard mutants. In the latter
case, flagging useful mutants can be used as data for selective
mutation in future builds.

Our observations and recommendations can be used to
identify areas of improvement for mutation testing tools or
to help developers make effective use of mutation testing
in their practice. In future research, we plan to explore the
capabilities of mutation tools for other languages, implement
missing features into mutation tools, extend our GitHub Ac-
tions workflows for additional application scenarios, tools, or
languages, and extend our study to additional companies.

REFERENCES

[1] G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, “The risks of
coverage-directed test case generation,” IEEE Transactions on Software
Engineering, vol. 41, no. 8, p. 803–819, 2015.

[2] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Mutation testing advances: An analysis and survey,” Advances in
Computers, vol. 112, p. 275–378, 2019.

[3] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” Proceedings of the 36th International
Conference on Software Engineering, 2014.

[4] M. Beller, C.-P. Wong, J. Bader, A. Scott, M. Machalica, S. Chandra, and
E. Meijer, “What it would take to use mutation testing in industry—a
study at facebook,” 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
2021.

[5] G. Petrovic, M. Ivankovic, G. Fraser, and R. Just, “Does mutation
testing improve testing practices?” 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021.

[6] G. Petrović, M. Ivanković, G. Fraser, and R. Just, “Practical mutation
testing at scale: A view from google,” IEEE Transactions on Software
Engineering, vol. 48, no. 10, pp. 3900–3912, 2022.

[7] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque,
“Pit: A practical mutation testing tool for java (demo),” in Proceedings
of the 25th International Symposium on Software Testing and
Analysis, ser. ISSTA 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 449–452. [Online]. Available:
https://doi.org/10.1145/2931037.2948707

[8] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: a mutation system for
java,” in Proceedings of the 28th International Conference on Software
Engineering, 2006, pp. 827–830.

[9] J. Brännström, “Dextool Mutate,” https://github.com/joakim-brannstrom/
dextool/tree/master/plugin/mutate.

[10] A. Denisov and S. Pankevich, “Mull it over: Mutation testing based
on llvm,” in 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), April 2018, pp. 25–31.

[11] R. Demillo, R. Lipton, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” Computer, vol. 11, no. 4, p. 34–41,
1978.

[12] T. Budd, “Mutation analysis of program test data,” Ph.D. dissertation,
Yale University, 1980.

[13] G. Petrovic, M. Ivankovic, B. Kurtz, P. Ammann, and R. Just, “An
industrial application of mutation testing: Lessons, challenges, and
research directions,” 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2018.

[14] M. Papadakis, M. Delamaro, and Y. Le Traon, “Mitigating the effects
of equivalent mutants with mutant classification strategies,” Science of
Computer Programming, vol. 95, p. 298–319, 2014.

[15] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous integration, delivery
and deployment: A systematic review on approaches, tools, challenges
and practices,” IEEE Access, vol. 5, pp. 3909–3943, 2017.

[16] S. Karus and H. Gall, “A study of language usage evolution in
open source software,” in Proceedings of the 8th Working Conference
on Mining Software Repositories, ser. MSR ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 13–22. [Online].
Available: https://doi.org/10.1145/1985441.1985447

[17] A. Denisov and S. Pankevich, “Mull it over: Mutation testing based
on llvm,” 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2018.

[18] R. Ramler, T. Wetzlmaier, and C. Klammer, “An empirical study on the
application of mutation testing for a safety-critical industrial software
system,” Proceedings of the Symposium on Applied Computing, 2017.

[19] D. B. Brown, M. Vaughn, B. Liblit, and T. Reps, “The care and feeding
of wild-caught mutants,” Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, 2017.

[20] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using
mutant schemata,” Proceedings of the 1993 international symposium on
Software testing and analysis - ISSTA ’93, 1993.

[21] P. R. Mateo and M. P. Usaola, “Mutant execution cost reduction:
Through music (mutant schema improved with extra code),” 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation, 2012.

[22] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf,
“An experimental determination of sufficient mutant operators,” ACM
Transactions on Software Engineering and Methodology, vol. 5, no. 2,
p. 99–118, 1996.

[23] W. Ma, T. Titcheu Chekam, M. Papadakis, and M. Harman, “Mudelta:
Delta-oriented mutation testing at commit time,” 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021.

[24] J. Örgård, G. Gay, F. G. de Oliveira Neto, and K. Viggedal,
“Mutation Testing in Continuous Integration: An Exploratory Industrial
Case Study - Supplementary Material,” 2 2023. [Online]. Available:
https://doi.org/10.6084/m9.figshare.21964775.v1

[25] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A. Garcı́a-
Domı́nguez, and J. J. Domı́nguez-Jiménez, “Assessment of class mu-
tation operators for C++ with the mucpp mutation system,” Information
and Software Technology, vol. 81, pp. 169–184, 2017.

[26] nlohmann, “Mutate++,” https://github.com/nlohmann/mutate cpp.
[27] M. Kusano and C. Wang, “Ccmutator: A mutation generator for

concurrency constructs in multithreaded c/c applications,” 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 722–725, 2013.

[28] A. Denisov and S. Pankevich, “Mull,” https://github.com/mull-project/
mull/.

[29] M. A. Álvarez Garcı́a, “Automation and evaluation of mutation testing
for the new c++ standards,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2021, pp. 150–152.

[30] P. Delgado-Pérez, S. Segura, and I. Medina-Bulo, “Assessment of c++
object-oriented mutation operators: A selective mutation approach,”
Software Testing, Verification and Reliability, vol. 27, no. 4-5, 2017.

10

https://doi.org/10.1145/2931037.2948707
https://github.com/joakim-brannstrom/dextool/tree/master/plugin/mutate
https://github.com/joakim-brannstrom/dextool/tree/master/plugin/mutate
https://doi.org/10.1145/1985441.1985447
https://doi.org/10.6084/m9.figshare.21964775.v1
https://github.com/nlohmann/mutate_cpp
https://github.com/mull-project/mull/
https://github.com/mull-project/mull/

	Introduction
	Background and Related Work
	Research Method
	Case Study Context
	Evaluation of C++ Mutation Tools (RQ1)
	Usage of Tools in CI (RQ2)

	Results and Discussion
	Evaluation of C++ Mutation Tools (RQ1)
	Usage of Tools in CI (RQ2)

	Threats to Validity
	Conclusion
	References

