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Abstract. Background: Driving automation systems, including au-
tonomous driving and advanced driver assistance, are an important safety-
critical domain. Such systems often incorporate perceptions systems that
use machine learning to analyze the vehicle environment.
Aims: We explore new or differing topics and challenges experienced by
practitioners in this domain, which relate to requirements engineering
(RE), quality, and systems and software engineering.
Method: We have conducted a semi-structured interview study with 19
participants across five companies and performed thematic analysis of
the transcriptions.
Results: Practitioners have difficulty specifying upfront requirements,
and often rely on scenarios and operational design domains (ODDs) as
RE artifacts. RE challenges relate to ODD detection and ODD exit detec-
tion, realistic scenarios, edge case specification, breaking down require-
ments, traceability, creating specifications for data and annotations, and
quantifying quality requirements. Practitioners consider performance, re-
liability, robustness, user comfort, and—most importantly—safety as im-
portant quality attributes. Quality is assessed using statistical analysis
of key metrics, and quality assurance is complicated by the addition of
ML, simulation realism, and evolving standards. Systems are developed
using a mix of methods, but these methods may not be sufficient for
the needs of ML. Data quality methods must be a part of development
methods. ML also requires a data-intensive verification and validation
process, introducing data, analysis, and simulation challenges.
Conclusions: Our findings contribute to understanding RE, safety en-
gineering, and development methodologies for perception systems. This
understanding and the collected challenges can drive future research for
driving automation and other ML systems.

Keywords: requirements engineering · software quality · software de-
velopment methodologies · driving automation systems · autonomous
driving

1 Introduction

Driving automation systems, including both autonomous driving (AD) and ad-
vanced driver assistance systems (ADAS), are software systems designed to aug-
ment or automate aspects of vehicle control [59]. Driving automation systems
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have long been a domain of interest. However, the increased capabilities and
usability of machine learning (ML) have subsequently improved the capabili-
ties of—and interest in—such systems. Research advances have improved com-
fort and safety, and reduced fuel and energy consumption, emissions, and travel
time [59].
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Fig. 1: Conceptual model of quality transitions from data collection to the quality
of the automotive function.

Driving automation system functionality depends on the correctness and the
integrity of perception systems that blend ML-based models and traditional sig-
nal processing1. The usage of ML for perception relies on a large quantity and
high quality of data. Data quality, context, and attributes—as well as annotation
quality—have a significant impact on the resulting system quality. However, it is
difficult to make direct connections between data, annotation, ML model quality,
and the resulting functional quality of a perception system (e.g., between the
boxes in Figure 1). The inherent uncertainty of ML—coupled with high require-
ments on data quality and coverage—creates substantial requirements, systems,
and software engineering challenges in perception system development [14].

Requirements engineering (RE) is an important foundational element of qual-
ity assurance and safety engineering. RE plays a critical role in perception sys-
tem development by enabling explicit capture of safety and quality requirements,
supporting communication, recording functional expectations, and ensuring that
standards are followed. Additionally, systems and software engineering play a
critical role in the successful development and deployment of perception systems
by enhancing real-time decision-making [19], supporting adaptability and con-
tinuous learning, facilitating complex system integration [39], maximizing per-
formance, ensuring dependability and safety [49], encouraging cross-disciplinary
collaboration [70], and advancing ethical and responsible development meth-
ods [55].

1 In this paper, we focus specifically on ML-based perception systems for driving
automation systems, but often use the term perception systems as shorthand.
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Recent research has explored RE challenges for ML systems, e.g., [12,80], as
well as systems and software engineering challenges [10, 11, 56]. However, such
challenges have not been thoroughly explored in the context of perception sys-
tems for driving automation systems. Addressing this gap is necessary to advance
practices in both this domain and in the broader context of RE for ML systems.

To explore important engineering topics and challenges for perception sys-
tems, we have conducted an interview study with 19 domain experts from five
companies working in various driving automation systems roles. We analyzed in-
terview data using thematic coding to produce eight major themes: perception,
requirements engineering, systems and software engineering, AI and ML models,
annotation, data, ecosystem and business, and quality.

This paper is an extension of previous work [30]. The initial article focused
specifically on the RE themes from the thematic analysis, encapsulating RE
topics and challenges discussed by the participants. In this paper, we extend
the analysis and discussion of the RE theme to include findings from two addi-
tional themes—systems and software engineering and quality. For both themes,
we also explore topics and challenges for driving automation systems develop-
ment that were raised in the interviews2. These two themes, in particular, add
relevant insights for practitioners and, additionally, enrich our understanding of
RE practices and challenges in this domain (e.g., requirements and quality are
tightly interconnected). In addition, we include a more extensive related work
section, discussion an outline of future directions in research and practice for
driving automation systems and other ML systems.

Related to RE, our findings indicate that practitioners have difficulty break-
ing down specifications for the ML components. In practice, individuals report
that they use scenarios, operational design domains (ODDs), and simulations
as part of RE. Practitioners experience RE challenges related to uncertainty,
ODD detection, realistic scenarios, edge case specification, traceability, creating
specifications for data and annotations, and quantifying quality requirements.

In terms of quality, practitioners consider performance, reliability, robust-
ness, safety, and user comfort as important quality attributes. In the context
of driving automation systems, safety is particularly critical. Practitioners es-
tablish safety goals, often in negotiation with component suppliers. To ensure
safety, practitioners must comply with evolving safety and AI standards—which
are challenging and costly to meet. They must also manage trade-offs between
safety and other qualities. Safety cases are a critical element of ensuring that the
safety goals are met. Quality assurance is performed by tracking critical Key Per-
formance Indicators (KPIs) during the execution of catalogs of scenarios. Quality
assurance is complicated by the non-determinism and data requirements of ML
and the realism of simulation.

From a systems and software engineering perspective—though practitioners
work with traditional and agile methods—ML complicates the overall develop-
ment process. Current agile methods are insufficient for the needs of large-scale

2 Another recent article has also used the same interview data, but focused on the
annotation, data, and ecosystems and business themes [38].
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ML because practitioners lack appropriate data quality methods as part of their
overall development methodology [66]. Furthermore, the addition of ML leads
to a data-intensive verification and validation (V&V) process with challenges
related to data quality, statistical analysis, and simulation.

By exploring the views and challenges of practitioners on RE, quality, and
software and systems engineering for ML-enabled perception systems, we provide
valuable insights for practitioners working in this safety-critical domain. Addi-
tionally, our findings contribute to improving RE, and systems and software
engineering knowledge more broadly, in other domains reliant on ML.

2 Related Work

In this section, we review related work in requirements engineering for machine
learning systems and for automotive and driving automation systems. We give
an overview of work on quality for machine learning, and software development
methods for machine learning, as these are key themes of focus in our interview
study.

2.1 RE for ML

Recent research has focused on how RE could or must change in the face of rising
use of ML. Systematic mapping studies on RE for ML identified new contribu-
tions in this area, including approaches, checklists, guidelines, quality models,
classifications and evaluations of quality models, taxonomies, and quality re-
quirements [7,28,79]. Pei et al. reviewed literature on RE for ML, went through
a collaborative requirements analysis process, and provided an overview of RE
processes for ML applications in terms of cross-domain collaboration [63]. They
provided an example case of an industrial data-driven intelligence application,
discussed in relation to the provided requirements analysis process. Ahmad et
al. performed a systematic mapping study to find articles on current RE for
AI approaches, and identified available frameworks, methodologies, tools, and
techniques used to model requirements, and finds existing challenges and limi-
tations [4]. They identified 43 primary studies and found several challenges and
limitations of existing RE for AI practices, for example that current RE processes
are not adequately adaptable for building AI systems. The authors emphasised
that new techniques and tools are needed to support RE for AI.

Further papers have identified RE-related challenges for ML and AI. Ah-
mad et al. investigated current approaches for writing requirements for AI/ML
systems, identified tools and techniques to model requirements for AI/ML, and
pointed out existing challenges and limitations in this area [5]. Belani et al.
identified and discussed RE challenges for ML and AI-based systems, and re-
ported that identifying NFRs throughout the software lifecycle is one of the
main challenges [12]. Heyn et al. used three use cases of distributed deep learn-
ing to describe AI system engineering challenges related to RE [36], including
context, defining data quality attributes, human factors, testing, monitoring and
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reporting. In further study, Heyn et al. identified several challenges related to
training data specification (e.g., unclear design domain, missing guidelines for
data selection, and unsuitable safety standards) and run-time monitoring for
ML models, with challenges relating to RE (e.g., lack of explainability for ML
decisions, missing conditions for run-time checks, and overhead for monitoring
solution) [35].

Other studies move towards proposed solutions. Farrell et al. identified key
characteristics of ML-based software requirements such as confidence, accuracy,
average value, robustness, data-driven learning, and quality aspects, providing a
foundation for developing a taxonomy of requirements for such software [22]. Is-
lam et al. presented a requirements process (RESAM) that integrates knowledge
from different sources, such as discussion forums, domain experts, and formal
product documentation, to discover and specify requirements and design defi-
nitions that contribute to the construction of effective deep learning anomaly
detectors. They evaluated their process in a case study and demonstrate that
it guides the construction of effective anomaly detection models that support
explainability [6].

2.2 RE for Automotive and Driving Automation Systems

Significant research has been performed on RE for vehicles. Liebel et al. identified
challenges in automotive RE with respect to communication and organization
structure [53]. Pernstal et al. stated that RE is one of the areas most in need
of improvement at automotive original equipment manufacturers (OEMs), and
also identified the ability to communicate via requirements as important [64].
Allmann et al. also noted requirements communication as a major challenge for
OEMs and their suppliers [9]. Mahally et al. identified that requirements are the
main enablers and barriers of moving towards Agile for automotive OEMs [57].

Research has also looked specifically at RE for AD, e.g., providing an overview
of AD RE techniques [74]. Riberio et al. identified AD RE challenges addressed
by the literature, and identified the languages and description styles used to
describe AD requirements, with special attention given to NFRs [68]. Heyn et
al. investigated challenges with context and ODD definition in ML-enabled per-
ception systems [37], including a lack of standardisation for context definitions,
ambiguities in deriving ODDs, missing documentation, and lack of involvement
of function developers while defining the context. Ågren et al. identified six as-
pects of RE that impact automotive development speed, moving toward AD [3].

In further driving automation systems work relating to RE, Zhang et al.
conducted a systematic mapping study in the context of driving automation
systems, and introduced a taxonomy for critical scenario identification methods
including encompassing the problem definition of the solution, and the assess-
ment of the established scenarios [86]. They also discussed challenges considering
the perspectives of coverage, practicability, and scenario space explosion. Luo et
al. proposed a hierarchical safety assessment approach to quantitatively analyze
the quality trade-offs, violation severity of safety requirements, and distinguish
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safer autonomous driving systems configurations based on the requirements vio-
lations comparison in a hierarchical way, following requirements importance [54].
Zhang et al. presents a data-driven engineering process that includes hierarchi-
cal requirements engineering to link the operational design domain with the
requirements and semi-automated generation of data sets for leveraging future
application of ML in automated driving in industry [85].

2.3 Quality Assurance for ML

Although quality for ML can be interpreted in a narrow sense, i.e., basic model
performance, work exists which has focused on ML quality in a broader sense.
Felderer et al. discussed terminology for quality assurance for AI systems, defin-
ing concepts and characterizing AI systems into artifact type, process, and qual-
ity characteristics [23]. They also discussed challenges in quality assurance such
as: lack of specifications and defined requirements; the need for validation data
and test input generation; difficulty defining expected outcomes as test ora-
cles, and baselines for AI-based systems. Furthermore, different challenges and
opportunities related to quality requirements for machine learning systems are
reported and discussed in [12,29,31,41].

From the perspective of traditional quality-assurance, the Japanese industry
has collectively proposed a set of recommendations for the quality assurance of
AI systems (e.g., in the Consortium of Quality Assurance for AI-based Products
and Services), and the second iteration of these standards, which includes a list
of quality evaluation criteria, a list of cutting-edge methods, and explanations of
each of the five representative domains that are proposed in [25]. In a research
Project for the Establishment of Generally Accepted quality criteria, tools and
methods as well as Scenarios and Situations for the release of highly automated
driving functions (PEGASUS), 17 partners from research and industry worked
together with the aim to develop a complete toolchain to include criteria and
measures for the evaluation of functions and for driving automation systems
quality levels, with test catalogues, central methods for driving automation sys-
tems development, and processes for establishing safety, and to release highly
automated driving functions [82].

From the perspective of technical standards, the automotive industry is aware
of adjustments in machine learning-based technology demands in terms of tech-
nical expertise, development paradigms, and cultural approaches. However, there
is still a significant gap between the availability of technical standards and cer-
tification capacity. Currently, the automotive industry is governed by several
standards. However, existing work has argued that these standards are not suit-
able for machine learning-based driving automation systems [21, 46]. Although
further certifications of autonomous systems (e.g., SOTIF) are being developed
and are advancing, these efforts only cover some of the existing challenges [24].

Other work has focused specifically on data quality in relation to machine
learning. Jain et al. discussed the importance of data quality, and stated that
the effort required to iteratively debug a machine learning pipeline in order to
enhance model performance can be reduced by evaluating the quality of the
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data using intelligently defined metrics transformation operations [44]. The au-
thors also survey the important data quality related approaches discussed in
literature—highlighting their strengths and similarities and discussing their ap-
plicability to real-world challenges.

Further work has looked at AI in terms of risks. Poth et al. presented a sys-
tematic methodical approach (the evAIa method: evaluate AI approaches) that
evaluate risks of the machine learning model using a questionnaire specifically
for AI products and services [65].

2.4 Software and Systems Methods for Machine Learning

Current systems and software development methods often do not account well
for machine learning-enabled systems. Giray points out a lack of techniques to
support machine learning system development as part of a systematic literature
review, reporting that the non-deterministic nature of machine learning systems
complicates SE aspects of engineering machine learning systems that includes a
lack of mature tools and techniques to support machine learning systems devel-
opment and verification [26].

Given the rise of machine learning-enabled software, researchers have ex-
plored or introduced a number of methods and challenges for machine learning
and AI system development. Hesenius et al. provided a structured engineering
process framework named EDDA (engineering data driven applications) that
bridges existing gaps, supports data-driven application development and en-
sures the required quality levels for critical components of machine learning sys-
tems [34]. Amershi et al. conducted a case study where the authors described how
various Microsoft software teams developed software applications with customer-
focused AI features—integrating existing Agile software engineering process with
AI-specific workflows [10].

Further research looked into the challenges of engineering driving automation
systems. Key collaboration challenges were identified in developing and deploying
machine learning systems through interviews with 45 participants from 28 orga-
nizations [60]. The authors reported on common collaboration points and chal-
lenges from the perspective of requirements, data, integration, and team patterns
and found the majority of the challenges center around communication, docu-
mentation, engineering, and process. In addition, safety criticality extends the
decision-making, development, and related environmental perception [2]. This
complexity does not harmonize with conventional safety engineering, hence, the
application of concepts for intelligence is required to resolve the complexity.

3 Methodology

Our study is guided by the following research questions:

– RQ1: What requirements engineering topics of interest and challenges are
encountered by the developers of perception systems for driving automation
systems?
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Fig. 2: Overview of the interview study.

– RQ2: What quality topics and challenges are encountered by the developers
of perception systems for driving automation systems?

– RQ3: What software and systems engineering topics and challenges are en-
countered by the developers of perception systems for driving automation
systems?

We refer to a topic of interest as something that practitioners currently prac-
tice or are curious about or would like to learn more about. A challenge on
the other hand refers to an obstacle or difficulty that practitioners encounter
and must overcome in order to successfully develop perception systems for
driving automation systems.

To address these questions, we conducted seven group interviews with 19 expert
participants from five companies that are currently working with ML-based per-
ception systems for driving automation systems. Figure 2 gives an overview of
the interview study.

3.1 Data Collection

We used semi-structured group interviews with a set of predetermined open-
ended questions. The use of semi-structured interviews ensured that all partici-
pants addressed the same questions, while still allowing the freedom to follow-up
with additional questions on particular topics3.

The interviews were conducted between December 2021 and April 2022 via
Microsoft Teams, and each lasted between 1.5–2 hours. We recorded all interview
sessions with the permission of all participants, then transcribed and anonymized
the recordings for analysis. At least three researchers were present in each inter-
view, with two particular researchers in all interviews to maintain consistency.

A summary of the interviews and the participants who took part is shown
in Table 1. We chose participants who posses experience with ML, perception
systems for driving automation systems, software and systems engineering, RE,
or data science, or who were working in the driving automation systems indus-
try. The sampling method was a mix of purposive, convenience, and snowball
sampling. We sent open calls to the Swedish automotive industry, and our known

3 The interview guide can be found at: https://doi.org/10.7910/DVN/HCMVL1.

https://doi.org/10.7910/DVN/HCMVL1
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Table 1: Overview of the conducted interviews, with the focus of the work con-
ducted by the participants and the roles of the participants (same interviews
reported by Heyn et al. [38]).
Interview Field of Work Participants

A Object detection Product owner

B Autonomous Driving
Product owner, test engineer, ML engineer,
software developer

C Vision systems
System architect, product owner,
requirement engineer, deep learning engineer

D AD and ADAS System engineer, manager AD

E Testing and validation AD
System architect, two product owners,
compliance officer, data scientist

F Data annotations AI engineer, data scientist
G Autonomous Driving System safety engineer

contacts, then we asked the interviewees for further contacts. Our participants
work with different aspects of driving automation systems.

We started by asking for demographic information about the participants.
We then showed them Figure 1, asking for their feedback and using the figure to
ground further discussions about how functional requirements relate to require-
ments on data and data annotation. We asked further questions about their
requirements documentation, safety issues, and quality. Although we carefully
chose interview participants, the opinions of the individual interviewees do not
necessarily reflect the overall opinion of their companies. Due to the sensitive
nature of information provided by interview participants and their respective
companies, we are unable to disclose the raw interview data or specific details
about ways of working. Finally, in a 2.5-hour workshop with roughly 20 partici-
pants, many of whom were interviewees, we presented and discussed our findings
with illustrative quotes.

3.2 Data Analysis

We applied thematic analysis, following the guidelines by Saladana [71]. We used
a mixed form of coding, where we started with a number of high-level deductive
codes based on the interview questions, then we started inductive coding, adding
new codes while going through the transcripts. At least three of the researchers
worked together to code each of the transcribed interviews.

We observed saturation after five interviews, as not many new inductive codes
emerged. In a second round of coding, a new group of at least two researchers per
interview reviewed the interview transcripts and verified the codes. Finally, we
used pattern coding to identify emerging themes and sub-categories. The final
codes of each interview and the assignment of the statements of the interviewees
to the sub-categories were reviewed by an additional independent researcher.
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To illustrate our points, we use a number of interview quotes. For increased
anonymity, participants are assigned a random identifier, such that P1 does not
necessarily match to interview A.

As noted in Section 1, the results of the theme Requirements Engineering
have been previously published [30]. This study enriches the findings on the RE
theme, by reporting on the quality and systems and software engineering themes.
The ecosystem and business, data, and annotation themes have been reported
as well by Heyn et al. [38]. Although the article focuses on different themes, the
qualitative topics covered in that article and our study here have some overlap,
particularly in topics related to data and annotation. However, here, the topics
of data and annotation are approached from an RE perspective, while the other
article takes an ecosystems and process view on topics and challenges related to
perception systems in driving automation systems.

4 Results: Requirements Engineering (RQ1)

Based on the thematic analysis, we divide the RE theme into sub-themes—
“Operational Design Domain (ODD), “Scenarios and Edge Cases”, “Require-
ments Breakdown”, “Traceability” and “Requirements Specification”—and im-
portant topics within each sub-theme. The sub-themes and topics are summa-
rized in Figure 3. We also note how many interviewees discussed each sub-theme.
Our findings reflect both RE topics and challenges, addressing RQ1.

4.1 Operational Design Domain (ODD)

An ODD is a description of a domain that a driving automation system will
operate in—e.g., the road or weather conditions. As part of RE, one needs to
define not only requirements, but assumptions about the domain, context, and
scope of operation. Operational context and scope for perception systems is
particularly important as the intensity of hazards depends upon the current
ODD. ODD-related topics came up in all interviews and were discussed by 12
of the 19 participants.

ODD Definition: ODDs should be captured as part of the requirements spec-
ification. Several interviewees mentioned ODD detection—where the system de-
tects that a certain ODD is currently applicable for a driving automation sys-
tem function—and ODD exit detection—when the ODD is no longer applicable.
ODD detection requires information on what to detect and detection accuracy.
For example, on highways, a driving automation system needs to detect different
dynamic objects than in urban areas.

ODD and Standards: Interviewees state that ODDs are critical, and therefore,
it is desirable to follow a standard or process for specifying and defining ODDs.
This need has been recognized and new initiatives for the definition of ODD
exist, e.g., the interviewees mention the PAS-1883 standard, and we are aware
of other standards (e.g., ISO 21448/SOTIF) that include ODDs.
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RE Processes and Challenges for Driving Automation
Systems with Perception
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Fig. 3: Mind map illustrating identified RE topics and challenges (RQ1) for
driving automation systems with perception.

ODD and Data Distribution: One interviewee stated that data distribution
requirements are highly influenced by ODDs. For example, camera data can be
classified according to descriptions in the ODD, and this mapping can reveal
missing data, driving further data collection. As it is not feasible to collect data
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in all possible contexts, it is necessary to have an efficient sampling process
covering the most common ODDs.

“If the performance of the model is not good enough in some part of the ODD,

for instance during the night or snow weather and so on, then we can select more

samples from those areas.” - P16

Another interviewee pointed out that although ODDs drive data collection,
collecting certain types of data required by the ODD can still be very difficult.

“ ... mining for specific use cases. For instance, it is not easy to collect data that

contains animals in it. You need some way to mine and find those specific frames

which will be sent for annotations and then be used during training.” - P16

4.2 Scenarios and Edge Cases

Several interviewees described how scenarios are crucial as part of the require-
ments specification process. In this context, scenarios describe specific opera-
tional paths and conditions for a vehicle, and one ODD may include a number
of scenarios. As such, although there are links to scenario-based requirements
methods [77], there are also clear differences. Scenarios and edge cases came up
in six of the seven interviews and were discussed by 11 of the 19 participants.

Scenario Completeness: It is important that perception systems perform cor-
rectly and that the vehicle handles failures in as many scenarios as possible. As
such, scenarios can help in requirements derivation.

“If we refer to the classic system engineering process, I think nowadays it’s quite

hard ... we are trying to use the scenario to derive the requirements. If we ... see the

features or the distribution of the scenarios based on the data from the real world.

Then we can derive the high-level requirements based on that data, the scenario

database.” - P4

One interviewee stressed the difficulty of defining and assessing coverage.

“How do you define coverage? ... What is the scenario space for pedestrian chil-

dren? Is it based on how the area you have annotated looks inside of your bounding

box? Do you parameterize it on the size of the bounding box, parameterized on con-

ditions around you? How would you divide that space and define it in a way that

allows even measures? Have I covered not just enough children, but also enough

variety of children? ” - P18

Scenarios and Annotation: Even if all important scenarios are reflected in
training data, annotation errors may result in unsafe behavior—e.g., a perception
system may recognize a human as a tree during a snowy or rainy day.
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“We’ll pick out some scenarios that we feel (are) likely not correct, for instance, if

it’s a rainy night, then maybe the annotator is not annotating (people) as accurately

as in the day.” - P8

Scenarios as Part of Requirement Refinement: Our results show that
testing through scenarios enables iterative requirements refinement. Engineers
iteratively refine their expectations of correct behavior by examining scenarios
and capturing observations from simulation or in the field.

“... we have to learn through testing, so probably it will start with some rough set of

requirements, some obvious set of requirements. Then we will, through real-world

testing, discover and learn exactly how we want to behave. ” - P2

“It seems like a test-driven development process ... we have the scenarios to drive

the development and give more input and also we get the benefit of testing.” - P4

Edge Cases: Interviewees stated that, in addition to normal scenarios, it is
crucial and challenging to deal with edge cases. The interviewees used subtly
different terms, such as edge cases, rare cases, and cases that occurred very
infrequently. We use the term “edge cases” for simplicity. These cases may be
missed by studying data distributions, but are very critical to ensure safety.

“The cars ... will end up in situations that no one could predict, that we’ve never

seen before, and somehow we need, even in this situation, one individual car needs

to perform better than a human driver, and human drivers are real good at handling

edge cases. The neural networks will not do that.” - P13

Edge Cases and Annotation: Edge cases cause issues by creating confusion
among annotators. Data from edge cases is often annotated inconsistently. The
topic of annotation is explored in more detail by Heyn et al. [38].

“We label whether a vehicle is in our lane or not. But how should you? You can

think of so many corner cases when you are out driving. When you are doing a

lane change. Which lane are you in then, and how would you then place all the

other vehicles or lane lines? Maybe there are double lane lines and which is valid

and which is not? This leads to a lot of confusion among annotators.” - P17

Scenarios, Edge Cases and Data Distribution: One interviewee pointed
out that scenarios, and especially rarer edge cases, are important for driving
data collection efforts as part of having an effective data distribution. How well
edge cases are covered can be an important development metric.

Edge Cases and Simulation: Interviewees stated that collecting data points
for particular scenarios from the real world is necessary, but is particularly diffi-
cult for edge cases. This makes simulation challenging, as for safety-critical edge
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cases, practitioners have difficulty safely gathering enough data to run realis-
tic simulations. This makes the process of iterative requirements refinement, as
described previously, difficult for requirements associated with edge cases.

4.3 Requirements Breakdown

Requirements breakdown can involve both refining or decomposing requirements.
Requirements breakdown was brought up as a topic in all interviews and was
discussed by 17 of the 19 participants participants.

The Need for Requirements Breakdown: We see evidence that a tradi-
tional requirements breakdown is followed for perception systems. At least one
participant spoke of splitting the problem to reduce complexity.

“We need to split the problem. We can’t do all work at the same time on the

complete problem.” - P12

Another participant described an architectural-oriented breakdown.

“Let us say you don’t want to collide with an object more than once in a billion

hours. This is your top requirement and then you need some kind of architecture

or idea of what your system looks like. That should realize this safety goal. This is

where we typically come up with a functional architecture, and we start to break

down the requirements of the parts of that functional architecture. Then we work.

We refine it. The functional architecture becomes a system or logical architecture

and we break it down into smaller and smaller pieces.” - P7

Others describe the importance of separation of high-level requirements from
technical requirements to have an upper layer that is resilient to change.

“To me, at least the function level will be the same in 100 years because there’s no

need that you change it. If your function doesn’t change, because today you satisfy

that function by combustion engine, in the next 50 years by electric, and in the

next, I don’t know, 100 years by something more intelligent ... By changing your

technical system level specifications, you still can satisfy your function.” - P19

Challenges with Requirements Breakdown: Participants commented on
the challenges of connecting high-level requirements to low-level requirements
and general challenges with requirements breakdown in this context.

“I would say we’re working with that challenge and, not that it’s an easy one, but

we do believe that it’s necessary to connect the top-level requirements or the quality

of the function, and to map that to quantitative or performance requirements on,

for example, perception, precision, and control.” - P13
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“What you can do is interact the most closely with ... some component, maybe

in perception, and these are the ones who would place direct requirements on the

previous component, so it is to me a bit of a hierarchical model to approach the

difficulties in breaking down the final safety goal to the early stages in our process-

ing chain. I think one tricky thing is, that it’s a hierarchical way in some ways,

but you also have to go in both directions in that hierarchical model. ” - P6

Several interviewees report that traditional requirements breakdowns cannot
be easily applied.

“For sure, we will not start with the classical software approach, where you start

with some requirements and then keep breaking those down and through the V-

Model because it will be impossible to capture the behavior of autonomous vehicle

with requirements.” - P2

Breakdown to Data and Annotation Requirements: Interviewees ex-
plained that, although linking functional requirements to system accuracy is
often possible, breaking functional requirements into data and annotation re-
quirements is more difficult.

“ Working with system level requirements, I can look at function requirements and

figure out roughly what kind of accuracy we need ... That does not necessarily mean

that I can tell how precisely annotation has to be, because I need to know how the

software works to figure that out. Another translation needs to happen where I

gave my requirements to the developers and they have to figure out what kind of

accuracy they need from the data to meet the system requirements and with so

many translations on the way, it is easy for things to get lost somewhere.” - P6

“...it is difficult to write good requirements on data quality and annotation pre-

ciseness and have those links all the way up to feature requirements (Figure 1).

Which I think is because of the dimensionality of the problem. The input space is

so enormous that it’s really tricky to get a single set of requirements there.” - P15

Breakdown and Collaboration: Challenges arise when teams collaborate to
specify quality requirements.

“Creating one function would involve multi-team collaboration usually. I guess it’s

not as easy as evaluating your own system when other people are kind of involved,

so you have to come up with scenarios and things to test your algorithms with and

could try to come up with a plan. ” - P4

Frequent and direct interaction with the stakeholders can reduce this diffi-
culty and help engineers to identify the requirements. In this case, stakeholders
have internal roles in the perception system development.
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“I think it is a lot of interaction with direct stakeholders in the end ... because

the direct consumers of whatever you are producing know exactly what they need

to fulfill their own requirements from their own stakeholders. So the negotiation

across these interfaces is where the most interaction happens. ” - P9

Gap Between High-level Requirements and ML: When breaking down
high-level requirements to very specific requirements on the ML-based perception
system, results show that traditional RE practices are able to be applied up
to a certain point - even though challenging. However, the breakdown for the
ML based components is particularly challenging. As such, there are boundaries
within the system where requirements methods change.

“If we talked about some other requirements or specifications not for the AD stack.

... those things still can follow the traditional way for critical system. ... if we

distinguish those two parts, ... for the black box or part or AD business part, it’s

hard to follow, but for the rest we still can leverage the classic knowledge.” - P4

We see that it is difficult to specify requirements for the whole perception
system. However, there are often still requirements—in terms of various perfor-
mance metrics—at a high-level.

“If we say the requirements were specified for the entire AD stack, I think it’s quite

hard to have very precise or detailed specifications for all functions, but actually,

we have some high-level metrics like safety, performance, functionality, or traf-

fic comfort metrics ... We have something, but they are very different from the

traditional understanding of the specification.” - P4

Redundancy in Requirements Satisfaction: One interviewee described how
requirements are allocated to ensure redundancy in the solution.

“We typically try to break down the problem to come up with redundant solutions.

You would have one algorithm using one sensor, which has some capacity to detect

the pedestrian, and then use another algorithm and another algorithm in parallel.

And you use another sensor and ... decompose the problem such that ... it’s very

unlikely that all of them would miss this pedestrian. That’s a way to try and get

reasonable requirements on every perception component.” - P6

ML Volatility: One interview pointed out, due to dependencies between com-
ponents and the volatile nature of ML, changes in the ML model can cause
drastic changes in other parts of the system.

“ People sometimes start setting requirements on sensors, and then start setting

requirements on data, and calibration accuracy, and then also on annotation, pre-

ciseness, and that somehow should influence the model accuracy. Maybe one prob-

lem we have with ML is that, if there are things slightly off, it cannot just lead to

a slight degradation, but to complete degradation of the entire system.” - P17
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4.4 Requirements Traceability

Seven interviewees, across four interviews, brought up points related to trace-
ability in perception systems.

ML Makes Traceability More Challenging: Known requirements traceabil-
ity challenges are exacerbated by the use of ML and associated data. Interviewees
described that when systems or modules fail to meet particular key performance
indicators (KPIs), tracing the source of the issue is difficult due to the combina-
tion of ML models and traditional code. Traceability was discussed in four out
of our seven interviews and by seven out of 19 participants.

“I think what is important at the end is the KPIs on the rightmost features of the

figure (Figure 1). Then if you want to track down why it is not working, it’s not

very easy to find which module is not working as supposed to, or maybe it works,

but in a combination of something else, it creates some kind of strange behavior.

” - P14

Traceability Must Account for More Elements: It is important that trace-
ability be maintained not just between code and requirements, but also with ML
elements—e.g., models and datasets—that determine the overall functionality.

“I think it is important to keep track of exactly which data was used to train the

model, and be able to also show that to the general public if needed, right? ... having

traceability all the way through development is something we aim for.” - P8

Typically, trace links would link to typical elements like requirements and
safety goals, but now they should also link to scenarios.

“I don’t want to say something that is wrong, you need this traceability, and then

when you trace back you see that, OK, I had a safety goal that was talking about

this specific scenario. ” - P19

4.5 Requirements Specification

Aspects of documentation and requirements specification were discussed in all
interviews, and by 13 of 19 participants.

Unachievable Requirements Specifications: Two interviewees mentioned
that sometimes clients provide unachievable requirements, even though require-
ments specifications are clear and precise.

“Sometimes clients come to us with a very well written set of requirements, like

we want this annotator and want this precision or accuracy ... Then they send us

data. But when we start looking at the data, it turns out that, given this data, these

requirements are basically impossible to meet.” - P18
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Difficulties in Specifying Quantitative Requirements: Due to confiden-
tiality, interviewees were not able to elaborate on specific target levels for quan-
titative requirements. However, they did reflect generally about the difficulty in
determining quantitative quality targets.

“... for model accuracy, what does success look like in functional safety? If you can

recognize 99% rebounding boxes of possessions, is it good enough? If you have a

recall of 100%, but your precision is only 50%, would that be good enough?” - P17

Specification Process: One interviewee emphasized that documentation of the
rationale and goals of the project can serve as a form of requirement specifica-
tion.

“I think it’s valuable to actually document after what principles you’re working,

document the problem you’re trying to solve and that is basically a set of require-

ments, even if they’re not necessarily traceable upwards all the way.” - P15

Specification Changes: The uncertain and highly iterative nature of percep-
tion systems and their development environment means that specifications are
particularly prone to change.

“Requirements at any level are not something that is static. They should reflect

your current best interpretation. These things can change because your under-

standing or your development process changes or the environment changes because

there are suddenly new demands on how something is supposed to perform or you

learn something new about the system or its environment. ” - P15

Difficulties in Data and Annotation Specification: One interviewee said
that specifying data requirements is difficult and different from functional spec-
ification, as it is hard to identify features and ensure data quality upfront.

“It’s very different how you write a data specification ... it’s hard to know what

the future expects and what type of classes we want and how we want to combine

certain objects ... we future proof our datasets quite well by specifying. We do

specify a lot of classes.” - P5

Another interviewee reported that it is difficult to specify quality (non-
functional) requirements on data and annotation, and to understand how qual-
ities affect model performance.

“ I work a lot with image quality before any ML is involved. Even that is very diffi-

cult to quantify. We can have very much right objectively measurable requirements

on image quality, sharpness. Then how those translate to the actual performance

of a ML algorithm is not at all linear.” - P16
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Fig. 4: Mind map illustrating relevant quality topics and challenges (RQ2) for
driving automation systems with perception.

Another participant described challenges in specifying requirements for data
annotation when dealing with external partners. It is difficult to have an upfront,
detailed specification of data classes and accuracy levels. Instead, data specifi-
cation needs to be developed iteratively and experimentally with suppliers.

5 Results: Quality (RQ2)

Based on the thematic analysis, we divide the Quality theme into the following
sub-themes—“System-level Quality”, “Safety”, and “KPI and Metrics”—and
important topics within each sub-theme. The sub-themes and topics are summa-
rized in Figure 4. We also note how many interviewees discussed the sub-theme.
These topics and challenges are used to address RQ2.

5.1 System-level Quality

This first sub-theme focuses on quality at the system level. This sub-theme came
up in five interviews, and was discussed by eight of the 19 participants.

System Performance: As in other safety-critical domains, practitioners are
required to satisfy performance and accuracy requirements for the entire system.

“We have to come up with the precise numbers for how accurate our model needs

to be after training on that data. This also comes down to different transitions

from the end requirement or the safety goal that we set up for the product.” - P9
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These requirements are typically quantitative in nature, and often are pre-
scribed as a bounded range of values rather than a single specific value to ac-
count for non-determinism. As an example, one interviewee discussed a parking
situation where the exact performance depends on associated sensors and other
factors, but the resulting behavior is deemed correct as long as it falls within
the specified range.

“The vehicle should park no farther than X [numbers removed] centimeters from

the vehicle behind and no farther away than the Y centimeters from the wall...

That’s typical performance. And [that depends] on the ultrasonic sensor unit, and

that’s up to the supplier. ” - P11

However, the interviewees emphasized that performance measurement base-
lines are not always easy to define and that the current standards do not provide
specific information on how to establish statistical expectations. Instead, the
standards expect deterministic, specific behavior. Even without the use of ML,
many factors result in non-determinism in embedded systems. The inclusion of
ML leads to even further potential for non-determinism.

“That way of thinking doesn’t work with that specific standard (ISO26262), because

that standard doesn’t have these kind of numbers. You can’t even write and say that

things should be correct or the product should be correct with this kind of statistical

numbers, but rather should be correct always. And I think that’s a bad way of

thinking, let’s say I design a classical piece of electronics, even that one doesn’t

work binary: yes or no always.” - P1

Our interviewees stated that redundancy (e.g., redundant algorithms) can
help improve performance. However, effective redundancy should be carefully
planned—ideally not just with different approaches, but with different methods
and data sets.

“... have at least [multiple] parallel algorithms just working on the camera which

directly or indirectly would be able to detect the pedestrian.” - P6

“ I have this algorithm detecting pedestrians and this other algorithm detecting

pedestrians, which is slightly different. If they’re both trained on the same data

sets and they’re both using deep learning methods, OK, how redundant are they

then, really? But you could also think, I have these two algorithms and they are

not completely redundant, but together they are still better than one, one by one,

so we could still deploy both to make the system better. ... And then you might be

able to show that with this extra algorithm, and I have better performance.” - P7

If there are multiple ways to gather data (e.g., radar, cameras, infrared),
the possibility exists of sensor fusion. Sensor fusion enhances redundancy and,
subsequently, performance in various scenarios.
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“Radars are very good at detecting orientation and speed of an object, though not

to classify it as the cameras are doing. I would love to see camera and radar, due

to most of the functionalities from an ADAS perspective, because you need both of

them for sensor fusion from a redundancy point of view, from a technology point

of view. For object classification, for instance, camera is good, but it’s not so good

for detecting speed and orientation.” - P10

Another interviewee pointed out, however, that redundancy comes with a
high cost and may lower usability:

“One pretty high level trade off would be cost or usability to the user. You could

pack dozens of compute units and redundant sensors, which would drain of course

the money of the user, or the customer, and the battery as well. You might just be

able to drive around for a few minutes. But, you would shift the trade off towards

more safety or availability just by piling up more redundancy. Of course, at some

point, that it just is not feasible to use in an actual product that you could provide

to customers.” - P9

User Comfort: The topic of user comfort in a vehicle also came up in our inter-
viewes. For example, in addition to redundancy, multiple sensors may improve
a user’s comfort.

“An AD car with only cameras and the radar on top of them adds redundancy,

so if something fails you have a second set of sensors. The radar could be useful,

detecting speed so it makes a more comfortable ride, because you can detect more

easily the speed and adapt to it quicker than if you only have cameras. ” - P11

System Robustness and Reliability: Several interviewees brought up top-
ics surrounding robustness and reliability. Evaluating robustness and reliability
requires consideration of a complex system made up of many sub-components—
many of which come from suppliers. Driving automation systems consists of
several components, and their robustness and reliability is taken into consider-
ation for the allocated ASIL (Automotive Safety Integrity Level) levels on the
system.

“We have a total goal of robustness, reliability that includes the perception point

of view, the components from a hardware point of view. We are discussing with

the system suppliers which levels we are on right now from an ASIL point of view,

and also from a reliability point of view, and confidence point of view. ” - P10

One interviewee pointed out the importance of data quality for robustness. If
data quality is low, estimates of robustness may be inaccurate. In such situations,
safety measures must be put in place to account for this uncertainty.
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“We need to build robust systems. At least we’re able to detect that now incoming

data is really poor, so we should take some safety measures, ” - P15

5.2 Safety

As might be expected, given the criticality of driving automation systems, safety
was one of the most popular discussion points in interviews. This sub-theme came
up in six of the seven interviews, and was discussed by 12 of the 19 participants.
Interviewees brought up “Safety Goals”, “Safety Standards”, “Safety Cases”,
“Safety Negotiation”, “Trust in System Components”, and “Safety Trade-offs”
as important topics in this sub-theme.

Safety Goals: Multiple interviewees mentioned the importance of establishing
safety goals. Such goals are the starting point of safety-related requirements
specification. They are established at a high level, then connected in a hierarchy
to lower-level individual system functions, where measures are put in place to
ensure that the safety goal is realized throughout the system. Note that existing
work has pointed out that safety goals for AD are entirely different from those
defined for an ADAS system [81].

“Safety goals will basically be the starting point of the safety requirement specifi-

cation... Then this will be the first parent requirement in the safety hierarchy and,

then, in the next level—by some analysis, like fault analysis—you will try to un-

derstand what in the function level can violate that safety goal and introduce safety

mechanisms. ” - P19

Safety Standards: Safety is one of the most important quality attributes of
driving automation systems. To ensure safety one needs to make sure that the
nominal function is safe as well as in presence of faults according to the faults
assumptions. However, the guidance on applying AI is limited and best practices
are not established for safety argumentation.

Safety aspects of driving automation systems are normally structured accord-
ing to ISO26262. However, it is commonly discussed if ISO26262 can actually
address driving automation systems in an efficient way when they include ma-
chine learning, e.g., [33].

“I think also one well-known problem here is that the sort of traditional V-model

safety is [prescribed by] ISO26262, and ... it’s not useful for systems that use

machine learning, or at least it’s not sufficient.” - P6

However, beyond ISO 26262 and SOTIF, there are emerging standards and
ISO documents focusing on AD (e.g., TS5083 4, AMLAS [32]) and AI/ML (e.g.,
ISO PAS8800 5, TR5469 6).

4 https://www.iso.org/standard/81920.html
5 https://www.iso.org/standard/83303.html
6 https://www.iso.org/standard/81283.html

https://www.iso.org/standard/81920.html
https://www.iso.org/standard/83303.html
https://www.iso.org/standard/81283.html
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“The only thing that I’m sure I can say is that it’s a tough topic and this is why

there is these different standards ... ” - P19

Several interviewees mentioned SOTIF (Safety of the Intended Functional-
ity 7) as a further standard for functional safety of driving automation systems—
used in conjunction with ISO26262. However, neither standard is fully adequate
for ensuring both system and function safety, especially given that ML blurs the
boundaries between functional and system safety.

“ We have a standard which has been widely used within the automotive industry

for more than 10 years which addresses part of the overall safety of the system or

function (ISO 26262), but leaves out other parts. Now there is another standard

called SOTIF. The way to go for automotive seems to be to handle these two

aspects of safety separately. But I believe that the border between the two is not

very strict, it’s not black and white. It’s kind of floating, and especially when it

comes to machine learning ... we do not really know yet how to address with the

existing standards.” - P13

One interviewee also mentioned multiple emerging safety standards for AI,
including the TR5469 standard for functional safety in AI 8, PAS8800 for road
vehicle safety for AI 9, and TR24029 for assessment of the robustness of neural
networks (AI) 10 . Another interviewee referenced UL4600, which offers guidance
on, among other topics, data safety [50].

Two interviewees also stated that they follow PAS-1883, an emerging stan-
dard for defining ODDs 11.

“You need to define ODDs and specify them... so far, there has not been a standard

for how you define and how you specify ODDs. But we are very well aware about

... BSI standard PAS-1883. PAS is becoming a standard or instruction to follow.

It’s an initiative to spell out how you should define an ODD, and how you cascade

down, and how to specify an ODD.” - P10

For these new standards, some challenges can be expected. One interviewee
noted the challenge of applying the standards.

“I think it is also a little bit difficult for many of the engineers who are not experts

in functional safety according to the standard to really understand what it means

to them in their daily life...” - P6

7 https://www.iso.org/standard/77490.html
8 https://www.iso.org/standard/81283.html
9 https://www.iso.org/standard/83303.html

10 https://www.iso.org/standard/77609.html
11 https://www.en-standard.eu/pas-1883-2020-operational-design-domain-odd

-taxonomy-for-an-automated-driving-system-ads-specification/

https://www.iso.org/standard/77490.html
https://www.iso.org/standard/81283.html
https://www.iso.org/standard/83303.html
https://www.iso.org/standard/77609.html
https://www.en-standard.eu/pas-1883-2020-operational-design-domain-odd-taxonomy-for-an-automated-driving-system-ads-specification/
https://www.en-standard.eu/pas-1883-2020-operational-design-domain-odd-taxonomy-for-an-automated-driving-system-ads-specification/
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Furthermore, one interviewee pointed out that although standards can help
developers avoid costly software failures, conforming to safety standards can also
be quite costly.

One interviewee added that the top-down approach of safety standards does
not match does not match the current working procedures (e.g., agile way of
working).

“I think the standards traditionally are very much a top-down approach, but in

reality a development project does not work like that of course. Requirements at

any level are not something that is static. ” - P15

Safety Cases: Safety cases are structured arguments used to show documented
evidence that the system is sufficiently safe. Safety cases are an important aspect
of driving automation systems development. However, it is important to ensure
that the safety case matches the reality experiences by the developers:

“The safety case is one of the strongest ones that really matters... in order to reach

that one, it’s good for us to interact with development, and ensure that ours is as

good as possible, so we can actually reach 0 cases of an unsafe break... ” - P1

Data requirements are part of the evidence used in a safety case. It is im-
portant to have data management and data quality as part of the safety case
argumentation.

“The data requirements then will be part of the safety case. We are talking about

both the training data used to actually train the models and what we use in verifi-

cation and validation in the end.” - P10

When asked about the impact of ML on safety cases, interviewees noted that
safety cases can be defined in a modular manner over components of the system.
ML-based components, naturally, must be part of such safety argumentation.
However, one participant pointed out that safety cases are not yet well defined
for driving automation systems, as the new standards are still upcoming.

“ ...the safety case, what does safety case mean? Here we say, well, we have a

safety case. The methodology behind it is really tricky and not solved fully within

the community.” - P16

Another interviewee describes safety case argumentation as a joint process
conducted with OEMs and suppliers:

“... We will definitely be interested in how our supplier has solved that problem

and what safety argumentation they give us because we need to integrate it in in

our safety case for the vehicle. We always have joint reviews, and we go to the

detail on that.” - P11
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Safety Negotiation: Driving automation systems are often built, at least in
part, from existing components offered by external suppliers. Therefore, just
as safety case argumentation is built jointly with suppliers, safety requirements
must also be developed in conversation with suppliers.

Interviewees described a process where suppliers are assumed to have already
assessed the basic safety of their components outside of the context of a particu-
lar driving automation system before being contacted. This can be considered a
safety element out of context, as discussed in [47]. Then, the driving automation
system developers present safety requirements for a particular driving automa-
tion system as part of contract negotiation.

“When we meet them [suppliers] for the first time and we start talking we expect

them to have done their homework over safety elements out of context—that they

can present their assumptions and the safety holes that they have for their sys-

tems based on those assumptions. That means that they know what they’re talking

about, and they’re good as a supplier. ... and then what we do is take care of

the responsibility for the complete vehicle. Once we know our functions, we do a

HARA (Hazard Analysis and Risk Assessment, from ISO26262), and from those

we derive functional safety requirements that we give to them. You will need to

fulfill this [requirement] to get this project. ” - P11

“ Most of the time, the things already exist ... For example, you have a vision

system that can detect the objects, and then you go to suppliers. Most of the time,

except some examples recently, it’s this agile way, that every supplier works to-

gether. Normally, it’s like that safety element out of context—that you developed

the component, and then you go to the OEM, and then you introduce your product

or your safety element and then they check in ISO part 10. ” - P19

Trust in System Components: Because a driving automation system is con-
structed using components developed externally, interviewees noted that trust
is initially a potential issue. Developing driving automation systems requires
trusting that externally-developed components are safe and reliable. GPS, in
particular, was brought up by multiple interviewees due to the potential safety
hazards of inaccurate GPS readings and map data. Obviously, they still will have
a safety case at the end.

“I have always faced a challenge, which is how to trust the GPS, and even the

map. Safety wise, what we have always been told is, that a GPS should we treat it

as a [ASIL level] QM (quality management, i.e., all assessed risks are tolerable),

and the same with maps. But whenever you pinpoint to some specific target, or

a supplier, or a sensor provider, the story is very different. They claim that they

started talking about the accuracy and things like that, but functional safety-wise

we will be fine. ... but you never can overcome that act of faith. I would say, show

me some study that you have done to say that what you provide is up to an integrity

level; that has never happened in my opinion. For me, it is still a challenge that

we need to make a leap of faith when we select a specific supplier.” - P11
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Safety Trade-offs: Attainment of certain quality attributes, such as safety or
performance, tends to require trade-offs with other quality attributes. Safety
was a high priority for interviewees, even if it came at the cost of other quality
attributes or driving automation system functionality. For example, one partici-
pant discussed limiting function availability to improve safety, choosing to only
consider automation under certain situations rather than widely allowing the car
to be driven autonomously:

“You then come into the compromise between availability and safety of the func-

tion. Standing still is safe, but it’s also very bad functionally, as you want to go

somewhere. That’s why you have a car. It is possible to build a self driving car that

does the job, but it will not be safe. Then, if you don’t build it safely, then it will

not take you anywhere. ... we will only have a very limited ODD of our first AD

function. ” - P7

Another interviewee discussed limiting vehicle functionality to improve safety,
in this case, compromising the speed of the vehicle for improved safety:

“Speed is an obvious trade-off, so we also trade high speeds for safety. We go at

lower speeds. Speed is such a dimensioning parameter in all the safety work since

all the risks are high when you increase speed.” - P7

5.3 KPIs and Metrics

Assessments of driving automation systems quality are made by tracking certain
performance metrics, often called “Key Performance Indicators” (KPIs), and
comparing the attained value to selected thresholds. This sub-theme was dis-
cussed in all seven interviews, by 15 of the 19 participants. Interviewees brought
up “KPIs in Simulation Environments” and “KPIs and Metrics for Driving Au-
tomation Systems Evaluation” as topics in this sub-theme.

Metrics and KPIs for Driving Automation Systems Evaluation: For
evaluation of the driving automation system, interviewees explained that—rather
than specifying deterministic properties—they track a set of high-level metrics
related to safety, performance, functionality, comfort, and other factors. These
metrics can be tracked over the execution of many different scenarios, either in
simulation or in a real vehicle, then statistical analysis of the collected observa-
tions can be used to make an assessment of the driving automation system.

“ If we say the requirements were a specification for the entire driving automation

system stack, I think definitely it’s quite hard to have very precise or detailed

specification for all the functions, but actually we have some high level metrics like

safety metrics or performance metrics, functionality or traffic comfort metrics,

those metrics are on a very high level, which means we can use those metrics
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combining with the scenario database and then we run millions of the scenarios and

get the statistical analysis report. We can’t say we don’t have anything for testing

or validation. We have something but they are very different from the traditional

understanding of the specification.” - P4

For evaluation of the low-level ML components—such as specific classification
models—interviewees stated that they employ standard metrics used in other ML
domains. They note, however, that they pay close attention to the specific data
in the dataset to ensure that careful evaluation is performed.

“For the model accuracy, we use very standard metrics. IoU (Intersection over

Union), mean average, precision, or mean intersection over union and things like

that. We also try to make sure that we, for example, work on a per-class basis,

where we just don’t average out a person in the pedestrian as the same values.” -

P5

When interacting with ML, assessments of safety—and the design of the
functionality under assessment—must take into account uncertainty in the ML
output. Uncertainty estimation is employed at all levels, from algorithm design,
to data selection, to evaluation.

“To ensure some form of safety measures from the model, we do produce uncer-

tainty estimations from the outputs. So those are also used in the data selection of

course to look for what type of data is uncertain. What do we need to learn more

from? As well as when it’s used in the perception chain, we can give an uncertainty

estimation of a certain object so that we can make good enough decisions when it

comes to the driving.” - P3

The KPIs of systems dependent on ML will ultimately be determined by the
data used for training and validation of the ML components. Therefore, to ensure
that KPIs are informative and realistic, high-quality training and validation data
must be used.

“... of course [we] want to have as good data as possible for training, but that is

going to be expensive. Because your KPI are not going to be any better than the

validation data, right? So, if your validation data is broken, then your KPIs are

going to be broken, regardless of how good your quality data is. ” - P1

“It’s very hard to get an objective quality measure then or, like, you will need a lot of

background knowledge of the average size of cars in order to do that consistently.”

- P10

Often, data is reused, especially for rare cases. However, data reuse is one of
many factors that can affect the realism of the attained KPIs.
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“I think one interesting thing is also [with regard to KPIs], how do you measure

positive performance and how do you verify positive performance, that is really

tricky. I think it’s very important that we be able to reuse the data and also some

of the rare cases, it’s not easy to collect again. It’s very important to be able to use

them again... if you have done so, then how you can guarantee that the KPIs that

you get after training or during validation are representative of the real world? ”

- P15

One interviewee also stressed the importance of communicating KPIs and
metrics for data quality and variance to users who use annotated data.

“You should produce such KPIs (on data variance) and communicate this to the

users. In this case, the users say alright, or if we need to adjust anything from ...

the data collection perspective. And the same goes with the annotation as well, if

they are of good quality or not, essentially it’s KPI numbers to the users as input.”

- P8

KPIs in Simulation Environments: Because simulations may not accurately
reflect the real world, KPI observations gathered from simulations may also not
match the observations that would be made in reality. One interviewee was
skeptical of using values from simulations as evidence of safety.

“During the verification and validation, how you can verify that the KPIs that you

get during the validation actually show the reality? Especially if you do some sort

of synthetic simulation, ... then it’s not very clear to me how one can argue the

safety aspect, that we can reach the same KPI in real world.” - P16

Another interviewee noted that KPIs should be compared between simula-
tions and real-world testing to help show that the simulation is realistic.

“This is something you can do by looking at KPIs for single frames situation on

both of them [reality and simulation], and if they are comparable, then I think

you can have good argumentation for why your closed loop simulation is actually

reflective... But if these two numbers are not the same then that’s rough. ” - P1

One interviewee described using KPIs for selecting simulator vendors.

“We have some KPIs we are using. And the that means we are going to select 3,

5 of them mostly. Those KPIs, we have sent over to them [vendors]. I asked them

about that in the RFI [request for information], and then depending on that, we

will pinpoint one [vendor]. And then send an RFQ [request for quote] to them, but

the KPI, there are many KPIs in there.” - P10

6 Results: Systems and Software Engineering (RQ3)

As with the previous results, we divide the Systems and Software Engineer-
ing theme into sub-themes—“SE Methodology”, “Verification and Validation
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Fig. 5: Mind map illustrating relevant systems and software engineering topics
and challenges (RQ3) for driving automation systems with perception.

Methods”, and “Data Quality Methods”—and important topics within each sub-
themes. The sub-themes and underlying topics are summarized in Figure 5. We
also note how many interviewees discussed the sub-theme. These sub-themes
and topics address RQ3.

6.1 SE Methodology

Software engineering methodologies refer to the frameworks or approaches that
guide the processes, activities, and tasks involved in software development [73].
Such methodologies provide a structured and systematic way to plan, design,
develop, test, evaluate, and deliver software products to customers. Different
methodologies (e.g., waterfall, agile) offer a distinct set of principles, practices,
and techniques to manage the software development lifecycle. The interviewees
described several aspects of their software development methodologies and how
they have changed in the face of ML use. This sub-theme came up in six of the
seven interviews, and was discussed by 15 of the 19 participants. Interviewees
brought up agility, feedback and a mix of existing and new methods as topics in
this sub-theme.

Agility: As context, many of our interviewees have transitioned or are tran-
sitioning to a more agile way of systems development for driving automation
system development. For example, participants are moving from a process based
on the traditional V-model to a specific agile framework, e.g., SAFe.

“We are using SAFe as a formal agile framework in our software development

process for autonomous vehicles.” - P2
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Such transitions and the use of agile methods at a large scale bring their own
challenges unrelated to ML, e.g., [48]. These issues form a background to our
exploration of ML use in driving automation systems.

Previous work focusing on methodological transitions has pointed out cul-
ture clashes between more agile and traditional ways of working [16, 61]. One
interviewee points out similar clashes between control engineers — who develop
and test software and hardware – and software developers, who are focused on
data and simulations.

“I think the biggest clash is the way of working. Control engineers want to approach

things in their way. They want to synthesize things and test things for real in the

vehicle. Whereas the software companies have a more data-driven background and

they start off with the data and they just work in different ways.” - P2

A Mix of Existing and New Methods: Many traditional methods and pro-
cesses where, e.g., requirements are defined and broken down to the different
parts of the system will still apply. This includes large-scale agile methods, such
as SAFe. However, several interviewees reported that it is difficult to implement
existing software engineering methods when the system includes machine learn-
ing because of non-deterministic behavior. In addition, since the use of machine
learning is rather opportunistic or technology-driven, the existing processes can
be infeasible because of non-deterministic behavior of such systems. The partic-
ipants focus on integrating and adapting methods while using machine learning.

“If we distinguish those two parts, we just say for the black box or part or au-

tonomous driving business part, it’s hard to follow [existing methods], but for the

rest, we still can leverage the classic (development) knowledge.” - P3

Some interviewees described this mix of methods by describing both a top-
down and a bottom-up start. Traditionally, development would start with up-
front requirements elicitation, with a break-down facilitating system develop-
ment (similar to Sec. 4). However, in the case of driving automation systems,
the development process is less top-down but rather composed of many different
components that must fulfill the product definition on top level.

“It’s like bottom-to-top and then back to the bottom. We have just like a rough

starting point, like we want to drive this route, and that’s basically the scenario

or the high-level requirements, and then we build some algorithms and try it. We

start in that sense in the bottom and then, when we have something in place, we

can start testing in a structured way with replay of logs and with the structured

scenario database and all that and then we learn.” - P2

Several participants describe using a highly iterative development method for
driving automation systems. Although agile methods are difficult to apply out-
of-the-box, as they still require some upfront requirements knowledge (e.g., user
stories, backlogs), iterations appear to be key for machine learning development.
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6.2 Data Quality Methods

The criticality of data quality in machine learning systems has an effect on
development methods and ways of working. This sub-theme came up in two of the
seven interviews, and was discussed by three of the 19 participants. Interviewees
emphasized the importance of placing a high priority on data quality.

“First, you focus on data itself. You can try to identify the purpose of using this

data in your system and identify other possible issues. There are some guidelines

like data safety guideline from the safety Critical System Club, and then they have

a very structured guideline about how to identify them. I think they are hundreds

of identified possible issues about the data in safety critical system. So, first you

can probably try to explore the data itself.” - P4

To ensure the quality of the data, tools, and requirements, one interviewee
indicated that traditional quality assurance methods are still valid, even with
new technologies.

“ For example, if we use tools, we do tool qualification. If we use data, we do data

qualification. Then we can follow the classic way, like we identify the possible issues

and we do a fault analysis and then we identify the possible preventing or handling

measures and implement those measures in the system and then we prevent the

possible problems.” - P4

One participant discussed the importance of feedback as part of the data
annotation process, which involves creating documents to clarify annotation un-
certainties.

“They just gave feedback to people (annotators) and just like from then on that’s

the way that they perform (in annotating). ” - P3

6.3 Verification and Validation Methods

Verification and validation methods refer to the systematic techniques and ac-
tivities employed to confirm that the system meets the specified requirements
and intended purposes, and the system has been designed, developed, and im-
plemented correctly. This sub-theme came up in six of the seven interviews, and
was discussed by 14 of the 19 participants.

Interviewees brought up machine learning concerns in verification and valida-
tion, data-intensive verification and validation, and verification and validation
in simulation as topics in this sub-theme. Note that, although there is a dif-
ference between validation and verification, interviewees are using both terms
(verification and validation) as a high level definition of general verification and
validation activities.

Machine Learning Concerns in Verification and Validation: Practition-
ers must select appropriate verification methods for the specific machine learning
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algorithms being deployed. Verification of machine learning is a relatively new
field of research, and practitioners may need to monitor ongoing research regard-
ing particular types of machine learning.

“There is some research about how to verify the neural network like abstract inter-

pretation and then you can use the safety engineering method like to design some

measures or set a scope for the neural network and try to have like redundant

pipeline and to monitor this algorithm.” - P3

A common challenge when performing verification is that the model acts like
a black box—it is difficult to infer how a model makes its decisions. From the
engineering perspective, to ensure that the whole system works well, it can be
important to focus on the explainability of the model. Practitioners start with
something that they feel might work, and then check the results, then adjust
accordingly. Once the system achieves basic functionality, if any limitations (e.g.,
poor performance) of the artificial intelligence algorithms or the neural network
is observed, then the engineers attempt to understand the model to identify the
reason.

“If we see the limitations of the artificial intelligence algorithms or the neural

network, then probably we want to dig into this black box and try to figure out

what’s the reason behind that.” - P4

Although, explainability affects the way in which systems are developed,
our interviewees reported that it is typically not their first concern. They often
focus on getting the system working first, then consider the qualities such as
explainability.

“I think we’re in the stage where we’re just trying to get the whole thing working

first and then we would go into more understanding why it works the way it is.” -

P2

Data-Intensive Verification and Validation: With the incorporation of ma-
chine learning and artificial intelligence, the verification and validation of the
perception systems become more data-intensive. For example, an interviewee
pointed out that effective verification and validation requires representative data
selection.

“Also from the validation point of view, we also need to get the right data for the

data driven validation.” - P4

One interviewee stated that practitioners require correct data, and that they
perform statistical analysis on the collected data as part of verification. The
participant also emphasized the need for an efficient sampling method to cover
the most common ODDs, as extensive data collection is not practical.
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“Also from the validation point of view, we also need to get the right data for the

data-driven validation. For example, we also need to qualify the camera data ... for

this kind of data we need to have statistical analysis, which means we count how

many scenarios are located in this distribution. Because we don’t want to collect

all the data. As much as possible is not efficient, if we just think we have a good

or a clever sampling process. Then we can see the distribution of the scenarios and

the scenes from the reality. Then we can say we have covered the most common

ODDs and then we can use this data set to do validation. ” - P4

Driving automation system practitioners often meet the need for verification
data with synthetic data, emulating data collected from sensors or cameras. Due
to the complexity of collecting real data for scenarios that appear very rarely
(e.g., edge cases), it would be beneficial to use such synthetic data, but the
effort of validating synthetic data could higher than actually collecting this kind
of data.

“I don’t believe that synthetic camera data or LIDAR data has sufficient fidelity

to be used for validation yet. It’s lacking in many aspects. And to prove that it is

actually useful for validation would probably require more data than not even using

it to begin. [Note: validating the usefulness of synthetic data would require so much

data that synthetic data is no longer needed]” - P7

Traditional systems are often verified by comparing observations to specific
expected output. Given the quantity of data needed and the difficulty of specify-
ing a deterministic outcome, driving automation systems with machine learning
may need to be verified based on statistical analyses.

“I think it will come down much more to statistics in the end. We know we have

accumulated a lot of driving and from all this driving we managed to create a set

of different datasets that altogether captured the whole ODD and statistically then

we, you know perform well.” - P2

Verification and Validation in Simulation: Interviewees reported a shift
toward verification and validation in simulated environments from using actual
hardware because of the safety-critical nature of driving automation systems,
which require different steps in the validation and verification process to rule
out as many issues as possible before going on the roads. Practitioners collect
data and conduct simulations to test the driving automation system in a virtual
environment. One interviewee stated that they are focusing more on scenario-
based approaches for verification and validation.

“From the simulation team, we are trying just to shift the direction from the clas-

sic embedded system world ... that’s the reason why we have the scenario-based

approach for validation. So if we see the data from some other companies like

Waymo or Uber, they spend 99.95% of the test cases in their virtual environment,
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just 0.05% on the real vehicle. Because some of the scenarios are really dangerous,

we can’t just to ask a driver to drive on the road and do some to test some edge

cases. ” - P4

On the other hand, it can be challenging to perform verification and val-
idation of driving automation system in a simulation. An interviewee points
out that there might be limitations when using synthetic simulations for safety
argumentation.

“When you do the verification and validation of your software, how you can verify

that the KPIs that you get there during the validation actually shows the reality. For

instance, especially if you do some sort of synthetic simulation, you do validation

and verification, then it’s not very clear to me how one can argue the safety aspect

that we can reach the same KPI in real world.” - P14

Furthermore, when machine learning is incorporated into the system, it can
be difficult or very expensive to create realistic data for the verification and
validation process.

Interviewees consider the balance between the percentage of verification that
should take place in the simulation and in the real environment. The challenge
of realism indicates that some verification should take place on real hardware.
However, it is more time consuming to test in the real world than using simu-
lations and therefore, simulations is an efficient method to be used before doing
the final tests on the roads. Regardless, interviewees stressed that it is important
to ensure that the test cases are representative of the driving scenarios in both
the real and simulated environments.

The level of automation also has an impact on how validation and verification
in the simulation environment is conducted. For lower levels of automation,
simulation can be outsourced to suppliers. However, an interviewee notes that
they will need to develop in-house simulation for higher levels of automation.

“Well, so far, up to level 2 systems according to SAE Level J 3016 standard, there

we have a verification and validation flow strategy. Where we ... collect data and

use reference sensors. We can ... send over to the tier 1 supplier for up to Level

2, then they can run their simulations. But, in the future now we will invest in

simulations by ourselves for higher automation levels.” - P10

V &V is also affected by standardization, including new and upcoming stan-
dards like TS5083.

“And also from a verification and validation point of view we are following the new

standardization, TS5083 which is gonna be the final version and release around

2023.” - P10
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7 Summary and Discussion

In this section, we summarize our results, answer our RQs, list future directions
for research and practice, and discuss threats to validity.

7.1 Requirements Engineering Topics and Challenges (RQ1)

We have identified a number of RE topics and challenges in Section 4, as sum-
marized by Figure 3. These topics and challenges can be seen as a checklist when
working with machine learning-based perception systems—a list of issues that
should be considered.

Our interviewees emphasize that the definition and limits of ODDs are an
integral part of perception systems, and these ODDs have important impacts
on data requirements and collection, confirming findings in Heyn et al. [37].
Similarly, perception systems development relies heavily on the use of scenarios
and associated edge cases. Such scenarios play a key role in dictating annotation,
data collection and simulation.

In terms of challenges, our results indicate that ODD detection and ODD
exit detection are challenging, as these require information not only about
what to detect in the environment, but also how to detect and the accuracy
of the detection confirming findings in [86]. In addition, data requirements
are highly influenced by the content of an ODD, therefore ODDs can be used
to evaluate whether a data distribution is sufficient for good machine learning
model performance. However, it is not always easy to collect the data speci-
fied by ODDs. Heyn et al. also emphasized the importance of ODDs in driving
automation systems, and noted the lack of a common definition for ODDs [36].
Our participants go further and mention the need for ODD standardization (and
efforts in that regard).

One major challenge is that simulations should reflect realistic scenarios,
echoed by Acuna et al. [1]. To ensure safe perception, the collected data and
scenarios must be thorough, and the perception system must avoid failure in all
scenarios. In addition to covering normal scenarios, it is important to specify
edge cases among scenarios, which are then used to determine data distribu-
tions. However, edge cases introduce challenges as they create confusion among
annotators and are challenging to test in reality due to safety concerns.

Breaking down requirements for data and annotations can be very diffi-
cult, and additional challenges are introduced due to requirements dependencies
and the need for multiple teams to collaborate. In general, we believe that the
gap between standard RE methods and machine learning components
is both a technical gap and a gap in training and backgrounds, as the machine
learning components are often engineered by data scientists without a software
engineering background confirming the results in [4, 80].

Difficulties in breakdown, machine learning opaqueness, as well as the intro-
duction of more elements to trace (e.g., ODDs, scenarios, training data), make it
difficult to establish traceability. These challenges add to the known challenges
with motivating and using traceability in practice [83].
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Creating specifications for data and annotations is challenging, as it is
difficult to have an upfront specification for data classes, e.g., pedestrians and
crosswalks. Furthermore, sometimes machine learning components are assigned
unrealistic and unachievable requirements. Although requirements change is
a frequently acknowledged RE problem [45], with perception systems, the level
of uncertainty and change is particularly high due to uncertainty about the
system, including machine learning, and the environmental targets. Quantify-
ing quality requirements (e.g., accuracy) is also particularly challenging in
perception systems, echoing the results of Vogelsang and Borg [80].

7.2 Quality Topics and Challenges (RQ2)

As part of the Quality theme, our interviewees have identified a number of topics
and challenges. Practitioners consider performance, reliability, robustness,
safety, and user comfort as important quality attributes. It is interesting to
note that the space of qualities that interviewees focused on is generally small,
compared to the space of NFR qualities explored in past academic work [28].

Interviewees found that for driving automation systems, performance was
difficult to measure accurately. As a means of ensuring both performance
and safety, redundancy of algorithms and sensors was important, but intervie-
wees noted that redundancy must be carefully designed, particularly in
terms of data and algorithms, and redundancy as a principle for system design
has both limitations and trade-offs.

In the context of driving automation systems, safety is particularly critical,
as also noted by [82]. Safety assurance is already challenging for conventional
driving automation systems software, and becomes even more challenging with
the inclusion of machine learning. Practitioners set safety goals, often in negoti-
ations with component suppliers. Safety negotiation with suppliers has been
a challenge, including issues of trust in components and suppliers. In ad-
dition, ensuring driving automation systems safety requires collaboration and
effort from different parties—is challenging, confirming findings in [60].Intervie-
wees also acknowledged that safety does not operate in a vacuum, recognizing
safety trade-offs with, for example, security, availability, and functionality.
Safety cases are a critical element of assuring that the safety goals are met, but
are also more complex given the uncertainty of machine learning.

To ensure safety, practitioners must comply with evolving safety and AI
standards, including established standards such as ISO26262 [42]—which are
not sufficient to account for the incorporation of machine learning. This confirms
the findings of [21, 46]—and underlines the need of newer machine learning-
specific standards such as TS5083 [43]. In general, given the wide range of stan-
dards, there have been challenges in understanding, managing and conforming
with the relevant standards. Although there are significant costs associated with
safety incidents, conforming to standards is also costly.

The large input space and non-determinism of machine learning complicate
quality assurance. Instead of specifying concrete expected behaviors in key sce-
narios, quality assurance is performed by tracking critical KPIs during the
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execution of catalogs of scenarios and performing statistical analysis on captured
observations. KPIs can be defined on multiple levels, including driving au-
tomation systems-specific KPIs and standard KPIs for machine learn-
ing components (e.g., precision and recall). KPI assessment is affected
by training and validation data, uncertainty, and simulation realism
confirming the results of [82].

7.3 Systems and Software Engineering Topics and Challenges
(RQ3)

Our interviews also revealed topics and challenges related to systems and soft-
ware engineering development methodologies for perception systems. Our find-
ings show that the presence of machine learning adds further complexity
to agile ways of working. Existing traditional and agile methodologies are not
sufficient to meet the needs of large-scale machine learning, echoing the findings
of [26]. Our interviewees apply a mix of methods using more traditional, top-
down engineering in some areas and more iterative, bottom-up development in
others. In this way, from a methodological point of view, a continuous feed-
back cycle is key to successful delivery.

The focus on safety further complicates development methods, confirming
the findings in [2], as many safety methodologies do not adequately ad-
dress machine learning. The importance of data to perception systems re-
quires changes in development practices. In particular, practitioners need data
quality methods.

Our findings show that verification and validation is more challenging
and data-intensive in the presence of machine learning. Data selection
and consideration of data quality are required to ensure effective verification. The
use and acquisition of synthetic data is an important topic, but raises data
quality issues. Rather than comparing observed behavior with specific, expected
outcomes, V&V is based on statistical analyses of quantitative metrics. To
gather sufficient observations and limit the risk to vehicle operators, verification
and validation uses simulation. However, it is a challenge to have realistic sim-
ulation, and to determine in which situations simulation can replace
real verification.

7.4 Future Directions in Research and Practice

Some of the identified challenges in RQ1-3 are relatively new from an RE and
SE perspective (e.g., ODD detection, missing edge case, the proliferation of ma-
chine learning-related safety standards, machine learning verification and valida-
tion), while others have been long recognized (e.g., traceability [83], specification
changes [45], and quality trade-offs [17]). Our findings point to a number of new
research topics. We outline these areas, highlighting examples of existing state-
of-the-art work on these topics.

Although the focus of our work has been on perception systems, we believe
that many of the topics and challenges found apply more generally to other
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domains reliant on machine learning. For example, challenges breaking down
specifications would hold due to the volatility and opaqueness of machine learn-
ing. Future work should contrast RE challenges and practices in other machine
learning-enabled domains.

ODD Methods: Our findings illustrated the importance and challenges asso-
ciated with ODD development as part of complex machine learning systems.
Existing work has focused on various aspects of ODD development as part of
autonomous driving, e.g., [20], including a consideration of safety [27, 37], but
our industrial partners still find this topic a challenge. ODD can be linked to
broader work on context in RE, e.g., [8,15], but future work should explore what
aspects of ODD context are domain-specific or general.

Data Requirements: How to capture and define requirements over data is an
issue that should be a focus of future work. Although previous work has looked at
data-driven RE, e.g., [58], this focuses more on gathering standard requirements
from sources such as social media, rather than requirements for the data needed
for machine learning. Other work has looked at data quality, but from an era
before the rise of machine learning, e.g., 12.

Requirements Traceability with Machine Learning: Tracing requirements
to system elements is essential for safety argumentation and change management,
but becomes challenging when traces must include machine learning components
like models and data. Although traceability has been heavily investigated from
a requirements perspective [78], traceability for machine learning is only just
starting to be explored, e.g., [62]. Other works look specifically at traceability
from the perspective of data provenance or data lineage as part of machine
learning [52].

Scenarios as Specifications: Given the challenges of defining up-front, com-
plete requirements for driving automation systems, practitioners have turned to
scenarios both for specifying data, and verification, including simulation. Sce-
narios have been an active topic in RE, e.g., [72], but mainly for improving the
quality of gathered requirements, including completeness, and not as a stand-in
for traditional requirements. Using scenarios as specifications data-driven devel-
opment requires further attention.

Quantifying Machine Learning Requirements: Interviewees expressed dif-
ficulties with placing specific targets on quality requirements for driving automa-
tion systems, e.g., performance requirements, echoing some of the challenges
found in recent work [28]. Although quantifying quality requirements, or met-
rics, has been an active area of investigation for many years, e.g., [13], most
work on metrics for machine learning is specific to particular qualities, e.g., un-
certainty [67]. Setting targets for such metrics is particularly difficult and context
specific.

Redundancy: Redundancy as a means to improve performance and safety arose
as a prominent issue. Redundancy has been studied in general for systems engi-
neering, e.g., [18], and has been studied from the perspective of multiple machine

12 https://iso25000.com/index.php/en/iso-25000-standards/iso-25012

https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
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learning models, e.g., ensemble learning [69]. However, more consideration can be
made at combining these perspectives, considering machine learning redundancy
at the system level.

Safety Standards and Machine Learning: Safety standards and machine
learning is an active topic, e.g., [33], but we see in our findings a proliferation
of many possible standards or frameworks which can be applicable for driving
automation systems, but the selection or integration of these multiple standards
has not been extensively explored.

Large-scale Agile with Machine Learning: Much work has been dedicated
to reporting and making recommendations concerning transitions to agile meth-
ods for large-scale systems, e.g., [48]. However, most work does not consider the
challenges introduced with machine learning. In terms of machine learning devel-
opment, methods like CRISP-ML [76], and a more recent focus on MLOps [51]
attempt to guide development. But the combination of these machine learning
and data-driven methods with established, large-scale agile methods like SAFe13

is still mainly unexplored.

Large-scale Agile with Machine Learning and Safety: Adding to the
complexity of the previous direction, such large-scale, agile, machine learning-
enabling methods should also be usable in safety-critical contexts. Safety chal-
lenges as part of large-scale agile have been investigated [75], but not in an
explicit machine learning context.

Verification and Validation for Machine Learning: Testing and related
activities for machine learning is already an active area of investigation [84];
however, we feel we should highlight this direction, in particular the areas of
synthetic data curation and simulation, as it was raised by several interviewees.
Others have begun to investigate the utility of synthetic data, e.g., [40], but
further investigations in a driving automation systems or safety-critical contexts
are needed.

7.5 Threats to Validity

Internal Validity: We internally peer-reviewed the interview guide and con-
ducted a pilot interview to improve the guide and process. We sent a preparation
email to all the interview participants with the details and purpose of the in-
terview study. To maintain consistency in the interview process, at least three
authors conducted each interview, with two authors present in all interviews.

All interviews were conducted in English, and the auto-generated transcripts
were ‘fixed’ by authors by listening to audio recordings and correcting any tran-
scription errors. Note that the working language of each company was English,
so the language should not have created barriers.

Although qualitative coding always comes with some bias, we mitigated this
threat by following established literature [71], coding in multiple rounds, using

13 https://scaledagileframework.com/

https://scaledagileframework.com/
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inductive and deductive codes, and having multiple authors participate in each
round of coding, with in-depth discussion on code meanings and assignments.

External Validity: We used a mixture of purposive and snowball sampling.
As our study needed a certain set of expertise to answer our questions, we
could not conduct random sampling, using our networks and their contacts.
Still, due to the size of the study, with participants covering a wide variety of
roles with varying experience levels, covering differing company roles and sizes in
the perception system ecosystem, we believe we have a relatively representative
sample. Furthermore, we argue that we reached a sufficient point of saturation
with our interview data, as we noticed a sharp decline in emerging codes after
analyzing the fifth group interview.

Note that one cannot link participants to interviews and companies, this is
done deliberately to protect the anonymity of our participants. Although this
may affect transferability of our results, we feel this level of anonymity does
not greatly hurt our results. Though our study results are limited to perception
systems in DAS, we argue that some findings can apply to other safety-critical
or perceptions systems. This applicability should be explored in future studies.

8 Conclusion

Our study investigated requirements engineering, quality, and systems and soft-
ware engineering topics and challenges during the development of DAS. We
interviewed 19 participants from five companies and identified a number of top-
ics and challenges that have a major impact on the specification, development,
and quality of DAS. The results of this study offer guidance to practitioners and
suggest future research directions in the intersection of requirements engineer-
ing, software quality, development methodologies, and machine learning to help
mitigate the challenges practitioners are facing.

Acknowledgements: Support for this project was provided by Vinnova pre-
study 2021-02572. We also thank all interview participants.
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