
An Intelligent Test Management System for Optimizing
Decision Making During Software Testing

Albin Lönnfalta, Viktor Tua, Gregory Gaya,b,⇤, Animesh Singhc, Sahar
Tahvilic,d,⇤

aChalmers University of Technology, Gothenburg, Sweden
bUniversity of Gothenburg, Gothenburg, Sweden

cEricsson AB, Stockholm, Sweden
dMälardalens University, Väster̊as, Sweden

Abstract

To ensure the proper testing of any software product, it is imperative to cover
various functional and non-functional requirements at di↵erent testing lev-
els (e.g., unit or integration testing). Ensuring appropriate testing requires
making a series of decisions—e.g., assigning features to distinct Continu-
ous Integration (CI) configurations or determining which test specifications
to automate. Such decisions are generally made manually and require in-
depth domain knowledge. This study introduces, implements, and evaluates
ITMOS (Intelligent Test Management Optimization System), an intelligent
test management system designed to optimize decision-making during the
software testing process. ITMOS e�ciently processes new requirements pre-
sented in natural language, segregating each requirement into appropriate
CI configurations based on predefined quality criteria. Additionally, ITMOS
has the capability to suggest a set of test specifications for test automation.
The feasibility and potential applicability of the proposed solution were em-
pirically evaluated in an industrial telecommunications project at Ericsson.
In this context, ITMOS achieved accurate results for decision-making tasks,
exceeding the requirements set by domain experts.

Keywords: Software Testing, Decision Support, Continuous Integration,
Natural Language Processing, Machine Learning

⇤Corresponding author
Email addresses: greg@greggay.com (Gregory Gay), sahar.tahvili@ericsson.com

(Sahar Tahvili)

Preprint submitted to VSI:SI Software Reliability August 29, 2024

1. Introduction

During software development, functional requirements are specified that
define the behavior of the features of a product, as well as non-functional
requirements that describe the quality-related properties of those features
such as their performance or availability [1]. Quality assurance (QA) can
be achieved by verifying that both the functional and non-functional re-
quirements are met through software testing—where behavioral correctness
is checked following the application of selected input to the system [2].

By thoroughly checking these requirements through testing, QA ensures
that the software not only performs its intended functions but also operates
e↵ectively under expected conditions and constraints. Comprehensive testing
helps to identify and fix defects early, resulting in a higher-quality product
that meets user expectations and standards [3]. Such testing often is executed
in Continuous Integration (CI), where automated pipelines build, package,
and test applications, following defined configurations1 [4, 5]. By automat-
ing the integration, verification, and delivery of code, CI enables software
development teams to concentrate on fulfilling business requirements, all the
while upholding standards of quality and security [4, 6, 7].

Ensuring that requirements are verified through testing requires making

various test management decisions. For example, one may need to decide
whether a test should be automated or performed manually or which CI con-

figuration the tests related to a requirement should be executed under to
ensure that the form of testing is appropriate to the requirement and that
the requirement is verified in a correct, traceable, and e�cient form.

Making e↵ective decisions that balance quality and time-to-market is a
challenging task in industries that require agile design, meeting coding stan-
dards, varied testing methods, and automated tools. In fact, several sub-
ject matter experts such as test managers, designers, developers, and inte-
grators are generally involved in this process. Existing industrial practices
typically require manual decision-making. However, employing a manual

1In this study, we define a CI configuration as a specific selection of execution envi-
ronment (e.g., isolated or integrated microservices and systems), testing level (e.g., unit,
integration, or system testing), build frequency, and other settings used during test exe-
cution in a CI pipeline.

2

demand-based decision-making process for testing di↵erent features of a soft-
ware product is expensive and sensitive to product and customer changes.
Previous studies highlight the risks of relying on manual test management,
including inadequate coverage of requirements, a need for a deep understand-
ing of the domain, higher costs and increased development time, lower levels
of customer satisfaction, and potential reputational damage [1, 8, 9, 10, 11].

Due to the widespread availability of data in the software development
process, the ability to monitor and automate test management decision-
making through data analysis has become increasingly feasible. We propose
that machine learning and natural language processing-based decision sup-
port can enhance the e�ciency and e↵ectiveness of software testing processes,
ultimately contributing to product quality and reliability.

In this study, we propose an intelligent test management system called
ITMOS that supports decision-making tasks. This framework is intended to
be modular and expandable, to enable automation of an increasing number
of test management decisions. In particular, as a starting point, we have
implemented two forms of test management decision support:

(i) Assigning the verification of requirements to di↵erent CI con-
figurations. E↵ective selection of CI configurations can improve ef-
ficiency and ensure that requirements are verified in the correct envi-
ronment and with the correct form of testing [12]. However, incorrect
configuration selection can cause failures or delay feedback [13, 14].
Therefore, it is important that the correct configuration be identified
early in the test specification process.

(ii) Recommending whether a particular test specification should
be implemented as an automated or a manual test case, con-
sidering the requirements to be verified, the complexity of
the feature-under-test, and the assigned CI configuration. Be-
cause test automation requires an up-front investment, automation may
not be more cost-e↵ective than manual testing [15]. Further, automa-
tion may not always be possible or the best way to verify a require-
ment [16, 17]. Therefore, it is important to make the appropriate deci-
sion on how to implement a test specification.

The industrial case study conducted at Ericsson AB reveals that ITMOS
e↵ectively reduces the need for subject matter expert involvement in making

3

test management decisions. By automating and optimizing the test man-
agement process, ITMOS enhances both the correctness and e�ciency of
decision-making at Ericsson AB. This reduction in reliance on experts al-
lows for more streamlined operations and potentially faster decision cycles,
contributing to improved overall productivity. However, these findings are
currently specific to Ericsson AB, and the generalizability of this benefit to
other organizations remains to be validated through further studies in di↵er-
ent contexts.

ITMOS di↵ers from past research on both of the implemented decision-
making tasks through its focus on e�cient, correct, and traceable require-
ments verification. The majority of past approaches do not make predictions
regarding specific requirements or test specifications, instead focusing on con-
figuration tuning [14, 18, 19], the overall testing process [15], or high-level
use cases [20]. ITMOS also incorporates factors other than cost—a focus of
past research [14, 21, 18, 15, 20, 22]—into decision making.

We have implemented and evaluated ITMOS as part of an industrial case
study at Ericsson AB, a telecommunications company in Sweden. ITMOS
achieves an average F1-Score of 0.9163 for classifying CI configurations and
0.9463 for determining whether a test specification should be automated—
both surpassing the requirements of surveyed domain experts. These experts
further indicated potentially significant cost savings and reduction of mental
fatigue that could result from the use of decision support tools such as IT-
MOS. These results o↵er an indication of the potential of this approach—and
similar approaches—for increasing the e↵ectiveness and e�ciency of the test
management process in development organizations.

The organization of this study is laid out as follows: Section 2 describes
relevant background concepts and an overview of related research is described
in Section 3. Our approach, ITMOS, is depicted in Section 4. We present an
industrial case study, focusing on the accuracy of the framework, in Section 5.
We present the results of a survey study on the correctness, speed, value, us-
ability, interpretability, and stability of the framework in Section 6. Threats
to validity are other implications of the case study are discussed in Section 7.
Finally, Section 8 concludes the study and discusses future directions for this
research.

4

2. Background

This section provides an initial overview of concepts important to this
study, including requirements, testing, machine learning, and natural lan-
guage processing.

2.1. Software Requirements

In software, requirements refer to the needs and constraints that the
system-under-development must meet to be deemed ready to release [23].
Requirements can be specified over software, hardware, and the intersection
between the two in the system-under-development, as well as on the devel-
opment process itself [23]. In this study, we focus on requirements defined
over software.

Requirements are typically classified into functional and non-functional

requirements [23]. Functional requirements are meant to capture the in-
tended behavior of the services, tasks, or functions of the software-under-
development—collectively referred to as features [24]. Non-functional re-
quirements, also known as quality requirements, refer to constraints on how

a feature should deliver its capabilities [25]. Non-functional requirements are
imposed over quality attributes including, e.g., reliability, performance, and
usability [25].

2.2. Software Testing

Software testing is the act of dynamically executing a system-under-test
to identify issues a↵ecting its correctness or its ability to deliver services [2].
While many quality assurance techniques exist, testing remains the primary
means of assessing whether the system-under-test meets its functional and
non-functional requirements.

During testing, a test suite—a collection of one or more test cases—is
executed on the system-under-test [2]. Tests are often first expressed as test
specifications, natural-language descriptions of the scenarios to be executed.
They are then concretely implemented as test cases. Test cases can be either
implemented in an automated form—written as executable code—or in a
manual form executed by human testers.

In this study, a test specification includes the following elements:

• Description: A high-level overview of the purpose of the test.

• Pass Criteria: Conditions that must be fulfilled for the test to pass.

5

• Test Procedure: Input actions, as well as actions taken to verify the
correctness of the resulting software behavior.

• Pre and Post-Conditions: Conditions that must be true before the test
procedure begins, or that must be true after the test procedure ends
for the test to pass.

• Implementation Form: Whether the test will be implemented as an
automated or manual test case.

Testing can be performed at multiple levels within a system, including
unit, integration, and system testing [2]. Unit testing revolves around test-
ing individual units—e.g., individual classes—of the system in relative iso-
lation [26]. Integration testing focuses on testing the interactions between
units and other components (e.g., services or subsystems) within the system-
under-test [27]. During system testing, the full system-under-test is evaluated
by applying input to a defined interface [2].

Generally, testing takes place in the order discussed. Integration testing is
typically conducted under the assumption that all components already have
been tested at the unit level, increasing the likelihood that discovered faults
relate specifically to how the units interact [27]. Similarly, system testing
is typically conducted under the assumption that integrations have already
been tested [28].

2.3. Continuous Integration

Continuous Integration (CI) is a widely adopted development practice
where multiple developers frequently integrate code changes into a shared
codebase [4]. When code is committed, the updated codebase is built and
tested as part of a “pipeline” or “workflow”. A CI pipeline refers to an auto-
mated process that builds, tests, and deploys code after it is committed [5].

This practice has gained popularity due to its ability to ensure high code
quality and promote e�cient collaboration among team members [5]. By
committing changes frequently, developers can ensure that everyone is work-
ing with the current code. The automated pipeline ensures that code can be
compiled, tested, and deployed in a consistently repeatable manner, avoiding
inconsistencies between developers and their development environments [4].
If a failure takes place at any stage of the pipeline, the codebase is reverted
to the previous working state, and feedback is sent to the developer [29].

6

CI enables early detection of faults, reducing the overall cost of develop-
ment [4, 6, 7]. CI also increases visibility into the progress of the development
process, enabling more accurate estimation and planning [29]. Users can get
access to new features more quickly, provide feedback, and be more integrated
into the development process [29].

However, e↵ective implementation and use of CI is not straightforward.
Debbiche et al. identified challenges related to developer mindset and open-
ness to changes in workflow, code review and integration tools, unstable or
flaky test cases, integration of branching code, di↵erences in interpretation
and expectations between teams, code dependencies, and the need to break
functionality into suitable increments for integration [6].

A major challenge is that, as the codebase grows in size and complexity,
scalability issues begin to emerge in the CI pipeline [12]. Long build times
can significantly impact the development workflow, reducing the frequency
of commits and impeding the team’s overall productivity. Developers often
face frustrating delays in receiving feedback on their changes [12].

2.3.1. Continuous Integration Configuration

A CI configuration defines a set of specific settings and parameters for
a CI pipeline. The CI configuration establishes build conditions, such as
the operating system, disk size, compiler flags to utilize, required library
dependencies, and other analogous properties [13]. In this study, we define a
CI configuration as a specific selection of execution environment, testing level
and focus, build frequency, and other settings used during test execution in
a CI pipeline.

The testing level determines what type of test cases can be included in a
test suite that is executed during a build (e.g., unit, integration, or system-
level test cases). In addition, the test suite used in a particular configuration
may have a particular focus, i.e., specific scenarios explored in that configura-
tion (e.g., emulation of certain customer interactions). The build scheduling
specifies how often builds are run and how commits may be bundled into one
or more builds.

The execution environment, whether centralized or decentralized, deter-
mines whether microservices are tested independently or together, allowing
for controlled testing of their interactions. Testing activities are also broken
down in the configuration based on whether they occur before or after code
changes are merged into the main branch of the version control system. Some
forms of requirements (functional versus non-functional) may only be able

7

to be verified, and some testing levels may only be able to be targeted, in
certain CI configurations. More details about the specific CI configurations
used in this study can be found in Section 4.

E↵ective selection of CI configuration can counteract scalability issues,
e.g., by executing a subset of a test suite appropriate for the changed code [12].
However, incorrect configuration selection can cause build failures or delay
feedback [13, 14].

2.4. Supervised Machine Learning

Machine learning (ML) is a branch of artificial intelligence based on al-
gorithmic inference of patterns from observed input data [30]. Specifically,
in this study, we focus on supervised learning—a form of ML where a model
is trained to make predictions for new input cases based on patterns iden-
tified in pre-labeled training data [31]. Supervised machine learning has
been applied for many tasks in many fields, from hand gesture recognition
to semiconductor fault detection to targeted advertising [30, 32]. Supervised
learning has been applied to many aspects of the software testing process,
e.g., to generate valid input or test oracles or to select a subset of test cases
for execution [33].

2.5. Natural Language Processing (NLP)

NLP is a branch of artificial intelligence focused on algorithmic inference
from natural language [34]. In this study, we utilize supervised learning to
make predictions based on test descriptions written in natural language.

We perform this task using word embeddings—a NLP technique that rep-
resents words numerically, typically as a high-dimensional vector of real num-
bers [35]. The goal of word embedding is to capture the semantic meaning
of words and the relationships between them [35]. Once a word embedding
model is trained, it can be used to generate a numerical representation of any
word in a vocabulary, which can then be used as input to supervised learning
models. This is often more e�cient and e↵ective than using the raw text,
as numerical embeddings capture meaningful semantic relationships between
words that are di�cult to infer directly [35, 36].

3. Related Work

Researchers have, to a limited extent, explored both automated CI config-
uration optimization and test procedure optimization—i.e., deciding whether

8

to automate a test. Below, we present relevant past work, and then outline
the research gap that our work fills.

3.1. CI Configuration Optimization

Santolucito et al. performed static analysis to detect CI configuration
errors at the code level [13]. They use a neural network to filter constraints
with a low likelihood of being the root cause of CI configuration errors.
Similarly, Vassallo et al. attempted to automatically identify smells in the
configuration file using a rule-based approach [37]. Their focus is on error
detection, not optimizing the selection of CI configurations.

Medvedev and Aksyonov proposed a multi-agent simulation intended to
identify configuration options that optimize CI performance [14]. They ex-
plored the relationship between the number of service channels and the num-
ber of events per period. Simulation-based approaches are potentially expen-
sive to execute, and the simulation must be customized for each configuration
option modeled. However, it would be useful for cases where no past histor-
ical data exists to train a supervised learning model. If such data exists, a
supervised learning model is faster and able to account for a wider range of
configuration options.

Spieker et al. used reinforcement learning to select and prioritize test
cases for execution in CI configurations to minimize the feedback time after
commit [21]. Their approach makes predictions based on test duration, time
since the last execution, and failure history.

Hwang et al. propose the use of supervised learning to improve the e�-
ciency and deployment time of particular CI configurations [18]. Their ap-
proach identifies dependencies between development artifacts and then tar-
gets only changed artifacts and dependencies in a CI configuration. Our focus
di↵ers somewhat from the three approaches above, as we are interested not
just in performance but also in reliability—ensuring that tests are executed
under the correct configurations.

Bregman and Mattar have proposed a method of predicting which subset
of execution platforms should be selected for a particular build within a CI
configuration [19]. Their approach must be integrated into a live pipeline,
where the current characteristics are inferred. After making this inference, a
subset of the current pool of execution platforms is selected for the execution
of a build as part of a CI configuration. This patent suggests that supervised
learning could be used to make this selection. This approach is similar to

9

our own, but we focus on a larger set of configuration options and do not
require active integration of the tool into the CI pipeline.

3.2. Test Procedure Optimization

Garousi and Pfahl use a process simulation model to propose the degree
to which testing should be automated [15]. This model makes predictions
based purely on the resources that would be consumed by automation, es-
timating based on the experience level of employees, training and commu-
nication overhead, and available person-hours. This model does not answer
whether particular test specifications should be automated. Rather, it is used
to estimate the percentage of testing e↵orts that should be automated over
di↵erent phases of the testing process.

Amannejad et al. have proposed a search-based approach to predicting
which testing activities—in this case, test design, scripting, execution, and
evaluation—should be automated for a set of defined use cases [20]. The
approach attempts to find a decision, automated or not, for each activity
and use case that maximizes e↵ort savings. Again, this approach is not
based on specific test specifications but is at a higher use case level. One
use case can correspond to many requirements and many test specifications.
The decision is also based again purely on the cost of automation, while we
base the decision on the content of the specification and on how similar test
specifications were assigned in the past.

Flemström et al. also use a simulation model to prioritize a set of
natural-language test specifications for automation, based on the estimated
resources required to perform automation and the similarities between the
test specifications—i.e., tests that di↵er substantially from others are priori-
tized, while tests that overlap are given a lower priority [22]. Our approach
di↵ers in that we do not o↵er a prioritization scheme, which assumes that all
test cases should eventually be automated, but a clear recommendation on
whether the test should be automated in the first place.

3.3. Summary

Our approach di↵ers from past research in both areas in two primary
ways. First, existing approaches lack traceability to the particular require-
ments to be verified, or even to particular test specifications intended to verify
requirements. In the case of CI configuration optimization, there is a focus
on tweaking individual parameters of configurations [14, 18, 19]. In the case
of test procedure recommendations, most approaches make predictions at a

10

level higher than the specific test specification or requirement level, instead
focusing on either the overall process [15] or high-level use cases [20]. We
seek to provide decision support that supports e�cient, correct, and trace-
able requirements verification—from requirement to test specification to code
feature. This is a gap not filled in past research in this area.

Second, the past research is predominately focused on reduction of costs—
either time to execute a CI configuration [14, 21, 18] or the e↵ort to perform
automation [15, 20, 22]—rather than the correctness of either a configuration
or automation decision. Particularly in the case of automation, there is an
implicit assumption that all test specifications could be automated. In reality,
this may not always be the case [16, 17]. In the case of CI configuration
assignment, improper decisions can cause costs that outweigh the potential
cost savings of automation [13, 14]. Cost savings are important, but there is
a research gap regarding making predictions using factors other than cost.

4. The Proposed Solution—ITMOS

This section outlines the structure of the proposed intelligent test man-
agement system, ITMOS. The initial implementation of ITMOS o↵ers two
forms of decision support, providing recommendations for the classification
of requirements—either functional or non-functional—presented in natural
text into the CI configuration where they should be verified and determin-
ing whether test specifications—based on those same requirements—should
be implemented through automated or manual testing. Figure 1 provides a
high-level overview of ITMOS.

As depicted in Figure 1, both functional and non-functional requirements
will be captured, analyzed, and applied as input by the proposed intelligent
test management system. Following the ISO (International Organization
for Standardization) standards, such as ISO 25010 [38], is one way to fulfill
the quality assurance standards for testing a software application [1]. ISO
standards can guide the specification of non-functional requirements, and can
be used by any organization, large or small, regardless of the organization’s
field of activity. Functional requirements will be provided by the users (e.g.
operators) of the system. Both functional and non-functional requirements
have an unstructured natural text format that might be changed based on
the customer’s needs and requests, considering di↵erent regions and quality
standards.

11

User Requirements

Standards (ISO)

Functional requirement

Non-functional
requirement

Test Area (CI)

• Unit Testing
• Integration Testing
• System Testing
• Acceptance Testing

Quality Area

• Robustness
• Stability
• Performance
• Capacity
• Security
• Usability

Test Management

Output

• Test automation recommendation for verifying the requirement
• Selection of CI configuration for verifying the requirement.

Figure 1: A holistic overview of the proposed intelligent test management system.

The proposed intelligent test management system consists of three mod-
ules, employing natural language processing and supervised machine learn-
ing. The first helps the user to define the test specification—based on the
requirements—then the other two generate recommendations regarding the
CI configuration for performing testing and whether the specification should
be implemented through automated or manual testing. These recommen-
dations are then propagated to the test management database. Figure 2
provides an overview of the three modules embedded in ITMOS, with details
of each module provided in the following paragraphs.

Input: ITMOS captures both functional and non-functional test require-
ments as input (see Figure 1). Generally, the functional requirements are
provided by the users (e.g. operators, customers), while the non-functional
requirements need to be extracted from di↵erent standards, such as ISO
standards. However, both functional and non-functional requirements have
a textual format, usually written in unstructured natural text.

Module 1 (Defining Test Specification): In the first module, ITMOS
prompts the user to define a test specification given the feature that will be
tested. ITMOS guides the user to provide input such as test instructions
and quality areas. A mix of structured natural language and predetermined

12

1. Defining test specification

• Test instruction

• Quality area

• Test area

• ...

2. Configuration recommendation

• Configuration 1

• Configuration 2

• Configuration 3

• Other

3. Automation recommendation
• Automate

• Manual

Output

• Final recommendation

Figure 2: An overview of the embedded three AI-based modules in the proposed intelligent
test management system.

categorical options is used to gather the data needed for ITMOS to make
recommendations.

Module 2 (CI Configuration Recommendation): In the second mod-
ule, the test specification is used to recommend a CI configuration for the
specific test case.

As highlighted before, for testing any software application, di↵erent CI
configurations are needed. Some empirical studies have demonstrated that
CI [39] facilitates early defect detection [40], enhances developer produc-
tivity [41], and accelerates release cycles [42]. Therefore, CI has gained
widespread adoption both in the industry [43] and in open-source projects [40].

In this study, we make predictions based on CI configurations in use
at Ericsson, each consisting of di↵erent execution environments (testbeds
and platforms for executing test cases), test suite levels and contents, build
schedules, and testing activities performed. Each configuration encompasses
a collection of characteristics specified in the ISO 25010 standard. Classify-
ing the CI configuration for a test case, therefore, indirectly predicts which
parts of the ISO 25010 standard will be covered. The three CI configura-
tions utilized in this study, detailed in Table 1, were selected due to their
significance and commonality in the industry. This selection does not imply
that only these three configurations are important or that other configura-
tions are less relevant. Instead, these examples serve to illustrate a broad
spectrum of possible configurations. ITMOS is designed to be flexible and
is not restricted to these specific configurations or to any fixed number of
configurations. It is capable of adapting to and supporting a wide range of

13

CI configurations beyond those highlighted in this study.

CI Configuration ISO Characteristics

Configuration 1

Execution Environment: Decentralized environment where

microservices execute in isolation.

Test Levels and Suite Focus: Due to the decentralized

environment, suited for covering the lowest test levels, e.g., unit

testing. Focus on functional requirements and validation

of legacy functionalities.

Build Scheduling: After every commit.

ISO Characteristics: robustness, stability, tra�c, performance,

capacity, upgrade.

Configuration 2

Execution Environment: Centralized environment where

microservices are tested simultaneously and interact.

Test Levels and Suite Focus: Fulfillment of functional

requirements related to basic and life cycle management

functionality. Unit, integration, and system tests.

Build Scheduling: Can be executed either on a single commit

or overnight, where all commits since the previous build

are bundled. The testing process for a single commit should be short

(under one hour) to ensure quick feedback.

ISO Characteristics: upgrade system operation, robustness,

tra�c functionality, security.

Configuration 3

Execution Environment: Centralized environment.

Test Levels and Suite Focus: Complex scenarios that verify

at overall system level. Includes emulating customer-like

environments and interactions.

Build Scheduling: Executed weekly.

ISO Characteristics:stability, capacity, accessibility,

mobility, integrity, resilience.

Other
The organization uses additional configurations in some

situations. These are labeled as Other in the dataset.

Table 1: Overview of CI configurations used in this study.

The classification is accomplished by using di↵erent supervised learning
approaches. The module consists of a rule-based component and three sub-
models that are integrated into an ensemble architecture. The rule-based
component analyzes the length of the test instruction and overrides the sub-
models for given situations. The three sub-models can be categorized into
natural language-based and categorical-based models.

1. Analyzes the semantics of test instructions to classify the configuration.

2. Utilizes the distribution of words in the test instruction to classify.

3. Uses categorical data from the test specification to classify.

Table 2 provides an overview of a selected test specification, utilized in
this study, that verifies a functional requirement. Each requirement is verified
by a test specification, which serves as input to ITMOS.

14

ID Description Pass Criteria Test Procedure Pre/Post-condition Test Implementation
TC1 The Purpose of

TC1 is to ver-
ify the A4 mea-
surement timer
interaction with
PDU session ad-
dition.

No new alarms,
errors, or crashes
detected.

Action: Check that QFI=4 is MN terminated, if not de-
fine it as MN terminated Verify: Verify that QFI is set
according to the above parameters get NRDC Termina-
tion
Action: Attach Ue with only one PDU session (MN
terminated, QFI=4) Verify: Verify that Ue is at-
tached, and presented only on MgNB (e.g. NRDC not
set) Action: Add second SN terminated PDU session
Verify: Verify that event A4 is reported in RRCRe-
establishmentRequest message

The NRDC feature
is active, and all
associated MO
objects are config-
ured. Configure
the simulator to
enable support
for multiple PDU
sessions.

Manual Testing

Table 2: Example of a test specification that verifies a functional requirement.

Module 3 (Test Automation Recommendation): This module uses an
ensemble model that utilizes two sub-models to generate automation rec-
ommendations. The first sub-model uses the semantic representation of the
description of the test specification. The second sub-model uses categorical
data from the test specification and the recommended CI configuration pro-
vided by Module 2 to determine whether a test case should be automated.
For this task, supervised learning is used.

Output: The recommendations provided by ITMOS serve as an intelligent
test management system tool where it assigns test cases to CI configurations
and decides whether a test case should be automated. This decision sup-
port is integrated into the operational process, enabling decision-makers to
improve the e�ciency of the task and minimize the number of misclassifica-
tions.

By leveraging the recommendations generated by ITMOS, decision-makers
can better allocate their time and resources, resulting in a more streamlined
and e↵ective testing process. This, in turn, leads to a faster and more reliable
software development lifecycle.

4.1. Implementation

The proposed solution in Figure 1 can be implemented in various ways. In
this study, to dynamically capture end-user inputs, a graphical user interface
(GUI) was developed as a web portal using JavaScript, HTML, Python, and
CSS. Incorporating a GUI into the proposed solution in this study facilitates
prompting the end user for both required and optional data during the input
of test specifications.

Module 2 (CI Configuration Recommendation): This module adopts
an ensemble-based architecture to generate recommendations for the CI con-
figuration. This architecture, depicted in Figure 3, integrates a rule-based

15

Sub-Model 1
Semantic Classifier

Sub-Model 2
Word-distribution Classifier

Sub-Model 3
Categorical Data Classification

Rule-based Component

Test Specification

User Input

Final Classification Model

Final Recommendation

Figure 3: An overview of Module 2 (CI Configuration Recommendation).

component alongside three sub-models, each specializing in handling a dis-
tinct aspect of the input. The input to the ensemble model comprises test
specifications derived from end-user input, as previously described. These
test specifications encompass both natural language test instructions and
categorical data.

The rule-based component of the ensemble assesses the length of the test
instructions within the test specification. Sub-Model 1 focuses on extracting
the semantic meaning embedded in the test instructions, Sub-Model 2 an-
alyzes the statistical distribution of words within them, then Sub-Model 3
leverages the categorical data provided in the test specification. The outputs
from each sub-model are then fed into the final classification model within
the ensemble, which generates the recommendation.

• Rule-based Component: This component assesses the character count
of each subpart within the test instruction provided in the test spec-
ifications. This component categorizes test specifications for various
CI configurations based on pre-defined conditions. For instance, if the
character count exceeds 1000 in the pre/post-condition section or 800
in the pass criteria section of the test instruction, the test specification
is directed to a specific CI configuration. This rule was derived from
the manual analysis of the dataset. The thresholds for these rules may
vary when implementing the solution in di↵erent domains.

16

• Sub-Model 1 (Semantic Classifier): The semantic classifier receives
input comprising four sub-parts of the test instruction: test setup,
pre/post-conditions, test procedure, and pass criteria, all presented in
a natural language format. To capture both semantic and syntactic
information embedded in these texts, the sub-parts are transformed
into word embeddings utilizing pre-trained FastText embeddings [44],
which yield 300-dimensional vectors.

These embeddings are then individually inputted into Random For-
est classifiers [45], with one classifier dedicated to each subpart of the
test instruction. Each specific Random Forest classifier employs the
Gini impurity as a cost function to facilitate predictions for its corre-
sponding subpart. Consequently, the semantic model generates four
three-element vectors, one for each subpart, wherein each element re-
flects the confidence level that a given test specification pertains to a
particular CI configuration.

• Sub-Model 2 (Word-distribution Classifier): The word-distribution clas-
sifier also takes input from the four sub-parts of the test instruction.
This model examines the distribution of words within each subpart of
the test instruction. The model computes the conditional probability
of a bag of words given a specific CI configuration to classify test spec-
ifications. It achieves this by multiplying the conditional probabilities
of each word in the bag given the CI configuration, which was pre-
computed and stored during training. While this approach assumes
word independence, which may not always hold true, its impact on the
model’s accuracy is typically negligible.

The conditional probability of the word bag given a CI configuration
is computed for all three configurations. Subsequently, the conditional
probability of a CI configuration given a word bag is determined by
dividing the conditional probability of the word bag given a particular
configuration by the sum of the conditional probability of the word
bag given each configuration, multiplied by the probability of that CI
configuration.

This summation encompasses all possible CI configurations. When
given a test instruction as input, the word distribution model generates
four three-element vectors as output, corresponding to each subpart of
the test instruction. Each element signifies the confidence level that a

17

test specification aligns with a specific CI configuration. If an unseen
word arises during prediction, the model assigns minimal probabilities
to all associated words.

• Sub-Model 3 (Categorical Data Classification): This sub-model utilizes
the categorical information supplied by the end user in the test speci-
fications to generate recommendations. This implementation employs
a one-hot encoder [46] to encode the categorical data. The encoder
generates binary columns for each potential value of the categorical
data present in the test specification. Subsequently, the resulting one-
hot encoded categorical data is inputted into a random forest model,
which utilizes the Gini impurity as the cost function for recommen-
dation generation. The output of the categorical data sub-model is a
three-element array, with each element denoting the probability that
the test specification aligns with each CI configuration.

• Final Classification: The final model in the ensemble accepts a 27-
element vector as input, which is formed by concatenating the outputs
from the sub-models. This concatenated vector is subsequently sup-
plied to a machine-learning classifier. In this implementation, a random
forest with Gini impurity serves as the cost function. The output of the
final model is a three-element vector, indicating the model’s confidence
in assigning the test specification to each CI configuration.

Module 3 (Test Automation Recommendation): Module 3 uses an
ensemble-based architecture, which is depicted in Figure 4. The ensemble is
comprised of two sub-models that specialize in handling di↵erent aspects of
the input. The input to the ensemble model is in the form of test specifica-
tions created based on the information provided by the end user. Sub-Model
4 captures the semantic meaning of the test specification description, while
Sub-Model 5 utilizes the categorical data in the test specification. The final
recommendation is obtained by using the output from each sub-model as
input to the final classification model in the ensemble.

• Sub-model 4 (Semantic Classifier): The semantic classifier takes in a
test specification described in natural language. To capture the under-
lying meaning of the text, the description is first converted into word
embeddings using pre-trained FastText embeddings. These embeddings
are then fed into a random forest that utilizes the Gini impurity as the

18

User Input

Test Specification

Sub-Model 4
Semantic Classifier

Sub-Model 5
Categorical Data Classification

Final Classification Model

Final Recommendation

Figure 4: An overview of Module 3 (Test Automation Recommendation).

cost function to make predictions about whether the test specification
should be automated or not. The output from the semantic classifier
for automation is a list with two elements, indicating the level of confi-
dence for automating or not automating the specific test specification.

• Sub-Model 5 (Categorical Data Classification): This sub-model utilizes
categorical data from the test specifications, provided by the end user
via the GUI, along with the predicted CI configuration, to generate
recommendations for automation. The data undergoes encoding us-
ing a one-hot encoder. Subsequently, the encoded data is inputted
into a random forest classifier, which employs the Gini impurity as
the cost function. The output from the random forest classifier is a
two-element array, where each element signifies the confidence level
regarding whether a test case should be automated.

• Final Classification: The final model accepts a 6-element vector as in-
put, which is generated by concatenating the outputs from sub-models
4 and 5. This concatenated vector is then supplied to a support vector
machine [47]. In this implementation, a support vector machine with
C-SVM serves as the cost function. The output of the final model is a
two-element vector, representing the model’s confidence in automating
the test specification or not.

19

4.2. Experimental Setup

Overview of Training Data: Table 3 presents an overview of the dataset
for conducting this case study. The dataset comprises 31 variables (input
features), with four of them “Pass Criteria”, “Test Procedure”, “Pre/Post-
condition”, and “Test Setup” represented as unstructured natural text. The
remaining 27 input features consist of categorical textual data. Additionally,
the dataset includes 2 target variables: CI Configuration and Automation.

Pass Criteria Test Procedure Pre/Post-condition Test Setup CI Configuration
Count 1838 1838 1838 1838 1838
Unique 641 977 534 508 4
Frequency 693 592 771 624 1180

Table 3: Overview of the dataset used in the case study.

We utilized the describe function to conduct a descriptive analysis, en-
abling a comprehensive understanding of the dataset and obtaining essen-
tial statistical information. The pandas.DataFrame.describe() method is a
powerful tool for summarizing the data, giving a clear and concise statistical
overview. It generates descriptive statistics of the DataFrame’s data, provid-
ing a quick overview of the dataset’s distribution and central tendency. The
following three key pieces of information were extracted:

• Count: the total number of observations in the feature list,

• Unique: the total number of unique values in the feature list,

• Frequency: the frequency of the most common value in the feature list.

CHS Verification Network Automation SW SUT Testbed Automation
Count 1838 1838 1838 1838 1838
Unique 2 2 2 4 2
Frequency 1662 1784 1624 1674 1251

Table 4: Overview of the categorical dataset used in the case study.

Table 4 represents some of the utilized categorical datasets in the case
study. In this table, “CHS” stands for Characteristic Specification, which
refers to a set of requirements that define the desired characteristics or at-
tributes of a product. “SUT” refers to the System Under Test, and “Testbed”
denotes the test environment and infrastructure.

20

Training of Sub-Model 2: During the training of ITMOS, statistics about
the training data were collected. This sub-model estimates the conditional
probability of a specific word occurring given a CI configuration. It also
calculates the distribution of CI configurations in the training data. Both
the conditional probability of words and the distribution of CI configurations
are calculated and stored separately for each of the four sub-parts of the test
specification. These distributions were calculated from the training data
using the following equations:

• The proportion of each CI configuration relative to the total number
of configurations:

P (c) =
N(c)P

c02C N(c0)
(1)

where:

– N(c) is the number of occurrences of CI configuration c in the
dataset.

–
P

c02C N(c0) is the total number of CI configurations in the dataset.

– C is the set of all possible CI configurations in the dataset.

• Estimating the probability of a word in a subpart of a test instruction
given a CI configuration can be calculated as:

P (w | c, Si) =
NSi(w, c)P

w02VSi
NSi(w

0, c)
(2)

where:

– P (w | c, Si) is the probability of the word w occurring in subpart
Si given CI configuration c.

– NSi(w, c) is the number of occurrences of the word w in documents
with the CI configuration c in subpart Si.

–
P

w02VSi
NSi(w

0, c) is the total count of all words in documents

with the CI configuration c in subpart Si.

– VSi is the vocabulary (the set of unique words) in subpart Si.

21

As mentioned before, if a word that has not been seen during the training
phase occurs during prediction, the model will assign all probabilities for
that word to a minimal number. To estimate the probabilities, the following
equations are used:

• To calculate the probability of a combination of words (Word Bag) in
the subpart of a test instruction given a CI configuration:

P (Word Bag | c, Si) =
Y

w2Word Bag

P (w | c, Si) (3)

where:

– P (Word Bag | c, Si) is the probability of the Word Bag occurring
in subpart Si given CI configuration c.

– P (w | c, Si) is the probability of the word w occurring in subpart
Si given CI configuration c.

– If w has not been seen during training, P (w | c, Si) is assigned a
minimal probability, denoted as ✏.

The probability P (w | c, Si) can be calculated as:

P (w | c, Si) =

8
<

:

NSi
(w,c)P

w02VSi
NSi

(w0,c) if w is seen in training

✏ if w is not seen in training

where:

– NSi(w, c) is the number of occurrences of the word w in documents
with the CI configuration c in subpart Si.

–
P

w02VSi
NSi(w

0, c) is the total count of all words in documents

with the CI configuration c in subpart Si.

– VSi is the vocabulary (the set of unique words) in subpart Si.

– ✏ is a small probability assigned to words not seen during training.

• Calculating the probability of the test instruction being assigned to a
particular CI configuration (CI config1) based on the subpart of the
test instruction can be done using Bayes’ Theorem:

P (CI config1 | Word Bag, Si) =
P (Word Bag | CI config1, Si) · P (CI config1 | Si)

P (Word Bag | Si)
(4)

22

where:

• P (CI config1 | Word Bag, Si) is the probability of the test instruction
being assigned to CI config1 given the Word Bag in subpart Si.

• P (Word Bag | CI config1, Si) is the probability of the Word Bag oc-
curring in subpart Si given CI config1.

• P (CI config1 | Si) is the prior probability of CI config1 in subpart
Si.

• P (Word Bag | Si) is the total probability of the Word Bag occurring
in subpart Si.

4.3. Parameters

For our experimental study, we selected various parameters for each sub-
model recommended by the state-of-the-art. Table 5 presents the parameters
utilized in this study.

N estimators Max depth N booststrap Other

Sub-model 1

Test setup
Pre/post condition
Test procedure
Pass criteria

500
250
500
250

35
20
45
15

2
40
5
2

Sub-model 2 No explicit parameters
Sub-model 3 Random forest classifier 250 45

Final Classification Model
Random forest classifier
Support vector classifier
Logistic regression

50 15
Defaults
Defaults

Sub-model 4 Random forest classifier Defaults
Sub-model 5 Random forest classifier 250 45

Final Classification Model
Support forest classifier
Logistic Regression
Random forest classifier

kernel: linear
Defaults
Defaults

Table 5: Utilized parameters recommended by state-of-the-art methods in this study.

As previously discussed, conventional classification methods often exhibit
bias toward the most prevalent class [48]. This bias stems from the optimiza-
tion of global metrics, such as error or accuracy, which do not consider the
distribution of instances across classes. Consequently, precision is notably
achieved in the predominantly represented class, while instances belonging
to the less represented class tend to be inaccurately classified. In all meth-
ods employed, we adhere to the parameters recommended by the respective
authors in this study.

23

Considering confidentiality, intellectual property protection, and data pri-
vacy and security, we are unable to provide the concrete implementation of
ITMOS or the actual data used as part of training or evaluating the frame-
work without disclosing proprietary information or specific datasets. How-
ever, we have made a synthetic dataset available, containing data in the
same format, which can be found on Figshare (see: [49]). Together with the
method, algorithms, and design principles in Section 4, we believe that a
similar framework to ITMOS could be implemented at a di↵erent company
or by researchers.

5. Experimental Study

We have implemented and evaluated the proposed framework, ITMOS,
as part of an industrial case study at Ericsson AB in Sweden. Ericsson is
an international company that develops products in the telecommunications
industry. To evaluate the performance, in the field, of ITMOS, we have con-
ducted a performance study. In particular, we have addressed the following
research question:

• RQ1: What is the e↵ectiveness achieved by ITMOS when identifying
CI configurations to verify requirements under and identifying whether
to automate a test specification for a requirement?

While the study draws upon Ericsson data for both model training and
evaluation purposes, its findings are anticipated to extend beyond the telecom-
munications industry. In the context of Ericsson AB, assigning new features
to di↵erent CI configurations involves detailed and systematic processes.
These include determining the appropriate test levels, selecting relevant test
suites, and configuring the CI infrastructure to ensure comprehensive verifica-
tion and validation of new features. Such processes are critical in maintaining
the high standards required for telecommunications software. However, it is
necessary to recognize that not all industries may have the same level of ac-
cess to software development data or the same operational workflows. For
example, in the Safety-critical system, surveillance, or booking systems might
face di↵erent challenges and limitations. The availability of software devel-
opment data, the complexity of integrating new features, and the specific
requirements for testing and deployment can vary significantly.

The guidelines outlined by Runesson and Höst [50] have been adhered to
in formulating this case study.

24

https://doi.org/10.6084/m9.figshare.26097232.v1

5.1. Unit of Analysis

The units of analysis in the case under study are test specifications used
in di↵erent CI configurations to test cloud radio access network (C-RAN)
products at Ericsson. C-RAN is a cloud-native software solution handling
compute functionality in the RAN. C-RAN is intended to increase the ver-
satility of network buildouts to address a variety of 5G use cases. C-RAN
provides communications service providers (CSPs) with enhanced flexibility,
accelerated service delivery, and improved scalability in network operations.

Compared to traditional RAN products like the Baseband Unit (BBU), C-
RAN presents complex verification challenges due to its virtualized architec-
ture, distributed nature, scalability requirements, interoperability challenges,
and security considerations. Successfully deploying and managing C-RAN
networks demands expertise in network virtualization, software-defined net-
working, radio access technologies, and network security [51]. Consequently,
the testing process for C-RAN is more intricate than for other products. This
complexity arises from the need for comprehensive validation of virtualized
functions, intricate coordination between distributed components, and rigor-
ous testing of interoperability with legacy systems. The dynamic nature of
virtualized resources, complex communication protocols between distributed
units, and the necessity to ensure integration with existing network infras-
tructure further contribute to the testing challenges of C-RAN.

One primary component of the C-RAN architecture, namely the virtual-
ized distributed unit (vDU), has been chosen as the focus of this study. The
term “virtualized” refers to the use of virtualized network functions (soft-
ware) running on top of general-purpose computer hardware [51]. A total
of 1838 test specifications have been extracted from the internal test man-
agement database at Ericsson. The opinions of test managers regarding the
appropriate CI configurations by ITMOS have been collected and analyzed
through a survey study, as presented in Section 6.

The CI configurations in this case study, outlined in Table 1, are context-
specific and considered the most critical pipelines. These configurations are
tailored to the specific needs of the products, considering factors such as
required test levels, test suite focuses, the system under test, and the CI
infrastructure. The decision to prioritize these pipelines stems from their
importance in ensuring successful software delivery. However, ITMOS is not
restricted to the configurations or test specification formats used in this study
and can be applied to other organizations and product domains.

25

5.2. Experimental Evaluation

We have separately analyzed the accuracy of the recommendations for CI
configuration and test automation. First, we assessed the e↵ectiveness of our
proposed solution in classifying CI configurations using a dataset containing
1838 test specifications (Table 3). Then, we assessed the e↵ectiveness of our
solution for classifying whether a test specification should be automated or
not. For both analyses, we employed an 80/20 train-test split and repeated
the evaluation process 100 times with varying train-test splits to ensure ro-
bustness. Across these evaluations, we calculated the precision, recall, accu-
racy, and F1-score—the harmonic mean of the precision and recall—following
the standard definitions of each in supervised learning. Additionally, to ad-
dress the issue of data quality assurance, we have implemented rigorous data
preprocessing steps to ensure the quality and reliability of the training data.
We recognize that missing or inaccurate data during the training process can
lead to an inaccurate or generalized model. The various data preprocessing
techniques we have employed include:

1. Correcting errors: implementing case sensitivity measures to rectify
inconsistencies.

2. Dropping duplicate data: removing redundant records to maintain data
integrity.

3. Handling missing data: dropping empty data fields to ensure complete-
ness.

4. Encoding categorical variables: converting categorical variables into a
suitable numerical format.

These steps are part of our comprehensive strategy to mitigate the risks
associated with faulty or inaccurate data and to enhance the robustness and
reliability of our model.

5.3. Experimental Results

Table 6 provides a summary of the e↵ectiveness evaluation of ITMOS in
this study for the CI configuration classification. Table 7 summarizes the
e↵ectiveness evaluation for the test automation classification. In both cases,
ITMOS was highly e↵ective in performing the classification tasks.

To address the class imbalance issue, the average=’macro’ approach is
employed when calculating the F1 score. This method computes the F1 score

26

Metric Value

Precision 0.9079
Recall 0.9093

Accuracy 0.9233
F1-score 0.9163

Table 6: Average e↵ectiveness for CI configuration classification.

Metric Value

Precision 0.9509
Recall 0.9424

Accuracy 0.9532
F1-score 0.9463

Table 7: Average e↵ectiveness for test automation classification.

independently for each class and then averages the scores, ensuring that each
class contributes equally to the final metric. This approach is particularly
useful for imbalanced datasets, as it treats each class with equal importance,
irrespective of the number of instances (support) belonging to that class. By
doing so, we ensure that the performance metric is not biased towards the
majority class and provides a meaningful evaluation across all classes. The
use of average=’macro’ for the evaluation metric is one such countermeasure.

These results surpass the performance requirements established by sur-
veyed domain experts at Ericsson (see Section 6). Nevertheless, it is essential
to acknowledge that a more robust ML model could have been attained with
better data quality and increased quantity.

An analysis of the ensemble model has indicated that certain parts of
the test specifications play a crucial role in determining the assignment out-
come. Specifically, features such as “Tagged Microservice”, “Test Frame-
work”, “Tra�c Model”, “Test Configuration”, “SW Track”, “Delegated Test
Cases”, and “System Under Test” appear to be highly influential. However,
it is important to note that drawing definitive conclusions is challenging due
to incomplete data, and the specific features that are correlated with partic-
ular classification outcomes will likely depend on the product domain, the
organization providing the training data, and even the specific contents of
the dataset.

27

6. Survey Study

The results in Section 5 o↵er an indication, out of context, of the perfor-
mance of ITMOS for automating certain test management decisions. We are
additionally interested in examining the suitability, more broadly, of incorpo-
rating tools such as ITMOS into real-world test management. In particular,
we have addressed the following research question:

• RQ2: What is the applicability of ITMOS in practice?

A survey study was conducted to answer this research question. The survey
concentrated on ITMOS, and specifically on the task of assigning CI con-
figurations to the verification of a requirement. Nevertheless, many of the
questions can be generalized to other use cases of ML models to automate
test management decision-making.

6.1. Survey Setup

The survey was conducted online, including both closed and open-ended
questions. The choice of the online survey was motivated by its low cost
and time e�ciency, compared to face-to-face interviews [52]. The population
targeted for the survey are people with domain knowledge of software testing
in the context of Ericsson. A mixture of purposive and convenience sampling
was used to identify participants. Test managers at Ericsson C-RAN in
Sweden and Canada were approached and invited to participate in the survey
study. A total of 10 test managers took part, who utilize ITMOS in their
daily work.

The survey included 27 questions, divided into six categories regarding
correctness, speed, value, usability, interpretability, and stability. These cat-
egories are inspired by a set of six characteristics that suggest whether a
problem domain is well-suited to the application of machine learning [53, 54]2.

The survey instrument is presented in Appendix A. The correctness sec-
tion focuses on understanding the performance requirements for ITMOS in
its intended domain, while the speed-related questions assess the necessary
speed for e↵ective decision support. The value section focuses on investigat-
ing the investment case for implementing a decision support system similar to

2The applicability of ITMOS to automated test management decisions is further dis-
cussed in Section 7.1.

28

Figure 5: Survey results regarding the required accuracy for ITMOS to serve as a decision
support tool.

ITMOS, whereas usability questions gauge end-user perspectives on the us-
ability of ITMOS. Interpretability queries address the need for interpretabil-
ity in AI systems within the domain, as well as ITMOS’s interpretability
level. Lastly, the stability questions examine the underlying stability of this
problem domain and its implications for ITMOS’s applicability.

6.2. Survey Evaluation

The survey responses then underwent thematic analysis, a qualitative re-
search method that identifies patterns and themes within the data. This in-
volves familiarizing with the responses, coding relevant concepts, generating
initial themes, reviewing and refining them, and finally defining and naming
them. The thematic analysis enables a systematic and comprehensive ex-
ploration of the survey data to uncover meaningful insights and understand
underlying meanings. In addition, we use descriptive statistics to analyze
the quantitative data.

6.3. Survey Results

Correctness: Measuring the correctness of ITMOS can help assess the ac-
curacy and reliability of its recommendations. This involves evaluating IT-

29

Figure 6: Survey results regarding the required accuracy for ITMOS to serve as a fully
automated CI configuration assignment tool.

MOS’s ability to consistently generate correct decisions across di↵erent CI
configurations as well as the level of accuracy necessary for ITMOS to be
considered e↵ective.

Figures 5 and 6 show opinions on the level of accuracy required for ITMOS
to be used to aid in decision making and the level required for it to serve as
a fully automated tool—i.e., without a human involved in making a decision.
The results reveal that consensus is lacking. While the accuracy needed for
reliable decision support spans between 70% to 99%, with a median require-
ment of 85%, higher accuracy levels of around 90% are preferred for fully
automated assignment. Additionally, respondents highlighted the significant
consequences of misassignment, with 40% rating its importance as 4 out of
5 and 35% rating it as 5 out of 5. This indicates its perceived importance.
Interestingly, there is disagreement on whether misassignment consequences
are uniform across all CI configurations, with 60% claiming that all misas-
signments are equally problematic, while 40% suggested that misassignments
were more serious for particular CI configurations than others.

Speed: The majority of respondents expressed the opinion that ITMOS
should generate predictions within a few minutes or even seconds to serve as a
decision support tool without negatively impacting user willingness to utilize

30

the tool. Specifically, four respondents believe the recommendation should
be generated within a few seconds, while four others think that a few minutes
would still be acceptable without negatively impacting usability. However,
some variations in opinions exist. One respondent expressed satisfaction with
receiving recommendations within a few hours, while another highlighted
the importance of the instant generation of recommendations to enhance the
users’ sense of awareness and trust in the ML models.

Ninety percent of respondents believed that sacrificing some speed to
improve accuracy would be beneficial. Some respondents express a strong
preference for a more accurate model at the expense of the speed at which
recommendations can be generated. Others point out that it would be worth
trading o↵ some speed to increase accuracy performance until the generation
time of the model is approximately one second.

Value: Respondents acknowledge the challenge of accurately estimating the
time saved through the use of ITMOS for assigning CI configurations, com-
pared to a fully manual assignment. However, there is a consensus among
respondents that significant time savings could be achieved. For example, one
respondent mentioned potential savings of a couple of hours per test speci-
fication, while another suggested a saving of one hour per test specification.
Yet another respondent emphasized that the savings would be substantial.

Additionally, the survey results highlight that the implementation of IT-
MOS could e↵ectively reduce coordination e↵orts within Ericsson. Conse-
quently, decisions could be made days faster compared to scenarios where
models like ITMOS are not utilized.

However, the survey results indicate disagreement among respondents
regarding the extent to which misassignment of CI configurations would be
reduced when ITMOS is implemented in practice. Figure 7 displays the
distribution of responses. Upon analyzing the answers, it becomes apparent
that the majority of respondents are optimistic about the potential of ITMOS
to significantly reduce misassignments. However, two respondents appear to
be skeptical, believing that the reduction will be below 10%. The median
estimate for the reduced number of misassignments stands at 60%.

Usability: Based on the survey responses, the task of manually assigning CI
configurations to test specifications was perceived to be moderate to highly
challenging, with 30% rating the di�culty as 4 out of 5, and 25% rating it as
5 out of 5, where 5 represents a high level of di�culty. However, respondents
suggested that having access to a decision support system like ITMOS could

31

Figure 7: Survey results regarding the estimated reduction of misassignment of CI config-
urations.

significantly alleviate this di�culty, as 40% rated the di�culty as 2 out of
5, and 35% rated it as 1 out of 5 for the level of di�culty in assigning CI
configurations to test specifications with the help of ITMOS. The majority of
respondents expressed willingness to actively use ITMOS and were confident
in its compatibility with their current workflow.

Those who indicated they would not use ITMOS either did not find assign-
ing CI configurations to be di�cult or felt that the system did not integrate
well into their workflow. Overall, respondents demonstrated a strong interest
in ML-based systems and their practical applications in the workplace.

Interpretability: The survey results reveal that interpretability is highly
valued. Respondents rated the importance of interpretability as very high,
with 50% rating it as 5 out of 5, and 35% rating it as 4 out of 5, where 5
indicates a very high importance. This suggests that the users of a decision
support system like ITMOS in this domain are keen on understanding how
ML models arrive at their recommendations. Opinions on the actual level
of interpretability of ITMOS varied among respondents. Most responses fell
within the range of 2 to 4 on a scale of 1 to 5, where 5 represents “strongly
agree”. Specifically, 25% rated the interpretability as 2, 30% rated it as 3,
and 35% rated it as 4.

32

Stability: Respondents generally agree that the distribution of CI config-
urations will change in the future. Specifically, 40% rated the likelihood of
change as 4 out of 5, and 35% rated it as 5 out of 5, where 5 indicates a
high likelihood of change. However, respondents were less certain about the
stability of test specifications, with 30% rating the stability as 4 out of 5, and
25% rating it as 5 out of 5 on the same scale. Regarding potential modifi-
cations to the CI configurations, opinions varied among respondents. While
50% of respondents rated the likelihood of changes as 3 out of 5 on the scale,
indicating a moderate probability, the remaining respondents perceived a
high likelihood of changes to the specific CI configurations.

7. Discussion

The main goal of this study is to introduce, implement, and evaluate
ITMOS, an intelligent test management system that is intended to optimize
decision-making during the software testing process. To this end, we make
the following contributions:

• We have proposed an intelligent test management system that can an-
alyze both functional and non-functional requirements.

• The proposed intelligent test management system can generate recom-
mendations regarding the CI configuration and also test automation.

• The proposed intelligent test management system is integrated into a
Python-based tool called ITMOS.

• The evaluation of ITMOS was performed by applying it to an industrial
testing project in the telecommunication domain in Sweden.

• ITMOS achieves an average F1-Score of 0.9163 for classifying CI config-
urations and 0.9463 for determining whether a test specification should
be automated—both surpassing the requirements of domain experts

However, the reliance on free-form text input for test instructions may
lead to inconsistent or incomplete data entry, a↵ecting the accuracy and re-
liability of the solution. The end users may omit crucial details or provide
ambiguous instructions, resulting in sub-optimal recommendations. Employ-
ing other natural language processing (NLP) techniques to parse and extract
key information from free-form text input more e↵ectively can be considered

33

as a future direction of this study. This approach could involve sentiment
analysis to gauge the clarity and completeness of instructions, as well as entity
recognition to identify important components such as test setup, conditions,
procedures, and criteria.

Practitioners within the company utilized a Flask-based GUI to access
and interact with the tool. The provided survey in section 6 o↵ers addi-
tional insights into the tool and the feedback obtained from the testing team.
Additionally, the future direction of this study involves developing a more
intuitive and interactive GUI to guide users through the input process e↵ec-
tively, while providing real-time feedback and suggestions for comprehensive
and accurate data entry. Furthermore, employing clustering techniques to
identify common themes and topics in test instructions may allow for more
personalized and relevant recommendations.

As we evaluated ITMOS, focusing on correctness, speed, value, usability,
interpretability, and stability, these insights, though promising, underscore
the need for careful consideration regarding their generalizability. There-
fore, while ITMOS shows significant potential, making broad claims about
its universal value and interpretability should be approached cautiously and
supported by further validation in diverse contexts. Future research should
prioritize external validation to confirm these benefits across di↵erent orga-
nizational settings.

7.1. Applicability of Machine Learning to Test Management Optimization

As part of this study, we are interested in assessing whether supervised
learning is appropriate for determining test management tasks such as CI
configuration. To help make this determination, we have identified six char-
acteristics that suggest whether a problem domain is well-suited for machine
learning [53, 54].

1. Tolerance to errors: achieving 100% accuracy with supervised learn-
ing is virtually impossible. Therefore, an ML-friendly domain must be
capable of tolerating a certain degree of error in predictions [54].

2. Inapplicability of conventional approaches: a problem must not
be easily solvable using traditional models or algorithms, e.g., where
determining a precise solution is not possible or su�ciently e�cient [54].

3. Low interpretability requirements: supervised learning models of-
ten lack interpretability—that is, they do not explain the rationale

34

behind a particular prediction. Thus, ML is most suitable to domains
where such rationale is not required [54].

4. Mathematical expressibility of the objective function: models
are trained to optimize an objective function, quantifying the desired
outcome or performance measure. The objective function for a prob-
lem should be mathematically expressible to enable optimization and
parameter tuning [54].

5. Stability of the objective function: the underlying problem or task
for which the model is being developed should not undergo frequent or
significant changes. Stability allows for the development of reliable and
robust models that generalize well to new data [54].

6. Availability of su�cient training data: supervised learning relies
heavily on large amounts of labeled training data to make accurate
predictions. An ML-friendly domain should have access to su�ciently
large and representative training datasets [53, 54].

We hypothesize that tasks such as determining CI configurations or the
form of testing are suitable for supervised learning. Currently, such decisions
are often made manually, resulting in significant costs. We propose that
implementing an ML model would lead to substantial cost savings, rendering
the traditional approach ine�cient (Factor 2).

Further, the “objective function” to be optimized could be expressed as
the accuracy of the prediction model (Factor 4). Furthermore, the objective
function is stable, as long as, e.g., the set of CI configurations does not
change frequently (Factor 5). Many companies log test specifications and CI
configurations in a central test management system, allowing for the e�cient
gathering of training data from many organizations (Factor 6).

The exact error (Factor 1) and interpretability (Factor 3) tolerances in
this domain are not clear. However, we hypothesize that some degree of error
tolerance and acceptance of a lack of interpretability would be acceptable as
long as the model is su�ciently accurate that the cost of fixing prediction
errors does not outweigh the cost savings of having such a model. In addition,
the existing process is potentially prone to error as well, as domain expertise
is required to make correct decisions.

35

7.2. Threats to Validity

In this subsection, we discuss the validity threats, the research limita-
tions, and the challenges in conducting the present study. However, while
there are clear indicators of the solution’s potential for broader use, the nu-
ances of organizational culture, existing processes, and bespoke requirements
underscore the need for further studies to validate and adapt the solution in
diverse contexts.
Internal Validity: Some degree of non-determinism is expected when evalu-
ating machine learning models, which can introduce variability in the results.
To mitigate this threat, we executed the models 100 times and took the aver-
age of the results. Another potential threat arises from the limited scope of
hyperparameter tuning, which was constrained by computational limitations.
This constraint may have led to suboptimal model performance. However,
the observed performance was still su�cient in the experiments.

There are many ML models. We could have potentially attained better
results through other models, such as neural networks. However, the mod-
els employed are common in ML research and have been applied to similar
problems. In addition, there is a threat of potential faults in our implementa-
tion. We minimized this risk by leveraging open-source implementations. In
adherence to best practices in software development, we have meticulously
documented the dependencies on open-source software components within
the Implementation section of our project. The major set of libraries uti-
lized includes scikit-learn (sklearn), NumPy, pandas, Matplotlib, and SciPy.
Each of these libraries plays a pivotal role in various aspects of our imple-
mentation, ranging from data preprocessing and analysis to model training
and visualization. By explicitly specifying these dependencies, we uphold
transparency and facilitate reproducibility, enabling fellow developers to ef-
fortlessly comprehend the technological framework underpinning our project.
Furthermore, this practice ensures compliance with licensing requirements as-
sociated with the utilization of open-source software. As our project evolves,
this comprehensive documentation will serve as a valuable reference point for
maintaining and updating our software components e↵ectively.

External Validity: Our study was performed at a single company (Ericsson
AB) in a single product domain (telecommunications). There is a risk that
our results do not generalize. However, the formulations of test specification
and CI configurations employed in this study are relatively generic—with
few industry-specific aspects—suggesting that the findings in this study may

36

have broader applicability. We hypothesize that organizations that employ
a similar methodology of assigning test specifications to pre-determined CI
configurations are likely to achieve similar results, regardless of the industry.
In future studies, we will explore the applicability to other domains. It is also
important to note that the aim of industrial case studies is not necessarily to
generalize findings to a broader population but rather to provide in-depth,
context-specific insights that can inform theory-building, practice, and fur-
ther research directions. Researchers often employ complementary methods,
such as multiple case studies or quantitative analyses, to corroborate and
extend the findings of single case studies.

Generalizability: The deployment of ITMOS at Ericsson AB showcases
several benefits that could extend to other organizations. Survey responses
from Ericsson AB highlight substantial gains in technical performance, in-
cluding enhanced processing speed, accuracy, and system reliability. These
quantifiable improvements are likely to be relevant to other companies with
similar technical environments. Additionally, common patterns observed in
user adoption and system integration suggest that ITMOS could be e↵ec-
tively applied by engineering teams across di↵erent organizations. However,
it is crucial to note that certain findings may be specific to Ericsson AB. For
instance, cultural factors influencing the acceptance of ITMOS and unique
integration challenges related to Ericsson AB’s existing infrastructure might
not be encountered elsewhere. Furthermore, bespoke features designed to
meet Ericsson AB’s specific requirements could limit the solution’s broader
applicability.

Limitations: The proposed ITMOS framework relies on training data from
historical test specifications and decisions on test automation. It is important
to address the assumption that these historical categorizations and decisions
were correct. We acknowledge that past data may contain inaccuracies or
biases, which could a↵ect the performance of the classifier. To mitigate
this risk, we have incorporated mechanisms for continuous validation and
adjustment of the model. These mechanisms include:

• Regular reviews and audits: we conduct regular reviews and audits of
past data to identify and correct any inaccuracies.

• Expert feedback integration: we integrate feedback from subject matter
experts to refine and validate the model’s outputs.

37

• Adaptability and learning: we ensure the model can adapt and learn
from new data to improve its accuracy over time.

By adopting these practices, we aim to enhance the reliability of our ap-
proach and ensure that the model’s decisions are as accurate and e↵ective as
possible.

8. Conclusions

This study presents a novel test management system, ITMOS, that uti-
lizes natural language processing and supervised machine learning to support
decision-making during the test management process. Specifically, in this
study, we utilized ITMOS to automatically select an appropriate CI con-
figuration to perform requirement verification and to recommend whether a
test specification to verify a requirement should be automated or performed
manually. ITMOS is modular and can be expanded in the future to support
other test management decisions.

To validate the e↵ectiveness of our approach, we conducted a survey study
involving domain experts from Ericsson, who provided valuable feedback on
the proposed decision support system. This study explored the applicability
of ML models and showcased our system’s potential benefits in real-world
scenarios. We have shown that it is possible to achieve an accuracy of 0.9139
and an F1-Score of 0.9075 using supervised ML, which surpasses the perfor-
mance requirements established by most domain experts.

Implementing supervised ML in this domain brings significant potential
business value, manifesting in several tangible benefits. Firstly, this imple-
mentation could lead to a reduction in misassignments—mistakes made by
humans who perform test management. This improvement could minimize
errors and enhance the overall quality of the testing process. Secondly, the use
of supervised ML could result in a considerable reduction in the time required
for making test management decisions. By semi-automating this process, the
testing process becomes more e�cient and allows engineers to focus their ef-
forts on other critical tasks, thereby increasing productivity. Furthermore,
applying supervised ML could reduce fault slip-through, meaning potential
issues or faults are identified and addressed promptly. This proactive ap-
proach mitigates the risks of shipping bugs and other defects to customers.

Further research into the applicability of implementing a fully automated
test management tool—encompassing a broader set of management decisions—
would be of interest. We propose conducting a comprehensive case study that

38

implements a fully automated system in collaboration with one or more com-
panies, as this would provide real-world insights and practical implications
for replacing manual decision-making with automated or semi-automated
decision-making. In addition, we would like to explore whether more com-
plex machine learning and natural language models, such as deep neural
networks or large language models could achieve even higher accuracy on
decision-making tasks during test management.

References

[1] S. Tahvili, L. Hatvani, Artificial Intelligence Methods for Optimization
of the Software Testing Process With Practical Examples and Exercises,
Elsevier, 2022.

[2] M. Aniche, E↵ective Software Testing: A developer’s guide, Simon and
Schuster, 2022.

[3] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-functional require-
ments in software engineering, volume 5, Springer Science & Business
Media, 2012.

[4] M. Meyer, Continuous integration and its tools, IEEE software 31 (2014)
14–16.

[5] M. Shahin, M. A. Babar, L. Zhu, Continuous integration, delivery and
deployment: a systematic review on approaches, tools, challenges and
practices, IEEE access 5 (2017) 3909–3943.

[6] A. Debbiche, M. Dienér, R. Berntsson Svensson, Challenges when
adopting continuous integration: A case study, in: Product-Focused
Software Process Improvement: 15th International Conference, PRO-
FES 2014, Helsinki, Finland, December 10-12, 2014. Proceedings 15,
Springer, 2014, pp. 17–32.

[7] A. Miller, A hundred days of continuous integration, in: Agile 2008
conference, IEEE, 2008, pp. 289–293.

[8] D. Galin, Software Quality Assurance: From Theory to Implementation,
Pearson Education, 2004.

39

[9] W. E. Lewis, Software Testing and Continuous Quality Improvement,
Wiley, 1999.

[10] G. M. Weinberg, Quality Software Management: Systems Thinking,
Dorset House Publishing, 1992.

[11] E. Dustin, E↵ective Software Testing: 50 Specific Ways to Improve Your
Testing, Addison-Wesley Professional, 2002.

[12] R. O. Rogers, Scaling continuous integration, in: Extreme Program-
ming and Agile Processes in Software Engineering: 5th International
Conference, XP 2004, Garmisch-Partenkirchen, Germany, June 6-10,
2004. Proceedings 5, Springer, 2004, pp. 68–76.

[13] M. Santolucito, J. Zhang, E. Zhai, J. Cito, R. Piskac, Learning ci con-
figuration correctness for early build feedback, in: 2022 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE, 2022, pp. 1006–1017.

[14] D. Medvedev, K. Aksyonov, The development of a simulation model
for assessing the ci/cd pipeline quality in the development of informa-
tion systems based on a multi-agent approach, in: MATEC Web of
Conferences, volume 346, EDP Sciences, 2021, p. 03095.

[15] V. Garousi, D. Pfahl, When to automate software testing? a decision-
support approach based on process simulation, Journal of Software:
Evolution and Process 28 (2016) 272–285.

[16] D. Graham, M. Fewster, Experiences of test automation: case studies
of software test automation, Addison-Wesley Professional, 2012.

[17] B. Marick, When should a test be automated, Proceedings of The 11th
International Software/Internet Quality Week (1998) 1–20.

[18] J. Hwang, M. Bulut, A. Canso, S. Nadgowda, Dynamic automation of
pipeline workpiece selection, China Patent 115668129A, Jan. 2023.

[19] A. Bregman, S. Mattar, Execution platform assignments in ci/cd sys-
tems, 2023. US Patent App. 17/370,305.

40

[20] Y. Amannejad, V. Garousi, R. Irving, Z. Sahaf, A search-based ap-
proach for cost-e↵ective software test automation decision support and
an industrial case study, in: 2014 IEEE Seventh International Confer-
ence on Software Testing, Verification and Validation Workshops, 2014,
pp. 302–311.

[21] H. Spieker, A. Gotlieb, D. Marijan, M. Mossige, Reinforcement learn-
ing for automatic test case prioritization and selection in continuous
integration, in: Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2017, pp. 12–22.

[22] D. Flemström, P. Potena, D. Sundmark, W. Afzal, M. Bohlin,
Similarity-based prioritization of test case automation, Software quality
journal 26 (2018) 1421–1449.

[23] K. Wiegers, J. Beatty, Software requirements, Pearson Education, 2013.

[24] R. Malan, D. Bredemeyer, et al., Functional requirements and use cases,
Bredemeyer Consulting (2001).

[25] M. Glinz, On non-functional requirements, in: 15th IEEE international
requirements engineering conference (RE 2007), IEEE, 2007, pp. 21–26.

[26] P. Runeson, A survey of unit testing practices, IEEE software 23 (2006)
22–29.

[27] P. C. Jorgensen, C. Erickson, Object-oriented integration testing, Com-
munications of the ACM 37 (1994) 30–38.

[28] R. Binder, Testing object-oriented systems: models, patterns, and tools,
Addison-Wesley Professional, 2000.

[29] M. Fowler, M. Foemmel, Continuous integration, 2006.

[30] M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives,
and prospects, Science 349 (2015) 255–260.

[31] P. Cunningham, M. Cord, S. J. Delany, Supervised learning, Machine
learning techniques for multimedia: case studies on organization and
retrieval (2008) 21–49.

41

[32] P. P. Shinde, S. Shah, A review of machine learning and deep learning
applications, in: 2018 Fourth international conference on computing
communication control and automation (ICCUBEA), IEEE, 2018, pp.
1–6.

[33] A. Fontes, G. Gay, The integration of machine learning into automated
test generation: A systematic mapping study, Software Testing, Verifi-
cation and Reliability (2023) e1845.

[34] G. G. Chowdhury, Natural language processing, Fundamentals of arti-
ficial intelligence (2020) 603–649.

[35] Y. Meng, J. Huang, G. Wang, C. Zhang, H. Zhuang, L. Kaplan, J. Han,
Spherical text embedding, Advances in neural information processing
systems 32 (2019).

[36] J. C. Young, A. Rusli, Review and visualization of facebook’s fasttext
pretrained word vector model, in: 2019 international conference on
engineering, science, and industrial applications (ICESI), IEEE, 2019,
pp. 1–6.

[37] C. Vassallo, S. Proksch, A. Jancso, H. C. Gall, M. Di Penta, Configu-
ration smells in continuous delivery pipelines: a linter and a six-month
study on gitlab, in: Proceedings of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, 2020, pp. 327–337.

[38] International Organization for Standardization (ISO), Iso/iec
25010, 2011. URL: https://iso25000.com/index.php/en/

iso-25000-standards/iso-25010.

[39] F. Zampetti, S. Geremia, G. Bavota, M. Di Penta, Ci/cd pipelines evo-
lution and restructuring: A qualitative and quantitative study, in: 2021
IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, 2021, pp. 471–482.

[40] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs,
and benefits of continuous integration in open-source projects, in: Pro-
ceedings of the 31st IEEE/ACM international conference on automated
software engineering, 2016, pp. 426–437.

42

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

[41] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and
productivity outcomes relating to continuous integration in github, in:
Proceedings of the 2015 10th joint meeting on foundations of software
engineering, 2015, pp. 805–816.

[42] P. M. Duvall, S. Matyas, A. Glover, Continuous integration: improving
software quality and reducing risk, Pearson Education, 2007.

[43] L. Chen, Continuous delivery: overcoming adoption challenges, Journal
of Systems and Software 128 (2017) 72–86.

[44] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors
with subword information, Transactions of the association for compu-
tational linguistics 5 (2017) 135–146.

[45] G. Biau, E. Scornet, A random forest guided tour, Test 25 (2016)
197–227.

[46] S. Okada, M. Ohzeki, S. Taguchi, E�cient partition of integer opti-
mization problems with one-hot encoding, Scientific reports 9 (2019)
13036.

[47] W. S. Noble, What is a support vector machine?, Nature biotechnology
24 (2006) 1565–1567.

[48] S. Tahvili, L. Hatvani, E. Ramentol, R. Pimentel, W. Afzal, F. Herrera,
A novel methodology to classify test cases using natural language pro-
cessing and imbalanced learning, Engineering Applications of Artificial
Intelligence 95 (2020) 1–13.

[49] S. Tahvili, A. Singh, Intelligent Test Management System (IT-
MOS) (2024). URL: https://figshare.com/articles/software/

Intelligent_Test_Management_System_ITMOS_/26097232.
doi:10.6084/m9.figshare.26097232.v1.

[50] P. Runeson, M. Höst, Guidelines for conducting and reporting case
study research in software engineering, Empirical software engineering
14 (2009) 131–164.

[51] M. Makhanbet, X. Zhang, H. Gao, H. A. Suraweera, An overview of
cloud ran: Architecture, issues and future directions, in: P. Fleming,

43

https://figshare.com/articles/software/Intelligent_Test_Management_System_ITMOS_/26097232
https://figshare.com/articles/software/Intelligent_Test_Management_System_ITMOS_/26097232
http://dx.doi.org/10.6084/m9.figshare.26097232.v1

N. Vyas, S. Sanei, K. Deb (Eds.), Emerging Trends in Electrical, Elec-
tronic and Communications Engineering, Springer International Pub-
lishing, Cham, 2017, pp. 44–60.

[52] L. K. Owens, Introduction to survey research design, in: SRL fall 2002
seminar series, volume 1, 2002.

[53] D. Rafique, L. Velasco, Machine learning for network automation:
overview, architecture, and applications [invited tutorial], Journal of
Optical Communications and Networking 10 (2018) D126–D143.

[54] R. M. Morais, On the suitability, requisites, and challenges of machine
learning, Journal of Optical Communications and Networking 13 (2021)
A1–A12.

44

Appendix A. Survey Instrument

Question wording Response options
1 What percentage of correct assignments is necessary

for the system to e↵ectively function as a decision
support tool?

Text box

2 What percentage of correct assignments is necessary
for the system to operate as a fully automated sys-
tem?

Text box

3 How would you rate the significance of the conse-
quences of misassignment in this domain? (5= very
significant, 1= insignificant)?

1, 2, 3, 4, 5

4 Do the consequences of misassignment vary across
all CI configurations?

Yes, No

5 If not, how do the consequences vary across di↵erent
CI configurations?

Text box

Table A.8: Survey responses evaluating the Correctness.

Question wording Response options
6 What is the acceptable time frame for the model to

generate a recommendation without impacting your
willingness to use the tool?

Text box

7 Given that the model currently generates recommen-
dations with an accuracy level of X and an F1-score
of Y , while operating at a speed of Z seconds, would
it be beneficial to trade o↵ some speed to enhance
the accuracy or F1-score?

Yes, No

8 If so, what degree of improvement would be required
to justify the slower speed? Could you provide an
example of a favorable trade-o↵ between accuracy
and speed?

Text box

Table A.9: Survey responses evaluating the Speed.

45

Question wording Response options
9 How much faster do you anticipate the tool will en-

able you to assign CI configurations to test specifica-
tions? What is the estimated time savings per test
specification?

Text box

10 What is your best estimate of the reduction in misas-
signments of CI configurations that can be achieved
using the proposed tool? (Please provide your an-
swer in percentage)

Text box

11 How many misassignments of CI configurations are
estimated to occur annually?

Text box

12 Do you agree with the estimation that a misassign-
ment of a CI configuration leads to an average feature
delay of two months in delivery?

Yes, No

13 If you answered “Yes” to the previous question,
please skip this one. Otherwise, on average, how
long of a feature delay do you estimate one misas-
signment results in?

Text box

14 What is your best estimate of the cost associated
with this feature delay? (Please provide your esti-
mate in SEK (the national currency of Sweden)

Text box

15 How many fewer fault slip-throughs (i.e., undetected
bugs) do you expect to occur when using ITMOS
compared to the current process?

Text box

16 What is your best estimate of the average cost as-
sociated with a fault slip-through? (Please provide
your estimate in SEK)

Text box

17 Do you believe that using ITMOS will reduce the re-
quirement for domain expertise in assigning CI con-
figurations?

Yes, No

Table A.10: Survey responses evaluating the Value.

46

Question wording Response options
18 Currently, what level of di�culty do you perceive

in assigning CI configurations to test specifications?
(5= more di�cult, 1= less di�cult)

1, 2, 3, 4, 5

19 How di�cult do you anticipate it would be to as-
sign CI configurations to test specifications using IT-
MOS? (5= more di�cult, 1= less di�cult)

1, 2, 3, 4, 5

20 How well do you perceive ITMOS integrates with
your existing workflow? (5= very well, 1= less well)

1, 2, 3, 4, 5

21 If ITMOS were fully deployed in the Ericsson ecosys-
tem, would you actively utilize it? (5= very inclined
to use it, 1= not inclined to use it)

1, 2, 3, 4, 5

22 Overall, to what extent do you trust Artificial Intel-
ligence -based systems for practical use in the work-
place? (5= high trust, 1= low trust)

1, 2, 3, 4, 5

Table A.11: Survey responses evaluating the Usability.

Question wording Response options
23 How important do you consider interpretability, i.e.,

understanding how ITMOS generates its recommen-
dations, to be? (5= very important, 1= not impor-
tant)

1, 2, 3, 4, 5

24 Do you believe that the current method used by
ITMOS to present its recommendations adequately
addresses interpretability concerns? (5= strongly
agree, 1= strongly disagree)

1, 2, 3, 4, 5

Table A.12: Survey responses evaluating the Interpretability.

25 How likely do you think it is that the distribution
of the various CI configurations will change in the
future? (5= very likely, 1= very unlikely)

1, 2, 3, 4, 5

26 How likely do you believe it is that the current struc-
ture of test specifications will change in the future?
(5= very likely, 1 = very unlikely)

1, 2, 3, 4, 5

27 How likely do you perceive the di↵erent CI configu-
rations to be subject to future modifications? (5=
very likely, 1= very unlikely)

1, 2, 3, 4, 5

Table A.13: Survey responses evaluating the Stability.

47

Intelligent Test Management System

Test Specification

Test Setup Test Procedure

Pass Criteria Pre-Post Condition

Decision Support

CI Configuration Automation

Test instruction text default Test Configuration SW Track

Tagged Microservice Test Duration CHS Verification

EPIC Test framework Context Name

Pipeline 1 Automation

Figure A.8: The graphical user interface (GUI) of ITMOS.

48

	Introduction
	Background
	Software Requirements
	Software Testing
	Continuous Integration
	Continuous Integration Configuration

	Supervised Machine Learning
	Natural Language Processing (NLP)

	Related Work
	CI Configuration Optimization
	Test Procedure Optimization
	Summary

	The Proposed Solution—ITMOS
	Implementation
	Experimental Setup
	Parameters

	Experimental Study
	Unit of Analysis
	Experimental Evaluation
	Experimental Results

	Survey Study
	Survey Setup
	Survey Evaluation
	Survey Results

	Discussion
	Applicability of Machine Learning to Test Management Optimization
	Threats to Validity

	Conclusions
	Survey Instrument

