
0 7 4 0 - 7 4 5 9 / 2 4 © 2 0 2 4 I E E E 	 MARCH/APRIL 2024 | IEEE SOFTWARE � 99

TESTING AND LOG analysis can be
effort intensive, just to say the least.
Finding bugs in complex components
(such as neural networks for im-
age analysis) requires new methods
for finding the right data and new
processes for doing so. At the same
time, generative artificial intelligence
(AI)-based tools such as Stable Dif-
fusion, ChatGPT, and autoencod-
ers can be very useful for generating
new data and new test scenarios, ei-
ther freeing up valuable testing re-
sources or increasing the amount of
testing performed with the same re-
sources. A similar observation holds
for log analysis: this activity is time
consuming and sometimes even dif-
ficult to perform with traditional
methods but not with generative AI.

Therefore, in this month’s edi-
tion of the “Practitioner’s Digest,” we
summarize recent research on testing,
dubbing, and log analysis from two
conferences: the 38th IEEE/ACM In-
ternational Conference on Automated
Software Engineering (ASE 2023) and
the 16th IEEE International Confer-
ence on Software Testing, Verification
and Validation. We hope the papers
will inspire you to use generative AI

in a safe, sustainable, and responsi-
ble way. Feedback or suggestions are
welcome. In addition, if you try or
adopt any of the practices included
in the column, please send us and the
authors of the paper(s) a note about
your experiences.

Generative AI and Fuzzying
Image Data
Effective training and use of deep
learning techniques depends heav-
ily on the data used to train the net-
works. The general principle is that

higher data volume, more data diver-
sity, and more truthful data lead to
better network performance. How-
ever, the reality is that the data are
scarce and often not as diverse as
we would have liked. This is where
data augmentation techniques come
into play, often using simple shape
or color transformations, sometimes
adding a bit of noise to the data. In
the paper “Semantic Data Augmenta-
tion for Deep Learning Testing Using
Generative AI,” Sondess Missaoui,
Simos Gerasimou, and Nicholas

Testing, Debugging,
and Log Analysis With
Modern AI Tools
Miroslaw Staron , Silvia Abrahão , Gregory Gay , and Alexander Serebrenik

Digital Object Identifier 10.1109/MS.2023.3339408
Date of current version: 22 February 2024

Editor: Silvia Abrahão
Universitat Politècnica de València
sabrahao@disc.upv.es PRACTITIONERS’

DIGEST
Editor: Miroslaw Staron
Chalmers University of Technology
and University of Gothenburg
miroslaw.staron@cse.gu.se

©SHUTTERSTOCK.COM/GIRAFCHIK

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on April 29,2024 at 06:29:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9052-0864
https://orcid.org/0000-0003-3580-2014
https://orcid.org/0000-0001-6794-9585
https://orcid.org/0000-0002-1418-0095
mailto:sabrahao@disc.upv.es
mailto:miroslaw.staron@cse.gu.se

100	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

PRACTITIONERS’ DIGEST

Matragkas present a new technique,
GenFuzzer, that uses generative AI
to augment images. The augmented
images are still within the domain
space of the dataset but differ signifi-
cantly from the existing images. The
authors found that GenFuzzer with
Stable Diffusion generative AI is able
to effectively generate high-fidelity
synthetic test inputs. The presented
approach increased the testing effec-

tiveness of the studied networks by
up to 26%. In conclusion, whatever
we think of generative AI, it seems
effective in improving mundane tasks
such as fuzzying images. Thanks to
community-driven repositories such
as Hugging Face, these models are
becoming increasingly accessible.
The paper was presented at the New
Ideas and Emerging Results Track
of ASE 2023. Access it at https://
tinyurl.com/bdsauwez.

ChatGPT and Differential
Prompting
Finding failure-inducing test cases is a
primary objective in software testing.
It is, however, challenging in practice.
In the paper “Nuances Are the Key:
Unlocking ChatGPT to Find Fail-
ure-Inducing Tests With Differential
Prompting,” Tsz-On Li, Wenxi Zong,
Yibo Wang, Haoye Tian, Ying Wang,
Shing-Chi Cheung, and Jeff Kramer
present the first study to investigate

the use of ChatGPT in finding a failing
test input and its expected output for
failure-inducing test cases. They ex-
perimented using ChatGPT with both
buggy and correct Python programs
in QuixBugs, a common benchmark
for studying the use of large language
models for software engineering tasks.

The experiment shows that Chat-
GPT has a relatively low success rate
(28.8%) in finding failure-inducing

test cases for buggy programs. Never-
theless, the authors make an observa-
tion that the program intent inferred
by ChatGPT is insensitive to buggy
nuances in program code. It points
out that ChatGPT can mostly infer the
correct intention of a buggy program
for common coding tasks on which
ChatGPT has been well trained. Le-
veraging the observation, an auto-
mated technique, called differential
prompting, is devised. It automati-
cally deduces the failing test inputs
and their expected outputs for fail-
ure-inducing test cases by generating
alternative program implementations
that fulfill the inferred intention using
ChatGPT and applying the deduced
test cases to the original program.

The evaluation result shows that
differential prompting significantly
outperforms the state-of-the-art
baselines in finding failure-inducing
test cases. The authors provide a rep-
lication package at https://differential

-prompting.github.io/ to facilitate
future research. The paper was pre-
sented at the Research Papers Track
of ASE 2023. Access it at https://
arxiv.org/pdf/2304.11686.pdf.

Practitioners’ Expectations
on the Readability of Log
Messages
Although logging is an inherent
part of software development, it is
not exactly clear what developers
expect from log messages. This is
the challenge faced by Zhenhao Li,
An Ran Chen, Xing Hu, Xin Xia,
Tse-Hsun (Peter) Chen, and Weiyi
Shang, in their paper “Are They
All Good? Studying Practitioners’
Expectations on the Readability of
Log Messages.” In their study the
authors first conducted a series of
interviews with software practitio-
ners to ask them about aspects of
log messages that they consider im-
portant or examples of confusing or
unhelpful log messages.

From these interviews, the authors
identified structure, information, and
wording as the three main facets of
practitioners’ expectations. Among
the three facets, information is consid-
ered the most important. The authors
then manually analyzed the structure,
information, and wording of a sample
of log messages from nine large open
source projects, noting that the read-
ability of nearly 40% of the log mes-
sages is inadequate with respect to one
or more facets. The adequacy of the log
messages was highest when the mes-
sages were between six and 10 words;
for shorter or longer messages, it was
lower. Next, the authors used the sam-
ple messages to survey practitioners
asking them to evaluate practices that
can help improve the structure, in-
formation, and wording of the mes-
sages. These practices included, for
example, having clear boundaries and

Finding bugs in complex components
(such as neural networks for image

analysis) requires new methods
for finding the right data and new

processes for doing so.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on April 29,2024 at 06:29:34 UTC from IEEE Xplore. Restrictions apply.

https://tinyurl.com/bdsauwez
https://tinyurl.com/bdsauwez
https://differential-prompting.github.io/
https://differential-prompting.github.io/
https://arxiv.org/pdf/2304.11686.pdf
https://arxiv.org/pdf/2304.11686.pdf

	 MARCH/APRIL 2024 | IEEE SOFTWARE � 101

PRACTITIONERS’ DIGEST

distinctions among items and using pa-
rameterized logs to present variables,
writing log messages that are self-ex-
planatory and independent of other log
messages, following the convention of
written language and using impartial
and neutral wording.

Finally, the authors examined
ways in which the adequacy of log
messages can be automatically as-
sessed and showed that both deep
learning and machine learning ap-
proaches achieve promising results,
suggesting that practitioners could
use techniques such as bidirectional
long-short term memory, random
forest, and decision tree to support
the automatic assessment of log mes-
sage quality. The paper was pre-
sented at the Research Papers Track
of ASE 2023. Access it at https://
ginolzh.github.io/papers/ASE2023_
Log_Message_Readability.pdf.

ChatGPT and Log Parsing
Log files constitute an important
part of debugging and maintaining
large-scale software systems. They
provide rich and pervasive informa-
tion but can also be overwhelming as
they are inherently unstructured be-
cause developers usually record logs
using free text for convenience and
flexibility. In the paper “Log Parsing:
How Far Can ChatGPT Go?,” Van-
Hoang Le and Hongyu Zhang study
how we can use ChatGPT to analyze
log files. In particular, they studied
whether it is possible to use so-called
few-shot learning to teach ChatGPT
what to look for in the log file.

The presented study used the
GPT-3.5-turbo model though the
OpenAI application programming
interface (API). The results show that
with zero-shot prompts, i.e., with the
vanilla ChatGPT prompt, the model
is on par with the best existing base-
lines. With four examples (four-shot

learning), ChatGPT outperforms all
other models, with perfect results
for one of the systems studied and with
an average general accuracy of 0.76.
This means that when provided with
four examples of good answers, the
model can correctly replicate the same
pattern in new log files. In terms of
editing distance, the four-shot model

performed best, with an average edit-
ing distance of 3.2. This is impressive
for such a generic model as ChatGPT,
which was not designed for this task.

The only limitation, however,
is the fact that ChatGPT cannot
recognize domain-specific elements
of log files, which means that for
these cases, the output would need
additional processing. In conclusion,
ChatGPT can help debug and analyze
large-scale software systems, thus eas-
ing the tedious task of software main-
tenance. The paper was presented
at the New Ideas and Emerging Re-
sults Track of ASE 2023. Access it at
https://arxiv.org/pdf/2306.01590.pdf.

Adaptive REST API Testing
APIs act as the bridge between dif-
ferent software applications. When
it comes to testing web applications,
REST API testing is a key strategy
to evaluate the efficiency of REST-
ful APIs. However, it can be chal-
lenging because of the large search

space to be explored due to the large
number of operations, possible exe-
cution orders, dependencies be-
tween parameters, and constraints
associated with the values of the in-
put parameters.

In the paper “Adaptive REST API
Testing With Reinforcement Learn-
ing,” Myeongsoo Kim, Saurabh

Sinha, and Alessandro Orso present a
black-box testing approach (adaptive
REST API testing with reinforcement
learning [ARAT-RL]) that leverages
reinforcement learning to prioritize
operations and parameters for explo-
ration, dynamically construct key–
value pairs from response and request
data, analyze these pairs to inform de-
pendent operations and parameters,
and use a sampling-based strategy to
efficiently process dynamic API feed-
back and adapt its exploration based
on the gathered information.

To evaluate ARAT-RL, the authors
conducted a set of empirical studies
using 10 RESTful services and com-
pared its performance with that of
three state-of-the-art REST API test-
ing tools: RESTler, EvoMaster, and
Morest. These tools were compared in
terms of effectiveness, efficiency, and
fault detection capability. The results
show that the proposed approach and
tool outperformed the three tools con-
sidered in terms of the branch, line,

With four examples (four-shot
learning), ChatGPT outperforms all

other models, with perfect results for
one of the systems studied and with
an average general accuracy of 0.76.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on April 29,2024 at 06:29:34 UTC from IEEE Xplore. Restrictions apply.

https://ginolzh.github.io/papers/ASE2023_Log_Message_Readability.pdf
https://ginolzh.github.io/papers/ASE2023_Log_Message_Readability.pdf
https://ginolzh.github.io/papers/ASE2023_Log_Message_Readability.pdf
https://arxiv.org/pdf/2306.01590.pdf

102	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

PRACTITIONERS’ DIGEST

and method coverage achieved, re-
quests generated, and faults detected.
The authors also conducted an ablation
study to assess the individual effects
of prioritization, dynamic feedback
analysis, and sampling on the overall
effectiveness of ARAT-RL. The results
indicate that each of the components
contributes to the overall effectiveness
of the tool and that the prioritization
mechanism plays an important role in
improving the performance of the tool
in terms of code coverage achieved and
faults detected. Overall, these results
suggest that by using ARAT-RL, de-
velopers and testers can improve their

REST API testing strategies and deliver
high-quality APIs. ARAT-RL experi-
ment infrastructure and data are avail-
able at https://github.com/codingsoo/
ARAT-RL. The paper was presented
at the Research Papers Track of ASE
2023. Access it at https://arxiv.org/
pdf/2309.04583.pdf.

Introducing Bugs and
Patching: Same, Same
but Different
Extensive research has been con-
ducted on mutation testing, a practice
in which faults are introduced into
code to assess the robustness of a test

suite, and program repair, in which
tools attempt to produce patches that
fix faults. The two areas are often
studied in isolation. However, in the
paper “The Inversive Relationship
Between Bugs and Patches: An Em-
pirical Study,” Jinhan Kim, Jongchan
Park, and Shin Yoo make the obser-
vation that both introducing faults
and patching them are fundamen-
tally code changes. Thus, they hypoth-
esize that these two actions do not
differ syntactically.

Specifically, the authors empiri-
cally assess this hypothesis by com-
paring patches and faulty commits
using clustering and pattern anal-
ysis. They found that up to 70%
of patches and faults can be clus-
tered based on the change patterns
they contain and that 44% of code
changes can be mapped into pat-
terns. In other words, automated
practices that introduce and fix
faults are intrinsically related, and
advances in one or the other field
can inform the other.

This finding is especially relevant
for machine-learning-based tools,
which infer patterns (for fixing or
mutating code) from real-world soft-
ware commits. Instead of learning
only from one or the other source,
tools could infer patterns from both
(e.g., a repair tool could be trained
on both fault-fixing commits and ad-
ditional patches created by reversing
fault-introducing commits). The au-
thors demonstrate this by inverting
the use of mutation and automatic
program repair tools and find that,
for example, the TBar repair tool can
produce more fault couplings than
state-of-the-art mutation tools. The
study was presented at the 2023 IEEE
International Conference on Software
Testing, Verification and Validation
Workshops. Access it at https://arxiv.
org/pdf/2303.00303.pdf.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

MIROSLAW STARON is a professor in the Interaction Design and

Software Engineering Division, Computer Science and Engineering

Department, Chalmers University of Technology and the University

of Gothenburg, SE-412 96 Gothenburg, Sweden. Contact him at

https://www.staron.nu or miroslaw.staron@cse.gu.se.

SILVIA ABRAHÃO is a full professor of software engineering in

the Department of Computer Systems and Computation, Universitat

Politècnica de València, 46022 Valencia, Spain. Contact her at

https://sabrahao.wixsite.com/dsic-upv or sabrahao@dsic.upv.es.

GREGORY GAY is an associate professor in the Interaction

Design and Software Engineering Division, Computer Science and

Engineering Department, Chalmers University of Technology and the

University of Gothenburg, SE-412 96 Gothenburg, Sweden. Contact

him at http://greggay.com or greg@greggay.com.

ALEXANDER SEREBRENIK is a professor at Eindhoven Univer-

sity of Technology, 5600 MB Eindhoven, The Netherlands. Contact

him at a.serebrenik@tue.nl.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on April 29,2024 at 06:29:34 UTC from IEEE Xplore. Restrictions apply.

https://github.com/codingsoo/ARAT-RL
https://github.com/codingsoo/ARAT-RL
https://arxiv.org/pdf/2309.04583.pdf
https://arxiv.org/pdf/2309.04583.pdf
https://arxiv.org/pdf/2303.00303.pdf
https://arxiv.org/pdf/2303.00303.pdf
https://www.staron.nu
mailto:miroslaw.staron@cse.gu.se
https://sabrahao.wixsite.com/dsic-upv
mailto:sabrahao@dsic.upv.es
http://greggay.com
mailto:a.serebrenik@tue.nl

	099_41ms02-practdigest-3339408.pdf

