
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Exploring the Role of Automation in Duplicate Bug Report
Detection: An Industrial Case Study

Malte Götharsson
Karl Stahre

University of Gothenburg
Gothenburg, Sweden

[gusgothama,gusstahrka]@student.gu.se

Gregory Gay
Francisco Gomes de Oliveira Neto
Chalmers and University of Gothenburg

Gothenburg, Sweden
greg@greggay.com,francisco.gomes@cse.gu.se

ABSTRACT
Duplicate bug reports can increase technical debt and tester work-
load in long-running software projects. Many automated techniques
have been proposed to detect potential duplicate reports. However,
such techniques have not seen widespread industrial adoption. Our
objective in this study is to better understand how automated tech-
niques could effectively be employed within a tester’s duplicate
detection workflow. We are particularly interested in exploring the
potential of a human-in-the-loop scenario where tools and humans
work together to make duplicate determinations.

We have conducted an industrial case study where we character-
ize the current tester workflow. Based on this characterization, we
have developed Bugle—an automated technique based on a complex
language model that suggests potential duplicates to testers based
on an input bug description that can be freely reformulated if the
initial suggestions are irrelevant. We compare the assessments of
Bugle and testers of varying experience, capturing how often—and
why—opinions might differ between the two, and comparing the
strengths and limitations of automated techniques to the current
tester workflow. We additionally examine the influence of knowl-
edge and biases on accuracy, the suitability of language models,
and the limitations affecting duplicate detection techniques.

CCS CONCEPTS
• Software and its engineering→ Software post-development
issues; Collaboration in software development; Software ver-
ification and validation; Software maintenance tools.

KEYWORDS
Bug Reports, Duplicate Bug Reports, Automated Duplicate Bug
Report Detection, Natural Language Processing, Software Testing
ACM Reference Format:
Malte Götharsson, Karl Stahre, Gregory Gay, and Francisco Gomes de
Oliveira Neto. 2024. Exploring the Role of Automation in Duplicate Bug Re-
port Detection: An Industrial Case Study. In Proceedings of 5th International
Conference on Automation of Software Test (AST 2024). ACM, New York, NY,
USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AST 2024, April 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
During the development and evolution of a software project, de-
velopers, testers, and users of the project1 will inevitably witness
bugs—cases where the actual behavior of the software deviates from
expectations [6]. These incidents are then documented by filing a
bug report describing the deviation and the context that it occurred
within [21]. Bug reports play an essential role in the improvement
of software quality [21].

As the lifespan and popularity of a project grows, so does the
number of bug reports—making the process of evaluating, prioritiz-
ing, and assigning bug reports time-consuming and laborious [1].
Often, there can be multiple bug reports describing the same issue,
known as duplicate bug reports [11]. Duplicate reports are not al-
ways harmful, since the information contained in duplicates is often
complementary [2, 7]. However, their continuing presence adds to
the technical debt of the project—making it harder to manage the
collective repository of bug reports, adding noise to analyses and
prioritization efforts, and potentially wasting the time of testers in
forcing them to examine potentially-solved issues. Therefore, there
is a natural desire to automatically identify potential duplicates.

Over the past two decades, a number of automated detection
approaches have been proposed in research literature (e.g., [5, 8, 9,
11, 15, 20]). However, we have observed that the use of such tools
has not become standard in an industrial setting—instead, testers
tend to make manual assessments based on keyword searches,
existing knowledge, and intuition.

Our objective in this study is to better understand how automated
techniques could effectively be employed within a tester’s duplicate
detection workflow. We are particularly interested in exploring the
potential of a human-in-the-loop scenario where tools and humans
work together to make duplicate determinations [5]. Therefore,
we are interested in characterizing the current tester workflow,
comparing the assessments of automated techniques and testers,
capturing how often—and why—automated techniques and testers’
opinions might differ, and comparing the strengths and limitations
of automated techniques to the current tester workflow.

To reach this objective, we conducted a case study at Test Scouts—
a testing consulting company—where we performed an interview
study to understand the typical workflow of a tester evaluating
duplicate bug reports. Based on the results of this interview study,
we have developed Bugle—a tool for duplicate bug report detec-
tion2. Bugle utilizes language models, based on the SBERT archi-
tecture [14], to identify bug reports with a high semantic textual
similarity to the bug description provided as a query by the tester.
1For simplicity, we refer to all bug report submitters as “testers” in this study.
2Bugle is available from https://github.com/Maltegos/Thesis/.

1

https://orcid.org/0009-0000-6601-8906
https://orcid.org/0009-0008-7499-4788
https://orcid.org/0000-0001-6794-9585
https://orcid.org/0000-0001-9226-5417
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/Maltegos/Thesis/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

AST 2024, April 2024, Lisbon, Portugal Götharsson and Stahre, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Testers are then able to confirm or reject the identified potential
duplicates and reformulate their query at any time. In this study,
we deploy Bugle in the described human-in-the-loop scenario—
offering the potential efficiency benefits of automation through
Bugle while also taking advantage of testers’ knowledge and intu-
ition in the loop to further improve the effectiveness and efficiency
of the duplicate detection process.

We evaluated Bugle in an observation study where we assessed
the accuracy of human testers and Bugle in identifying duplicate
reports. We also assessed how often—and why—testers and Bugle
made different assessments. On average, Bugle retrieves the seeded
duplicate report based on the participants’ queries in 94.44% of
cases. The participants’ average accuracy in correctly identifying
the duplicate from the retrieved reports was 75.00%. However, on
average, the participants do not agree with Bugle’s recommenda-
tions of potential duplicates in 38.90% of cases. The most common
reasons for disagreement are semantic differences in descriptions,
insufficient information in either the provided or recommended
descriptions, and overlooking recommendations made by the tool.
We additionally examine the influence of knowledge and other
biases on the accuracy of duplicate detection, the suitability of lan-
guage models for duplicate detection, and the limitations affecting
duplicate detection techniques.

This study contributes to our understanding of current duplicate
detection workflows employed in industry, the strengths and limi-
tations of automated assessment tools, and the reasons why human
judgement may differ from automated assessments. We also offer
Bugle as an example of a human-in-the-loop detection tool that
combines the benefits of automation and human experience and
intuition. These contributions offer important lessons to inform fu-
ture automated approaches to duplicate detection as well as future
studies on duplicate detection workflows and processes.

2 BACKGROUND AND RELATEDWORK
In the context of software, a “bug” refers to an unexpected defect,
fault, flaw, or imperfection [6]. The objective of a bug report is
to describe a bug accurately enough so that it can provide testers
with sufficient information for it to be resolved. Typically, a bug
report consists of a subset of the following items: steps to reproduce,
observed and expected behavior, stack traces, test cases, screenshots,
code examples, and a summary [21]. Once a bug report has been
filed, it is typically stored in a repository system, such as Bugzilla or
Jira [9]. Due to the absence of widely-accepted industry standards
for bug report creation and their natural language format, identical
issues may be described differently, resulting in duplicate bug re-
ports. Duplicates can comprise a significant portion of filed reports;
for instance, the Mozilla and Eclipse projects have experienced
duplicate rates of up to 30% and 20%, respectively [2].

The problem of detecting duplicate bug reports has been investi-
gated since the early 2000s. A systematic mapping study covering
research from 2007 to 2017 categorized approaches into three types:
top-N/ranking-based methods providing ranked lists of potential
duplicates, classification approaches predicting based on historical
data, and decision-making approaches comparing pairs of bug re-
ports [11]. Notably, the study revealed that top-N/ranking-based
approaches generally demonstrated superior performance.

Many early approaches were based on similarity measurements.
Hiew proposed a recommendation system based on tf-idf and co-
sine similarity for duplicate detection [9]. Runeson et al. compared
similarity metrics such as cosine, Dice, and Jaccard distance, find-
ing that cosine similarity and focusing on textual summaries and
descriptions and discarding other attributes of the reports yielded
the highest accuracy [15]. Wang et al. report improved accuracy
by adding execution information to the textual summaries and
descriptions [19]. However, the feasibility of this approach was
limited, since special tools are often needed to collect the required
information. Sun [17] echoes that execution information is often
hard to collect or not available.

Recent approaches incorporate machine learning and natural lan-
guage processing. Kang improved recall over tf-idf using the model
Doc2Vec [11], as the neural network could infer context from text
segments rather than comparing individual words. Xie et al. com-
bined convolutional neural networks with domain-specific features
extracted from bug report repositories [20]. Recerntly, Isotani [10]
and Carneiro [4] both perform duplicate detection using complex
language models based on the SBERT architecture [14]. Haering
et al. also use deep learning to map app reviews to bug reports to
incorporate user feedback into the bug fixing process [8].

Chaparro et al. suggested that testers should be involved in du-
plicate bug report detection, proposing an approach where—after
the top-N duplicate suggestions are retrieved—a tester can refor-
mulate the report description and re-query the set of reports [5].
This human-in-the-loop approach yielded significantly improved
accuracy after reformulation of queries.

This study builds on, and extends, past research. Based on Kang’s
findings [11], we have developed a a top-N/ranking-based approach.
As suggested by Runeson [15], Wang [19] and Sun [17], we focus on
natural language elements of bug reports, as those yield the most
context for duplicate detection. Based on the success of ML-based
approaches [4, 8, 10, 11, 20], as well as cosine similarity [8, 9, 15],
we utilize both SBERTmodels and cosine similarity in our approach.
We particularly extend past work by examining the role and judge-
ments of human testers in the process of duplicate detection, with
a particular focus on cases where testers and tools disagree and
cases where automated methods result in false recommendations.

3 METHODS
Our aim is to enhance the integration of automated duplicate bug
report detection techniques into testers’ workflows. To achieve
this, we examined existing literature and typical tester workflows,
extracting requirements for an effective automated detection tool.
We propose Bugle, a natural language processing-based tool, and
assess its performance by having a group of testers evaluate its
suggestions. Our analysis focuses on understanding the strengths
and limitations of automated tools, as well as the reasons behind
discrepancies between automated techniques and testers’ opinions.
We specifically seek to address the following questions:

• RQ1: What is the typical workflow of testers when evaluat-
ing potential duplicate bug reports?

• RQ2: How often do testers disagree with the recommenda-
tions made by Bugle?

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Exploring the Role of Automation in Duplicate Bug Report Detection: An Industrial Case Study AST 2024, April 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Literature
Study

Extract Requirements for
Tool DesignDevelop Tool

Search
Databases

Software tool

Snowball
Papers

Definitions and
Current Workflow

(Literature)

Extract limitations of
automated duplicate bug

report techniques

RQ1: What is the typical
workflow of testers when

evaluating duplicate bug reports?

Conduct
Interviews

Select
Participants

Perform a Thematic
Analysis

Current Workflow
(Theme Map)

Observation
Study

Select
Participants

Reason and
Rate of

Disagreement

Conduct
Observations

Interview
Study

RQ3: What are the reasons for
why testers disagree with the

duplicate recommendation made
by our tool?

RQ2: How often do testers
disagree with the

recommendations made by our
tool?Perform a

Thematic
Analysis

Collect
statistics on

tool

Figure 1: Overview of the study, including activities (rounded
rectangles) and corresponding deliverable (shaded).

Table 1: Overview of interview participants.

ID Current and Past Roles Yrs. Experience

P1 Test Lead, Test Architect, Project Manager 24
P2 Test Lead, Embedded Test, Automated Test 12
P3 Test Lead, Test Architect 19
P4 Test Lead, Manual test, Automated Test 9
P5 Test Lead, Requirement Analyst 22
P6 User Acceptance Testing, Test Management 16
P7 Test Lead, Automated Test, Test Education 26

• RQ3: What are the reasons why testers disagree with Bu-
gle’s recommendations?

This study is conducted as an exploratory case study at Test
Scouts, a consultant company with approximately 20 employees
that has provided software testing services since 2015. Test Scouts
works with agile test management, test automation, and develop-
ment of test environments. An exploratory case study is suitable
since our objective is to gain new insights from a realistic situa-
tion [16]. An outline of the study is shown in Figure 1. This section
discusses the methodology for addressing the research questions.
An overview of the tool, Bugle, is provided in Section 4.

3.1 Duplicate Detection Workflow (RQ1)
Data Collection: To characterize the typical workflow of testers
when evaluating duplicate bug reports, we: (i) analysed past re-
search, and (ii) performed semi-structured interviews with seven
testers at Test Scouts who have taken part in duplicate bug report
assessment. An overview of the participants is provided in Table 1,
whereas our interview guide is shown in Table 2. Participants were
sought for consent prior to recording interviews, with explicit in-
formation provided about anonymization procedures, and they
retained the option to withdraw from the study at any point.
Data Analysis: We conducted a thematic analysis of the tran-
scribed interviews, following the approach of Braun and Clarke [3]—
familiarising ourselveswith the data, generating initial codes, search-
ing for themes, reviewing themes, defining and naming themes, and
producing the report. The first two authors worked individually to
extract relevant parts of the transcripts (i.e., codes). Then, together,
those authors checked for agreement to ensure consistency in the
interpretation. After analyzing our consistency across interviews,

Table 2: Interview questions.

No. Question

Q1 How many years of experience do you have in the IT industry?
Q2 How many years of experience do you have as a software tester?
Q3 What is your role as a tester?
Q4 In your experience, what is the typical workflow of working with

bug reports?
Q5 In your experience, what is the typical workflow of working with

duplicate reports?
Q6 What tools and techniques do you use for detecting duplicate bug

reports?
Q7 What does the workflow of that tool and/or techniques look like?
Q8 How are the results given by your current technique evaluated?
Q9 What role does your intuition play in the process of evaluating

duplicates?
Q10 Do you question the results given by the duplicate bug report

tool/technique?

Table 3: Overview of observation participants.

ID Current and Past Roles Yrs. Experience

Group 1 (Exposure to Dataset, Duplicate Exp.)

H1 Test Engineer, Test Framework, Production Test 5 years
H2 Test Lead, Embedded Test, Automated Test 12 years
H3 Test Engineer, Performance tester 3 years

Group 2 (No Exposure, Duplicate Exp.)

H4 Test Lead, Manual test, Automated Test 9 years
H5 System tester 4 years
H6 User Acceptance Testing, Test Management 16 years
H7 Test Lead 7 years

Group 3 (No Exposure, No Duplicate Exp.)

H8 Test Automation <1 year
H9 Test Automation <1 year

we had 71% agreement, which all authors agreed was acceptable
to move forward with independent analysis of the remaining tran-
scripts. We iteratively grouped those codes into themes until no
additional logical groupings could be made.

3.2 Tester and Tool Consensus (RQ2, RQ3)
Data Collection: To answer RQ2 and RQ3, we conducted an ob-
servational study at Test Scouts to analyze the frequency of dis-
agreement between testers and Bugle on whether a bug report
description is a duplicate as well as the reasons why they disagree.
Bugle was pre-loaded with a dataset of 1548 industrial bug reports
from an issue tracking repository for one of Test Scouts’ clients.
We conducted this analysis with nine Test Scouts employees, de-
scribed in Table 3. Participants were divided into groups based on
whether they had past experience with (1) issues in the dataset and
(2) with duplicate detection. Group 1 had prior experience with
both. Groups 2 and 3 had no prior exposure to the dataset. Group 2
had previous experience with duplicate detection and Group 3 did
not have any experience.

To simulate a scenario in which the tester was given information
about an issue and could be tasked with searching for potential
duplicates using the tool, we prepared four issue descriptions to

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

AST 2024, April 2024, Lisbon, Portugal Götharsson and Stahre, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

be used during the observations. For three of these, we chose real
bug descriptions from the client dataset, and represented them in
the format of (i) one short text outlining a matching requirement,
(ii) one short text outlining the expected behavior, and (iii) one
short text outlining the observed behavior. These textual issue
representations were constructed to be vague enough not to give
away the true duplicate, but still contained enough information to
be able to identify them as duplicates if inspected carefully. We also
constructed one issue description in the same format that did not
have any matching duplicate bug report in the dataset to create a
situation where the tool would give an incorrect recommendation.

These issue descriptions were printed on paper and given to the
testers during the observations so they would not simply copy and
paste the text into the tool. Rather, these served as visual input
for the participant to construct their own semantically-similar in-
put description based on the provided description. We asked the
participants to (i) read and familiarize themselves with the issue
descriptions one by one, (ii) formulate their own input to the tool,
and (iii), judge the relevance of the recommendations given by the
tool and provide an explanation for their reasoning.

We consider an issue description to be labelled as a duplicate if a
participant (i) linked the issue description to a recommended bug re-
port, (ii) added complementary information to a recommended bug
reports, or (iii), expressed the need to investigate a recommended
bug reports further (e.g. by communicating with the creator of
a recommended duplicate). Conversely, we consider an issue de-
scription as being labelled as not being a duplicate if a participant
recommended creating a new report.

Observations were made following a think aloud protocol. Dur-
ing the observations, we collected qualitative and quantitative data
while letting the participants use the tool. We recorded the audio,
video and screen of the participants while they solved each of the
four tasks. During the observations, the participants had a high
degree of awareness of being observed and the researchers had a
high degree of interaction with the participants [16].

When participants judged the relevance of the recommenda-
tions, we collected quantitative data regarding the agreement or
disagreement between the participant and the tool for each issue
description. In addition, we measured the accuracy of the tool in re-
trieving correct duplicates based on the participants’ input and the
participants’ accuracy in detecting duplicates based on the tool’s
output. The possible outcomes of the observations were labeled as:

(1) True Positive: tool gave a correct recommendation.
(a) TPA: Participant agreed with the recommendation.
(b) TPD: Participant disagreed with the recommendation

(2) False Positive: tool gave an incorrect recommendation.
(a) FPA: Participant agreed with the recommendation.
(b) FPD: Participant disagreed with the recommendation.

Since one of the issue descriptions did not correspond to any
actual issue in the dataset, all FPD for that issue were marked as
correctly identified since the participants successfully identified
the issue as a new bug report.

Data Analysis:We calculated the accuracy of participants as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 =
TPA + FPD

TPA + TPD + FPA + FPD
(1)

Figure 2: The user interface of Bugle. The output text is
blurred to maintain confidentiality.

We also calculated the corresponding accuracy of Bugle in retrieving
the correct duplicates as follows:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑜𝑜𝑙 =
TPA + TPD

TPA + TPD + FPA + FPD
(2)

Furthermore, we measured the rate of disagreement between par-
ticipants and the tool as:

𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =
FPD + TPD

TPA + TPD + FPA + FPD
(3)

We conducted a thematic analysis of the qualitative data to
answer RQ3, again following the approach outlined by Braun &
Clarke [3]. The first two authors extracted quotes and behaviors
relevant to answering the research question from recordings and
notes from the observation sessions. During this process, we partic-
ularly paid attention to situations where the participants disagreed
with the recommendations made by the tool. We individually ex-
tracted and compared relevant codes with 81% agreement. We then
iteratively grouped codes into overarching themes.

4 BUGLE - DESIGN AND IMPLEMENTATION
Based on the results of RQ1 (Section 5.1) and key findings from
related work (Section 2), we have developed Bugle—a stand-alone
web application for automated duplicate bug report detection. Bugle
is a ranking-based approach [11] that allows testers to provide a
textual issue description as input and outputs the six most similar
issue descriptions from a repository of bug reports.

Bugle uses Python and the Django web framework. Figure 2
displays Bugle’s user interface, where a search bar is used to enter a
query. Based on past findings [15, 17, 19] and the workflow derived
from answering RQ1, the input is expected to conform to the textual
description field of a bug report. Bugle lists the six bug reports from
the dataset with the highest contextual similarity3. This result is
updated in real-time based on the current contents of the query.
As suggested by Chaparro et al. [5], the tester can reformulate the
input query at any time.
Bug Report Data and Semantic Textual Similarity: Bugle is
data-agnostic, i.e., it functions independently of the bug report
dataset used. Common issue tracking systems, such as Bugzilla
3The choice to display exactly six reports was made based on suggestions from Test
Scouts testers, who felt that more reports displayed at once would be distracting.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Exploring the Role of Automation in Duplicate Bug Report Detection: An Industrial Case Study AST 2024, April 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 4: Evaluation of open source datasets on pre-trained models.

Eclipse Mozilla Firefox

Model No. of duplicates Identified Duplicates Accuracy No. of Duplicates Identified Duplicates Accuracy

paraphrase-Mini LM-L3-v2 14315 3016 21.07% 10808 754 6.98%
multi-qa-MiniLM-L6-cos-v1 14315 4724 33.08% 10808 1284 11.88%

all-mpnet-base-v2 14315 5011 35.26% 10808 1480 13.69%

or Jira [9], can export bug report data as CSV files that can be
integrated into the datasets used by Bugle.

Input bug descriptions are encoded into sentence embeddings us-
ing SentenceTransformers, a Python framework based on SBERT [14]—
a model architecture tuned for common natural language process-
ing tasks such as semantic textual similarity. Similar embeddings
have been employed successfully in past research on duplicate de-
tection [4, 10]. The input embeddings are then measured in relation
to the sentence embeddings produced for the entire dataset of bug
reports, after which the shortest cosine similarity distance is used
to retrieve the semantically closest bug reports for the user. Cosine
similarity has been found to be more accurate for comparing bug
reports than other similarity measurements [8, 9, 15].

Model Selection: We evaluated three contrasting pre-trained lan-
guage models, chosen to reflect different combinations of size and
performance. The first model, paraphrase-MiniLM-L3-v2, produces
the embeddings in the shortest amount of time and is smallest in
size, but is considered to have the lowest average accuracy of the
considered models [13]. The second model, multi-qa-MiniLM-L6-
cos-v1, is only 25% slower than paraphrase-Mini LM-L3-v2 [13], but
its accuracy in detecting semantic similarity in natural language is
also improved by 25% on average. The third model, all-mpnet-base-
v2, was largest in size and five times slower than multi-qa-MiniLM-
L6-cos-v1. However, it is considered to have the highest accuracy
in detecting semantic textual similarity in natural language.

We select models that correctly detect duplicate bug reports in
two large open source bug report datasets, both containing a ground
truth for duplicates. The datasets were the 115,814 bug reports filed
between 1999 and 2013 in the Mozilla Firefox project, as well the
85,156 bug reports between 2001 and 2013 in the Eclipse project,
with a duplicate percentage of 30.9% and 16.9% respectively [18].
We produced sentence embeddings for the bug descriptions for
both datasets. Table 4 shows resulting accuracy.

Since Bugle recommends the six most similar bug reports, we
considered Bugle to have detected a duplicate if either the issue ID
or the linked duplicate ID for any of the six recommendations was
the issue ID of the bug report whose issue description was used
as input. In some cases, duplicates in these datasets were chained
together—e.g., issue X was linked as a duplicate of issue Y, and
issue Y was linked as duplicate of issue Z, but there was no direct
link between issues X and Z. If Bugle recommended issue Z when
evaluating the description of issue X, no duplicate would be marked
as detected, even though Bugle potentially found one. This means
that the resulting accuracy might be higher than listed, since the
datasets do not link duplicates bidirectionally.

Before measuring the accuracy of Bugle, the datasets needed
to be pre-processed. The bug reports for the Eclipse project fol-
lowed a format where the textual description was concatenated
with additional pieces of information (e.g., comments, URLs, etc.).

Table 5: RQ1: Main themes found in the interview data.

Theme Description

Knowledge The types of knowledge utilized to identify
duplicates.

Duplicate Identification Practices and techniques used to identify du-
plicates.

Duplicate Management The main steps of the workflow for evaluat-
ing duplicates, from bug report creation to
linking and closing duplicates.

This information was concatenated in a semicolon-separated string,
which made it possible to extract only the textual description. How-
ever, not all bug reports included the textual issue description before
the first semicolon, which led to noisy data being encoded into sen-
tence embeddings. The bug reports in the Mozilla Firefox dataset
also needed to be pre-processed, but the textual description field
did not follow a specific format, making the extraction of the pure
textual description difficult. We filtered out bug reports that were
particularly noisy, e.g., where the description field was empty or
only contained stack trace information or URLs.

As shown in Table 4, all-mpnet-base-v2 achieved the highest
accuracy—13.69% and 35.26%—for the two datasets. This accuracy
is relatively low. The primary reason for this is imperfect pre-
processing [8, 20]. Many of the bug reports did not have semanti-
cally coherent textual descriptions, introducing significant noise
into the embeddings. In order to improve the accuracy of the mod-
els further on these particular datasets, further effort needs to be
expended on improving the pre-processing process.

As we were using a new dataset for evaluationat TestScouts
based on their own bug report data, we decided that the current
results were sufficient as a basis for selecting the all-mpnet-base-v2
model for use in our final evaluation without spending further time
pre-processing the open source datasets. The client dataset used to
address RQ3 was pre-processed similarly to the Eclipse dataset—
extracting the pure textual description from a concatenated string.
However, the formatting was consistent and we were able to verify
that pre-processing was able to successfully clean the data.

5 RESULTS
5.1 Duplicate Detection Workflow (RQ1)
The analysis of the tester’s workflow resulted in three main themes
(Table 5): Knowledge, duplicate identification, and duplicate man-
agement. Thesewere then divided into nine sub-themes. An overview
of all themes and sub-themes is shown in Figure 3.
Knowledge: An overarching theme across all interviews was the
role played by different facets of the knowledge of the testers in
identifying duplicates. As shown in Figure 3, knowledge manifested
as system knowledge—specific knowledge about the system and

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

AST 2024, April 2024, Lisbon, Portugal Götharsson and Stahre, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Knowledge

Memory-based
Knowledge

System
Knowledge

Intuition-based
Knowledge

Dupl.
Identification

Team
communication

Manual keyword
searching

Deep analysis

Dupl.
Management

Creating bug
report

Linking
duplicates

Closing bug
reports

Figure 3: Themes and sub-themes pertaining the workflow of testers when analysing bug reports.

its functionality—intuition-based knowledge—gut feelings or intu-
itions that guided decision making—andmemory-based knowledge—
knowledge about previous bugs and specific behaviors derived from
the experience of the tester.

The participants made frequent remarks about the importance
of system knowledge in their workflow. Since bugs and the lan-
guage used to describe them are highly system-specific, in-depth
knowledge of the system-under-test provides the tester with the
context and language necessary to evaluate duplicates.

“You need to have a system understanding to realize that it is the same bug because
people describe their issues differently, or in their own way.” - Participant 7

In fact, participants also report remembering having seen similar
bug reports in the issue tracking system, and let their memories
and experiences guide them in their decision-making. Participants
also often reported their basis for decision-making as being guided
by intuition from prior experiences, but not necessarily specific to
the current system-under-test (e.g., Participant 4).

“The analysis team is the one that usually recognizes that we already have this issue,
and it’s really manual and from memory, which I must say is extremely fascinating.”
- Participant 7

“Intuition, some kind of gut feeling, “I recognize this”, and then you go home and
search a bit.” - Participant 4

Duplicate Identification: This theme relates to the practices and
techniques used to identify duplicates in practice. We identified
three high-level sub-themes: manual keyword searching, deep anal-
ysis, and team communication where the communication is mainly
affected by the size of the team and the repository. One observation
across all interviews was the absence of the use of any specific tool
within the company for identifying duplicates. Instead, participants
unanimously relied on manual searches using keywords or phrases
in the issue tracking system to find duplicates. A quick keyword
match typically sufficed to identify duplicates, and then the tester
would avoid writing a new bug report.

“Often in the tools I have worked with, you can search by titles, so then you think
to yourself, “Hmm, I named this ‘spelling mistake on the first page’ ” and then you
start searching for ‘spelling mistake’.” - Participant 3

Sometimes, the participants reported a need for deeper analysis
to be able to conclude whether the bug report is a duplicate, such
as investigating the source code for a root cause that manifests
throughout the system in different ways. Especially when the man-
ual keyword search results in ambiguity, there may be a need for
further analysis to establish certainty. The need for a deeper anal-
ysis is evaluated in relation to the potential risks associated with

the bug under review—bugs considered high risk require deeper
analyses before being dismissed as duplicates.

Team communication was also emphasized, recognizing that
team members possess varying knowledge and insights into differ-
ent parts of the system.

“Before even going to the bug tool, you might write a quick message just to say:
“Has anyone seen this issue?” ” - Participant 6

Team and bug report repository size were recurring themes—as
the system or team size grows, the reliability of testers’ individual
knowledge and ability to identify duplicates becomes more specific
to their areas of responsibility. However, even in smaller teams,
team communication is a common strategy. The importance of
communication and the challenges introduced by large teams or
large code or bug report repositories necessitates standards to be
put into place regarding how team communication is conducted
and—in some cases—how bug reports are written to ensure that
duplicate detection is efficient.

“The challenge is when there are more people, then you need to talk as a team
and have a standard for how to report for the sake of simplicity for everyone.” -
Participant 5

Duplicate Management: This theme refers to the steps taken be-
fore and after duplicate identification. We identified the high-level
sub-themes of creating, linking, and closing bug reports. Participants
reported that the process used to create bug report matters when
identifying duplicates. They stated that bug reports should be re-
ported in a standardized manner or, at least, follow a pre-defined
structure to proactively help in duplicate identification. Since the
most useful aspects of a bug report for identifying duplicates are
the text fields [15, 17, 19], standardizing the way that these textual
inputs are formulated introduces consistency that helps the team.

“If it’s too difficult to find duplicates and it takes a lot of time, we sit down together
and create some sort of standard for how we report. So that everyone follows the
same way.” - Participant 5

The general consensus across all participants was that confirmed
duplicates should be linked together and the report containing the
least amount of information should be closed. The issue track-
ing systems used in the organization allow different ways to do
this—either by creating an actual link between two reports or by
including the ID of the closed duplicate in the open report. Link-
ing is important since a duplicate report might contain additional
valuable information for addressing the bug.

“Usually, you link them together, so if I say that A is a duplicate of B, I close A. But
then on B, I can see that it has duplicates linked to it.” - Participant 3

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Exploring the Role of Automation in Duplicate Bug Report Detection: An Industrial Case Study AST 2024, April 2024, Lisbon, Portugal

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Influencing Factors

Repository and Team Size Knowledge Safety Criteria

Create Bug Report

Start

Duplicate Identification
Manual Keyword Searching

Team Communication
Deeper Analyses

Linking Duplicates

Closing Duplicates

End

Figure 4: Typical workflow when evaluating duplicates.

Closing bug reports is encouraged as a way of maintaining the
bug report repository—it is easier to keep track of open issues when
there are fewer. As long as the closed duplicate is linked to the open
report, closing is always preferred.

“I like this aspect of closing things, because I think that if it is important, it will
come up again, and I would rather have fewer tasks so that we can keep track of
them.” - Participant 3

The process of closing bug reports is dependent on the safety
criteria within the organization—safety critical systems require
more careful closing of duplicates, since a mistakenly closed bug
report could create risk.

“The reasons for keeping both defects open may vary, as they may not be exactly
the same issue but very similar, and for various reasons, one may not want to close
either of them because they are not the same.” - Participant 4

There were differing views on who should be able to evaluate
and close a duplicate. Some made the argument that only the initial
creator of a report should be able to close it. Others argued that it
is preferable to have few open issues, and that one should be able
to close issues created by others as long as a link exists.

DuplicateDetectionWorkflow (RQ1):The typical workflow—
shown in Figure 4—consists of (i) creation of a bug report,
(ii) using manual searches, team communication, or deep
analysis to identify duplicates, (iii) linking duplicate reports
together, and (iv) closing duplicates. Factors affecting the
workflow include different forms of knowledge, team and
repository size, and safety criteria of the organization.

Note that the individual steps of this process can be complex
and involve iterative sub-processes. For example, bug reports can
be iterated upon and refined by multiple testers before reaching
their final form [12]. Similarly, duplicate detection, linking, and
closing may involve more than one tester and may not always be
unidirectional steps (i.e., previous steps may be revisited).

This workflow informed the design of Bugle. First, our results
suggested that the bug description was the field that most aided
testers in deciding if a report was a duplicate. In addition, that the
current workflow primarily relied on keyword searches and tester

Table 6: Average rate of disagreement, tool accuracy, and
tester accuracy across all participants, and among each of
the three groups (gr.) of participants.

All Partic. Gr. 1 Gr. 2 Gr. 3

Rate of Disagreement 38.90% 41.67% 43.75% 25.00%
Tool Accuracy 92.60% 91.67% 93.75% 100.00%
Tester Accuracy 75.00% 58.33% 75.00% 100.00%

Table 7: Performance of each participant and Bugle.

Participant Bugle

ID Time to Num. Acc. Rate of Time to Num.
Eval. Queries Disag. Detect Queries

H1 5:22 3.00 1/4 1/4 4:14 2.70
H2 2:55 2.75 3/4 2/4 1:32 1.70
H3 6:28 7.25 3/4 2/4 0:34 1.00
H4 2:37 5.00 3/4 1/4 1:42 4.70
H5 2:01 4.75 3/4 2/4 0:33 2.30
H6 2:31 3.75 4/4 1/4 0:25 2.00
H7 3:58 4.50 2/4 3/4 1:05 2.00
H8 2:13 3.75 4/4 1/4 0:53 2.70
H9 2:17 3.00 4/4 1/4 0:38 2.01

Avg. 3:22 4.19 75.00% 38.90% 1:17 2.35

knowledge suggested that Bugle should act as a “smart” keyword
search based on semantic similarity rather than simple keywords.

5.2 Rate of Disagreement with Tool (RQ2)
In Table 7, we list data on each participant, including the average
time to make an evaluation (minutes:seconds), average number
of queries to the tool before the user decided that they had iden-
tified a duplicate, accuracy of their determinations, and rate of
disagreement with Bugle. For Bugle, we also list the average time
and number of queries before Bugle returned the duplicate in its
recommendations. Table 6 then lists the average rate of disagree-
ment, tool accuracy, and participant accuracy across the full group
of participants as well as for the three groupings of participants.

Rate of Disagreement with Tool (RQ2):On average, Bugle
locates the duplicate report based on the participants’ queries
in 94.44% of cases. The participants’ average accuracy in
correctly identifying the duplicate was 75.00%. On average,
the participants do not agree with Bugle’s recommendations
in 38.90% of cases.

Interestingly, Table 6 reveals large differences across groups,
with the most experienced participants yielding the worst results.
We will discuss this observation further in Section 6.2.

5.3 Reasons for Disagreement (RQ3)
The thematic analysis of the data gathered during the observations
resulted in three main themes with nine high-level sub-themes
and six low-level sub-themes that summarize the reasons for the
disagreements made during the observations. As described in Ta-
ble 8, the primary themes include semantic differences in descriptions,
insufficient information, and overlooking recommendations.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

AST 2024, April 2024, Lisbon, Portugal Götharsson and Stahre, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 8: Description of main themes identified during the
observational study.

Theme Description

Semantic Differences The provided issue description and recom-
mended bug report descriptionwere reported
to have different meanings.

Insufficient Information The provided issue description or recom-
mended bug report descriptionwere reported
as not containing enough information to
make a judgement.

Overlooking Skipping or not fully reading a description.

Slight difference in
wording

Uncertainty of
product/component

Key words not included in
description

Semantic differences in
descriptions

Figure 5: Sub-themes related to semantic differences.

Semantic Differences in Descriptions: The most common rea-
son for disagreement was that the participants reported there to
be semantic differences between the issue descriptions and the rec-
ommendations made by the tool. In Figure 5, we show the derived
theme and corresponding sub-themes.

In some cases, the differences were subtle—e.g. one participant
remarked that the first description mentioned “flipping” of a switch
rather than “holding down”—as it was described in the highest
ranked recommendation. The participant argued that there could
be two slightly different behaviors and would have raised a new bug
report rather than trusting the recommendation to be a duplicate.

Another description detailed a case where a motor ran at top
speed, after which it slowed to a halt, which caused a user inter-
face to shut down. The tool recommended a nearly-identical issue
description with the difference being that—instead of coming to
a halt—the motor nearly halted and then slightly sped up again,
which also led to a user interface shutting down.

Most often, disagreements based on semantic differences were
concerned with potentially important keywords not being present
in the description of the recommended reports.

“It didn’t retrieve “temperature” and “LED” so that’s why I saw that the combi-
nation didn’t exist. The recommendations didn’t give both parts of “LED” and
“temperature”.” - Participant 8

Insufficient Information: The second most common reason for
disagreement was that the participants reported not having suffi-
cient information to determine whether a recommendation was
a duplicate or not, and therefore, opting to disagree with the rec-
ommendation. In Figure 6, we list the derived theme and its corre-
sponding high-level and low-level sub-themes.

This remark was more frequently made by more experienced
participants and those with in-depth system knowledge. Partici-
pants with previous experience working with evaluating duplicate
bug reports also remarked that they would like more specific pieces
of information to determine with certainty that a recommendation

Vague issue description
formulation

Accepted level of
uncertainty

Vague formulation

No trace to requirement
IDInsufficient information

Vague bug report
formulation

A lot of details, no risk of
missing key information

Little detail, fewer bug
reports and easier

management

Figure 6: Sub-themes related to insufficient information.

Automation bias

Not reading the
description carefully

enough

Not reading the
recommendation
description at all

Resources and time Overlooking
recommendations

Overwhelming amount of
data

Figure 7: Sub-themes related to overlooking.

was a duplicate, including references to related requirements, the
specific project the bug report belonged to, and the bug status.
Overlooking Recommendations: The third most common rea-
son for disagreement was that participants overlooked a correct
recommendation either because the participant skipped or missed
important details from the recommendation. In Figure 7, we list the
derived theme with its corresponding sub-themes.

On being asked why they disagreed with a correct recommen-
dation, one participant re-read the description and acknowledged
that it might actually be a duplicate and that the initial assessment
had been made hastily. Other participants chose not to read the
descriptions of certain recommendations at all, either because they
were long or difficult to interpret or because the recommendation
was not ranked as high as others retrieved by the tool.

“Oh, this was a lot of text, that is useless. I don’t want to read and understand that.”
- Participant 2

Reasons for Disagreement (RQ3): Common reasons for
disagreement include semantic differences in descriptions, in-
sufficient information in provided or recommended descrip-
tions, and overlooking recommendations made by the tool.

6 DISCUSSION
6.1 Duplicate Detection Workflow (RQ1)
One insight was that—despite many automated techniques having
been proposed in past literature—there is a lack of widespread com-
mercial or open source tools available to testers working to identify
duplicate reports. None of the participants, some of whom hadmore
than two decades of experience in testing, reported having heard
of such a tool. Instead, the typical activities conducted for duplicate
identification are performed manually without tool support.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Exploring the Role of Automation in Duplicate Bug Report Detection: An Industrial Case Study AST 2024, April 2024, Lisbon, Portugal

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

The interview data revealed a trade-off between the risk of simply
creating a new bug report and the effort of first spending time
looking for duplicates. The tolerance for technical debt in a team
plays an important role in making that trade-off, as well as an
assessment of the risk of falsely labeling a bug report as a duplicate.
In safety-critical systems, there needs to be a high level of certainty
before testers label a bug report as a duplicate due to the high risk
associated with closing an prematurely. Some redundancy in the
open bug reports may be deemed acceptable. For systems with
lower risks associated with failures, lower technical debt may be
more highly prioritized.

Participants expressed that such a tool would be of significant
benefit to their workflow, with one estimating that the average
cost per duplicate determination being around $1000. Effective tool
support could reduce the time spent making determinations and
increase the certainty in the determinations—impacting both the
financial and technical debt impact of duplicate bug reports. It is not
clear why effective tool support is not widely available. There could
be a lack of awareness of existing tools, existing research tools may
not effectively fit existing workflows, or existing tools may not be
sufficiently robust. Future work should explore awareness and how
to develop tools that effectively support developers.

6.2 Disagreement with Tool (RQ2, RQ3)
Contradictory findings regarding knowledge: One interesting
observation from the study was an inverse relationship between a
tester’s knowledge and experience and successful duplicate detec-
tion using Bugle. More experienced testers tended to claim to need
more information to determine whether a bug report recommended
by Bugle was an actual duplicate or not, whereas their less experi-
enced peers were successful in making the correct decision given
only the limited amount of information they had been provided.

More experienced participants also commented on not having
access to additional contextual information that they are used to
having, impacting the level of certainty with which they could
claim a recommendation to be an actual duplicate. More often
than their less experienced peers, they would disagree with the
recommendation of the tool and would have chosen to create a new
bug report for their provided issue description due to uncertainty.

We hypothesize that the primary reason for the inverse rela-
tionship between knowledge and successful duplicate detection is
that the more experienced participants tend to—by default—draw
on their additional contextual knowledge and intuitions while less
experienced participants can only base their opinion on the limited
amount of information at their direct disposal.

In multiple cases, more experienced participants used keywords
in their queries that were not derived from their provided issue
description, but from their own domain knowledge. What is in-
teresting is that—although the experienced participants had more
information at their disposal—they were actually less successful
than their least experienced peers in detecting true duplicates with
the help of the tool, and had a higher average rate of disagreement.

More experienced participants were also potentially biased by
their existing process of manual keyword searches. The input
queries used by experienced participants tended to rely heavily
on concatenating individual keywords, while less-experienced par-
ticipants tended to formulated the query in the form of semantically

coherent sentences. These participants tended to adapt their query
formulations as free-flowing descriptions more naturally than their
more experienced counterparts, which helps to explain their suc-
cess in using the tool—whose model has been tuned specifically for
semantic textual similarity. The tool design and intended use was
explained to all participants, but the more experienced ones may
have a more ingrained way of working.

These observations are based on a pool of only nine participants,
split into three groupings. To confirm these findings and hypotheses,
we would need a larger group of participants—something we plan
to pursue in future work.
Bias: Participants made reference to additional biases during the
observational study as well. In several instances, the similarity
score and its coloring (green, yellow or red to indicate high or low
similarity) was noted as affecting the participants’ opinions about
a recommendation being a likely duplicate or not. Some felt that
particular similarity scores seemed to be too high or low relative to
their expectations. In certain cases, this seemed to be a reason for
not reading lower-ranked recommendations’ descriptions, leading
to participants choosing to create a new bug report for issues whose
duplicate the tool had successful retrieved.

One participant stated that they had lost faith in Bugle after
several attempts to find a duplicate had failed to retrieve anything
of interest. The participant was asked for the reason behind their
disagreement with the tool and subsequent choice to create a new
bug report, after which they studied the recommended description
more carefully and acknowledged that they had dismissed a very
likely duplicate due to having underestimated Bugle’s abilities after
multiple failed attempts.
Suitability of language models for duplicate detection: An-
other topic for discussion is the question of whether a sentence
transformer model such as all-mpnet-base-v2 are actually necessary
for detecting bug report duplicates—or if it is analogous to “killing
a fly with a sledgehammer.”

Some participants expressed skepticism that a tool such as Bugle
could be more effective than their current process of keyword
searches, while others expressed optimism. Participants suggested
that Bugle would be potentially beneficial for less-experienced
testers or when starting to work on a new project, as the ability to
enter free-flowing text descriptions allows them to describe issues
without the need to be familiar with domain-specific keywords.

Compared with static keyword searches, the power of semantic
search lies in the ability of the model to detect not only synonyms,
but also contextual similarity across sentences. This was demon-
strated clearly in our study, as each issue description we provided
to the participants was carefully reformulated from the original
“duplicate” using multiple synonyms while still retaining the origi-
nal semantic meaning. Duplicate detection would be unlikely under
traditional techniques, e.g., those that compare vectors of terms.
Limitations of duplicate detection techniques: In conducting
this study, we have observed several challenges to overcome in the
design of future tools for duplicate detection.

One of the biggest current limitations for duplicate detection is
the dependency on high-quality bug report data. In this study, we
applied general pre-trained language models fine-tuned for seman-
tic textual similarity search. However, a model trained specifically

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

AST 2024, April 2024, Lisbon, Portugal Götharsson and Stahre, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

on bug report data could potentially be much more accurate. Chal-
lenges in creating such a model include the amount, availability,
and quality of data needed for training and the model’s ability to
generalize its performance across different product domains.

Commercial developers are often reluctant to share bug report
data for reasons related to security, confidentiality, and reputation.
Open source bug report datasets are available, such as those we used
to evaluate models [18]. However, the quality of the bug report data
varies widely both across and within projects and organizations,
and the lack of a standard orwell-structured format for bug reports—
and lack of consistency in following a particular format even within
some datasets—results in a need for extensive data pre-processing.

Improving organizational standards regarding bug reporting
would likely improve model accuracy regardless of whether general
models or models specifically trained on bug report data are used.
Bug descriptions in natural language are extremely useful. However,
guidance for how to structure a bug report and how to phrase
discussions about bugs in a more consistent and clear manner could
be useful for improving both tool and tester accuracy in identifying
duplicates as well as improving the utility of the bug reports for
the testers attempting to fix a bug.

Our study also highlights the power of a combination of an
automated tool and tester opinion, in comparison to solely rely-
ing on automated duplicate detection. The combination of tool
and tester eliminates false recommendations being automatically
marked as duplicates, a common risk in past research [9], by allow-
ing a tester to evaluate the recommendations made by Bugle. In
addition, allowing testers to reformulate queries enabled effective
and nuanced exploration of the bug report repository not possible
purely through the use of automated tools, further confirming the
findings of Chaparro et al. [5].

There is an important design decision to be made regarding the
similarity threshold at which a bug report should be marked as a du-
plicate in a fully automated system. If the threshold is too high, true
duplicates with lower similarity scores may be ignored, whereas a
lower threshold may result in unique bug reports being marked as
duplicates. Determining this score requires considering the safety
criteria and tolerance for technical debt in the organization.

In a human-in-the-loop system, like Bugle, the actual decision on
whether a report is a duplicate is outsourced to the tester. In such
cases, there is an additional design decision to be made—how many
bug reports to show the human tester. If a tester is presented with
too many results, they may become overwhelmed and overlook
important details in particular bug reports. However, if too few are
shown, then a tester may never see the duplicate they are looking
for. In our case, we elected to always show six recommendations,
regardless of the actual score. However, there were cases where
testers lost confidence because they had seen too many irrelevant
reports. It is possible that a different settingwould have been better—
we will explore this topic further in future work.

6.3 Threats to Validity
Construct Validity: Testers could be too trusting of Bugle’s recom-
mendations, leading to a failure to fully utilize their own intuition.
We mitigated this threat by explaining to all participants that the
tool is merely providing suggestions and that we are interested in

their ability to judge the relevance of the recommendations. We fur-
ther explained to all participants that potential duplicates could be
in any position in the ranked list, even with a low similarity score,
and that the recommendations are based on the input description.
Further, we utilize different participants for addressing RQ1 and
RQ2–3. The latter participants could have a different workflow than
those in the former group. However, as all participants are at the
same company, we believe differences are minor.
Internal Validity: Bugle updates recommendations in real time
while the tester enters a query. This may influence how testers
formulate their query, leading to a different description than what
would be entered into a static search. We mitigated this threat by
recording sessions and asking participants to explain why and how
they reformulated their queries.
External Validity: We had a relatively small pool of participants.
Further, the number of participants in each group is unbalanced.
Unfortunately, we were unable to involve more participants from
Test Scouts. However, many of the testers had extensive experience
and have worked at multiple companies. In addition, Test Scouts
works with many partner organizations. Therefore, we believe that
their perspectives and workflow are broadly representative of other
testers. In addition, the contents of the dataset of bug reports may
influence the generalizability of the results. However, (i) we used
alternative open-source datasets to select the model used in Bugle,
and (ii), the dataset employed in the observation study contains
real-world industrial bug reports. Therefore, we believe that the
results were sufficiently realistic. Finally, the actual number of
duplicate issues was small in order to limit the time commitment
of participants. However, we believe that we gathered sufficient
data for an initial exploration. Future work should extend the study
with additional participants from multiple companies and a larger
pool of duplicate issues.
Reliability: The first two authors were present during all inter-
views and observations and coded data independently to avoid
biased conclusions. All authors discussed and confirmed the codes,
themes, and sub-themes to ensure coherency and agreement.

7 CONCLUSION
Our study aimed to enhance the integration of automated duplicate
bug report detection techniques into a tester’s workflow. Propos-
ing Bugle as an automated tool to present relevant bug reports,
we achieved an average success rate of 94.44% in locating dupli-
cates based on participants’ queries. While participants exhibited
a 75.00% accuracy in identifying duplicates from the retrieved re-
ports, disagreements with Bugle’s recommendations occurred in
38.90% of cases, primarily due to semantic differences, inadequate
information, and oversight.

These findings provide insights for future automated duplicate
detection approaches and studies on duplicate detection workflows.
Future research will expand our study to a broader tester group,
focusing on how tool support can benefit both inexperienced and
experienced testers. Further investigations will explore the impact
of thresholds on the number of reports and minimum similarity
scores, along with methods to enhance automated technique accu-
racy through data pre-processing and structured report writing.
Acknowledgements:We thank Test Scouts for their participation.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Exploring the Role of Automation in Duplicate Bug Report Detection: An Industrial Case Study AST 2024, April 2024, Lisbon, Portugal

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Thangarajah Akilan, Dhruvit Shah, Nishi Patel, and Rinkal Mehta. 2020. Fast

detection of duplicate bug reports using LDA-based topic modeling and classifi-
cation. In 2020 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 1622–1629.

[2] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim.
2008. Duplicate bug reports considered harmful. . . really?. In 2008 IEEE Interna-
tional Conference on Software Maintenance. IEEE, 337–345.

[3] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. APA handbook of
research methods in psychology 2 (2012), 57–71.

[4] Guilherme Carneiro, José Ferreira, Franklin Ramalho, and Tiago Massoni. 2023.
Similar Bug Reports Recommendation System using BERT. In Proceedings of the
XXXVII Brazilian Symposium on Software Engineering. 378–387.

[5] Oscar Chaparro, Juan Manuel Florez, Unnati Singh, and Andrian Marcus. 2019.
Reformulating queries for duplicate bug report detection. In 2019 IEEE 26th
international conference on software analysis, evolution and reengineering (SANER).
IEEE, 218–229.

[6] dictionary [n. d.]. Bug, Definition & Meaning, Merriam-Webster. https://www.
merriam-webster.com/dictionary/bug

[7] Maximilian Flis. 2020. Support Scrub Meetings in Distributed Teams by Detecting
Duplicates of Software Defect Reports in IssueManagement Systems. Master’s thesis.
Dept. of Informatics, Technical Univ. of Munich, Munich, Bavaria, Germany.

[8] Marlo Haering, Christoph Stanik, and Walid Maalej. 2021. Automatically match-
ing bug reports with related app reviews. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 970–981.

[9] Lyndon Hiew. 2006. Assisted detection of duplicate bug reports. Ph. D. Dissertation.
University of British Columbia.

[10] Haruna Isotani, Hironori Washizaki, Yoshiaki Fukazawa, Tsutomu Nomoto, Saori
Ouji, and Shinobu Saito. 2021. Duplicate bug report detection by using sentence
embedding and fine-tuning. In 2021 IEEE international conference on software
maintenance and evolution (ICSME). IEEE, 535–544.

[11] Li Kang. 2017. Automated duplicate bug reports detection-an experiment at axis
communication ab.

[12] Senthil Mani, Seema Nagar, Debdoot Mukherjee, Ramasuri Narayanam,
Vibha Singhal Sinha, and Amit A Nanavati. 2013. Bug resolution catalysts:
Identifying essential non-committers from bug repositories. In 2013 10th Working
Conference on Mining Software Repositories (MSR). IEEE, 193–202.

[13] Reimers Nils. 2022. SentenceTransformers Documentation. https://www.sbert.
net/

[14] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. http://arxiv.org/abs/1908.10084

[15] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007. Detection of
duplicate defect reports using natural language processing. In 29th International
Conference on Software Engineering (ICSE’07). IEEE, 499–510.

[16] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering 14
(2009), 131–164.

[17] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo.
2010. A discriminative model approach for accurate duplicate bug report re-
trieval. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. 45–54.

[18] LogPAI Team. 2018. BugRepo. https://github.com/logpai/bughub
[19] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach

to detecting duplicate bug reports using natural language and execution informa-
tion. In Proceedings of the 30th international conference on Software engineering.
461–470.

[20] Qi Xie, ZhiyuanWen, Jieming Zhu, CuiyunGao, and Zibin Zheng. 2018. Detecting
duplicate bug reports with convolutional neural networks. In 2018 25th Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 416–425.

[21] Thomas Zimmermann, R. Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schröter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? IEEE
Transactions on Software Engineering 36 (09 2010), 618–643. https://doi.org/10.
1109/TSE.2010.63

11

https://www.merriam-webster.com/dictionary/bug
https://www.merriam-webster.com/dictionary/bug
https://www.sbert.net/
https://www.sbert.net/
http://arxiv.org/abs/1908.10084
https://github.com/logpai/bughub
https://doi.org/10.1109/TSE.2010.63
https://doi.org/10.1109/TSE.2010.63

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methods
	3.1 Duplicate Detection Workflow (RQ1)
	3.2 Tester and Tool Consensus (RQ2, RQ3)

	4 Bugle - Design and Implementation
	5 Results
	5.1 Duplicate Detection Workflow (RQ1)
	5.2 Rate of Disagreement with Tool (RQ2)
	5.3 Reasons for Disagreement (RQ3)

	6 Discussion
	6.1 Duplicate Detection Workflow (RQ1)
	6.2 Disagreement with Tool (RQ2, RQ3)
	6.3 Threats to Validity

	7 Conclusion
	References

