
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Integrating Mutation Testing Into Developer Workflow: An
Industrial Case Study

Stefan Alexander van
Heijningen
Theo Wiik

Chalmers and University of
Gothenburg

Gothenburg, Sweden
stefanva@student.chalmers.se
witheo@student.chalmers.se

Francisco Gomes de Oliveira
Neto

Gregory Gay
Chalmers and University of

Gothenburg
Gothenburg, Sweden

francisco.gomes@cse.gu.se
greg@greggay.com

Kim Viggedal
David Friberg

Zenseact
Gothenburg, Sweden

kim.viggedal@zenseact.com
david.friberg@zenseact.com

ABSTRACT
Mutation testing is a potentially effective method to assess test
suite adequacy. Researchers have made mutation testing more com-
putationally efficient, and new frameworks are regularly emerg-
ing. However, there is still limited adoption of mutation testing
in industry. We hypothesize that such adoption is hindered by a
lack of guidance on how to effectively and efficiently utilize mu-
tation testing in a development workflow. To that end, we have
conducted an industrial case study exploring the technical chal-
lenges of implementing mutation testing in continuous integration,
what information from mutation testing is of use to developers, and
how that information should be presented (in textual and visual
form). Our results reveal five technical challenges of integrating
mutation testing and nine key findings regarding how the results of
mutation testing are used and presented. We also offer a dashboard
to visualize mutation testing results, as well as 16 recommendations
for making effective use of mutation testing in practice1.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation; Collaboration in software development; Software config-
uration management and version control systems.

KEYWORDS
Mutation Testing, Test Adequacy, Software Visualization, Software
Testing

ACM Reference Format:
Stefan Alexander van Heijningen, Theo Wiik, Francisco Gomes de Oliveira
Neto, Gregory Gay, Kim Viggedal, and David Friberg. 2024. Integrating
Mutation Testing Into Developer Workflow: An Industrial Case Study. In

1Support provided by Software Center project “Trustworthy and Human-Centered
Test Automation” and a Lars Pareto travel grant from Chalmers and University of
Gothenburg. We also thank all participants from Zenseact.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695273

39th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3691620.3695273

1 INTRODUCTION
Ensuring that software works as intended is crucial, especially
in safety-critical systems where faults can lead to severe conse-
quences [31]. Testing is a commonmethod of assessing the behavior
of software, based on the application of selected input and inspec-
tion of the resulting behavior [2]. A natural question for developers
to ask, however, is when they have conducted “enough” testing. To
help answer this question, developers measure the strength of a test
suite using adequacy criteria, i.e., measurements of how thoroughly
the codebase-under-test has been exercised by its test suites [6].

Mutation testing is a practice where artificial faults (“mutants”)
are seeded into the codebase [29]. Test adequacy can then be as-
sessed by measuring how many mutants were detected by the test
suite. Mutation testing is potentially one of the most robust ade-
quacy criteria [26]. However, it has not yet been widely adopted
in industry due to (i) its computational cost when re-executing
tests for each mutant, and (ii) the immaturity of mutation testing
frameworks, especially for languages other than Java [25, 27].

Recently, significant effort has been made to reduce the compu-
tational cost of mutation testing [8, 18, 23, 38]. At the same time,
availability of open-source mutation testing tools has increased,
suggesting that mutation testing is reaching a sufficiently mature
state to be applied in practice [16, 26]. This is also evidenced in
recent research conducted in industrial settings [4, 25, 28, 35]. Com-
putational cost and tool immaturity are still significant hurdles but
may no longer be the primary barriers preventing adoption.

Rather, we hypothesize that a lack of best practices and guid-
ance regarding how to integrate mutation testing into develop-
ment workflows and how to make use of its results to improve
test quality hinders its adoption.

This challenge has three dimensions that must be addressed.
First, on a technical level, few have explored the challenges of
implementing mutation testing within the automated build systems
and continuous integration (CI) pipelines [25, 27]. Moreover, even
if mutation testing can be executed, there is an education gap [4,
28, 35]—how should developers actually interpret and apply the
results of mutation testing? Therefore, two additional dimensions

1

https://orcid.org/0009-0002-2589-6336
https://orcid.org/0009-0002-2589-6336
https://orcid.org/0009-0000-6772-217X
https://orcid.org/0000-0001-9226-5417
https://orcid.org/0000-0001-9226-5417
https://orcid.org/0000-0001-6794-9585
https://orcid.org/0009-0002-1979-9775
https://orcid.org/0009-0007-6706-7321
https://doi.org/10.1145/3691620.3695273
https://doi.org/10.1145/3691620.3695273

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA van Heijningen and Wiik, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

that must be addressed include what information from mutation
testing is of use to developers and how that information should be
presented (e.g., in textual or visual form) to maximize its relevance,
comprehensibility, and applicability.

We explore these three dimensions in a case study at Zenseact,
a company developing Autonomous Driving software. We have
implemented theMull mutation testing framework [9] into a nightly
CI pipeline at Zenseact, and have used observations on this process
to produce an experience report discussing the technical challenges
encountered and their solutions. We also developed a dashboard
where we visualize the results of mutation testing at different levels
of granularity such as the team, directory, and file level. We then
conducted a series of think-aloud observations and semi-structured
interviews with Zenseact developers where they used both the
dashboard and a text-based report on the mutation testing results
to investigate test suite quality.

Our case study illustrates the technical and human-based chal-
lenges that emerge when applying mutation testing in an indus-
trial setting. Particularly, we identified five technical challenges,
including tool immaturity, issues emerging from the combination
of mutation testing framework, codebase, and build system, and
the integration process itself. We also offer recommendations for
addressing each challenge. Based on the observations and inter-
views, we also present nine findings and sixteen subsequent rec-
ommendations regarding mutation testing information and result
presentation including the importance of gaining an overview of
test suite quality and its evolution, the information useful to dif-
ferent stakeholders, missing contextual information, the value of
filtering mutation testing results for different levels of granularity,
effective visualization, and the continuing need for education on
interpreting mutation testing.

2 BACKGROUND
Mutation Testing is a technique used to assess the sensitivity of
a test suite to small changes in the code [29]. To do so, automated
code transformations are applied to produce faulty versions of the
codebase-under-test (mutants). Generally, each mutant contains
a single modification, imposed by a mutation operator. Each
mutation operator reflects a repeatable program change, such as
changing an expression (e.g., substituting addition for subtraction),
that can be automatically applied to statements that fit the correct
pattern. Mutation operators are modeled after simple faults that
could appear in a program [12].

The effectiveness of a test suite can be assessed by examining
how many are killed (that is, detected) by the suite. Themutation
score is the ratio of killed mutants to the total number of mutants.
The mutation score can be considered an indicator of the strength
of the test suite, and certain thresholds may be targeted [29].

An issue traditionally hindering adoption of mutation testing is
its prohibitive cost, as the test suite would need to be re-executed
on each mutant. Prior work has identified three viable strategies
for applying mutation testing [18, 25]. First, it could be executed
manually when needed. Second, it could be applied only to code
changed in a commit. Third, it could be applied periodically when
computational resources are available, e.g., nightly. In this study,
we focus on periodic application.

Figure 1: Excerpt of a report generated by Stryker Mutator.

Mutation testing tools typically present their results by gener-
ating reports. The Stryker Mutator project offers an open-source
schema (Mutation Testing Elements [20]) for such reports, as shown
in Figure 1. The report contains information such as the mutation
score at different levels of granularity (project, directory, and file),
what mutation operators were applied to specific lines of code, and
whether each mutant was killed or survived.

Data Visualization is a technique for displaying information
graphically to facilitate its interpretation or analysis [34]. Visualiza-
tion is common in software development and can convey informa-
tion related to, e.g., code coverage [24], software performance [15],
and requirement traceability [17]. Data visualizations are often
displayed to users within a dashboard, i.e., an interactive format
aggregating data and visualizations from different sources [33]. In
this study, we make use of the Kibana dashboard [21] developed
by Elastic. Kibana dashboards are commonly used to visualize logs
recorded by software infrastructure monitoring tools.

3 RELATEDWORK
Much of the research on mutation testing has focused on its effec-
tiveness (e.g., [12, 13]) or computational cost (e.g., [19, 22]). Our
primary focus is on how mutation testing should be integrated into
development workflow. We previouslty conducted a case study at
Zenseact where we assessed the feasibility of existing C++mutation
testing frameworks for integration into a CI pipeline [25]. We also
conducted an interview study to explore how developers would
apply mutation testing, resulting in a set of recommendations, in-
cluding a need for education, to visualize trends over time, and to
offer flexible trade-offs between scalability and level-of-detail of
the results. In this study, we build on and apply a subset of our
recommendations in practice.

Others have also examined aspects of integrating mutation test-
ing in industry. For example, Parsai et al. explored the viability of
integrating mutation testing into build systems, noting multiple
challenges, but ultimately finding that the computational overhead
could be managed with effective tool use [27]. However, few have
explored how to best present mutation testing results to developers.
Authors have observed that the number of mutants in a large-scale
project makes it infeasible—in both cost and mental burden—to
inspect each individual mutant [4, 28, 35]. Beller et al. also note a
lack of education on how to use mutation testing effectively [4].
Vercacmmen et al. conducted an industrial case study with two
companies—one with five years of mutation testing experience and
one without experience [35]. The inexperienced company strug-
gled to use mutation testing effectively and felt that the cost of tool

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Integrating Mutation Testing Into Developer Workflow: An Industrial Case Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Integrate mutation
tools in CI

Conduct think-aloud
sessions and interviews

Experience
report Transcripts

Conduct thematic
analysis

Codes and Themes

Dashboard

Protocol and
Instruments

1 2 3

RQ1 RQ2, RQ3

Figure 2: Overview of our research method.

maintenance was high. The experienced company felt that muta-
tion testing was effective, but only if its results can be provided in
a simple, interpretable, and scalable form.

Two common solutions, primarily focused on the computational
cost, are to reduce the number of employed mutation operators [28]
or to focus on commit-relevant mutations [18, 23]. At Google, in
addition to operator and commit-level limitation, a set of heuristics
are used to hide “unproductive mutants” [28]. Parsai et al. also
visualized mutation scores aggregated per class [27]. More work is
needed in this area.

Adler et al. explored how to present code coverage results to
developers [1]. They use a data presentation technique called “sub-
string hole analysis”, which clusters coverage information based on
code elements with similar names. Thus, syntactically-linked data
can be selectively presented to the user, while omitting unrelated
coverage data. They find that this technique made code coverage
analysis more cost-effective on industrial code bases. Collectively,
these results suggest that research is still needed on how to inte-
grate mutation testing into development workflows and on how to
present and interpret its results.

4 RESEARCH METHODOLOGY
In this study, we address the following research questions:

RQ1: What challenges arise when integratingmutation testing
tools, and how can they be addressed?
RQ2: What information from mutation testing should be pre-
sented to developers?
RQ3: How should information from mutation testing be pre-
sented to developers?

RQ1 focused on the challenges that hinder the technical inte-
gration of mutation testing such as dependency conflicts, inability
to interface with existing tools, and maintenance efforts. RQ2–3
focus on developer effectiveness, exploring what information is most
useful (e.g., mutation score, mutation operator breakdown) and
how this information should be conveyed (e.g., in textual or visual
formats). To answer those questions we conducted an exploratory
and interpretivist case study (Figure 2) following the terminology
defined by Runeson et al. [32] and Baltes et al. [3].

We began by integrating a mutation testing framework, Mull [9],
into a CI pipeline at Zenseact. In parallel, we developed a dashboard
to visualize the data in the report generated after executing the
framework. We report on our observations regarding the issues
encountered and how they were handled in Section 4.2, hence
producing recommendations to address RQ1. Next, we collected
qualitative data from developers in a session composed of two
parts. First, we conducted think-aloud sessions with developers,
where participants were tasked with assessing test suite quality

Table 1: Protocol to register observations for RQ1.

Field Description

Timestamp Date and time of the event.
Names Names of people conducting and participating in the observation.
Event One of the following: Decision, Issue Encountered, Issue Solved,

Doubt Raised, Progress Made, Sentiment, Reflection, Discovery,
Meeting

Observation Detailed information on the event.
Next Steps Activities that should follow the event.

using the HTML mutation report and the created dashboard. We
collected observations on developer’s interactions and opinions on
the dashboard and report. The second part of this session was semi-
structured interviews with the developers who participated in the
think-aloud sessions, focusing on the perceived benefits and issues.
We recorded the entire sessions and then used thematic analysis to
analyze the transcripts, our observations, and the interview data to
answer RQ2–3 (Section 4.3).

4.1 Case Study Context
The case study was performed at Zenseact, a Swedish company
with approximately 600 employees [37]. Zenseact develops Ad-
vanced Driver Assistance Systems and Autonomous Driving soft-
ware, primarily written in C++. Because automotive software is
safety-critical and must conform to various standards (e.g., ISO
26262 [7]), verification and validation are important. As such, they
conduct extensive testing, including manual review, exploratory
testing, and automated testing in CI pipelines.

Mutation testing is not currently a standard practice at the com-
pany, but many developers were somewhat familiar with the con-
cept [25]. The participating developers did not have a specific goal
for the integration of mutation testing, but were broadly interested
in how it could be used to assess and improve test suite quality.

Zenseact utilizes the concept of guardianship, where a team
is the main owner of a part of the code [10]. During this study,
guardianship information was incorporated into the developed
dashboard to help contextualize mutation testing results.

4.2 Mutation Testing Integration (RQ1)
In a previous study, we identified Dextool [5] and Mull [9] as vi-
able C++ mutation tools [25] for CI. Following initial experimen-
tation, various issues arose when using Dextool in Zenseact’s CI
pipeline, such as dependency clashes between the mutation frame-
work and codebase. Therefore, we focused on integrating Mull into
a CI pipeline for nightly builds of Zenseact’s C++ codebase.

We followed the guidelines by Hancock et al. [11] to define a pro-
tocol to systematically collect observations during the integration.
To form the experience report, those observations were sequentially
analyzed and discussed with Zenseact developers for confirmation,
validation, and reflection. The protocol (Table 1) and the input from
developers allowed us to gather data and reflect on our integration
process to yield the insights reported in Section 6.1.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA van Heijningen and Wiik, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 2: Overview of study participants, including their expe-
rience at Zenseact and overall (Over.) in years (y) or months
(m), how often they engaged with testing activities, and ex-
perience with using Kibana.

ID Role Experience Test Freq. Kibana
Zenseact Over.

P1 AI support tool developer 1.5 y 3-4 y Rarely Minimal
P2 Computer vision engi-

neer
7 y 7 y Daily None

P3 C++ toolchain maintainer 3.5 y 12 y Daily Skilled
P4 C++, Java developer 7 y 8 y Semi-daily Skilled
P5 C++ developer and sys-

tem architect
2 y 10 y Semi-daily None

P6 C++ feature developer 2.5 y 7 y Daily Skilled
P7 C++, Python developer 1 m 10 y Weekly None
P8 C++ feature developer 1 y 6 y Daily Minimal
P9 C++ feature developer 2.5 y 5 y Weekly Minimal
P10 C++ feature developer 2.5 m 10 m Rarely Minimal

4.3 Mutation Testing Information and Result
Presentation (RQ2–3)

After implementing our mutation testing dashboard, we conducted
think-aloud observations and semi-structured interviews with de-
velopers from Zenseact to determine (i) what information devel-
opers perceived as useful from mutation testing, and (ii) how that
information should be best presented to developers. Before starting
each session, we explained the purpose of the study and asked par-
ticipants for consent to record their audio and screen interactions.
Participants were given the option to opt out of the study at any
time, and before publication, a draft of this study was sent to all
participants so that they could provide feedback and corrections.

Sampling andprotocol:Because our sampling frame is Zenseact,
our population of interest consists of software developers in the
automotive industry. We aimed for a diversity of roles, time at the
company, experience, and degree of interaction with the testing
process. The list of participants is shown in Table 2. The think-aloud
and interview protocols were developed by the first two authors
and reviewed by the third and fourth authors. To ensure clarity
and effectiveness, we conducted three pilot studies: two with the
Zenseact-based authors of this study and one with a Zenseact de-
veloper unfamiliar with mutation testing. This helped verify that
the explanations and instructions were clear and understandable.

Session format: Each session lasted approximately 1.5 hours
and began with an introduction to mutation testing, followed by a
Q&A session for any clarifications. Participants first examined a
text-based mutation testing report and a dashboard we provided.
They were then tasked with completing a set of activities while
verbalizing their thoughts. After a brief break, we conducted in-
terviews where participants reflected on mutation testing and the
different presentation formats.

Think-aloud procedure: Before the tasks, participants received
a guided tour of the dashboard and report to familiarize themselves
with the tools without influencing their inspection. Each participant
was then given a list of tasks, detailed in Table 3, to assess test quality
using the report and dashboard. Tasks focused on a specific team,
directory, and file, but participants could later explore mutation
testing results for the entire codebase, including their own team.
To emphasize core mutation testing concepts, we limited the scope

Table 3: Think-aloud tasks and interview instrument. Alpha,
Beta, and Gamma represent a team, directory, and file, re-
named for confidentiality. The same team, directory, and file
were used for all participants.

Demographic Questions

1 What is your role at Zenseact?
2 How long have you worked at Zenseact?
3 How many years of experience do you have as a developer?
4 How often do you interact with unit tests?
5 What is your impression of mutation testing, after the presentation?
6 Do you have any experience using Kibana dashboards?

Think-Aloud Tasks

1 Familiarize yourself with the dashboard and report.
2 Assess the quality of tests for team Alpha.

(a) In which direction is test quality evolving for the team?
(b) Is test quality consistent across the directories the team maintains?
(c) Are there any directories that require more extensive testing?

3 Assess the quality of tests for directory Beta.
(a) In which direction is test quality evolving for the directory?
(b) Is test quality consistent across the files in the directory?
(c) Are there any files that require more extensive testing?

4 Assess the quality of tests for file Gamma.
(a) Are surviving mutants concentrated around the same code regions or
spread out?
(b) If you could make or modify a test for this file, what would you address?
(c) In which direction is test quality for the file evolving?

Interview Instrument

Questions related to information (RQ2)

1 Did you find any particular information useful?
2 Did you find any particular information not useful?
3 Was there any particular information missing?

Questions related to visualizations (RQ3)

1 Do you think there is a better way to display any information presented?
2 Was there any information or visualization you found confusing or hard to

interpret?
3 Did you find any particular information missing?
4 How did you find the quantity of information provided in the report and

dashboard?
5 How difficult was it to find the information needed, given your tasks?
6 Do you think the experience of using the report and dashboard would change

if significantly more teams, directories, and files were involved? If so, how?
7 How was the experience of using both the dashboard and the report?

Concluding questions (RQ2–3)

1 Do you believe the potential benefits of mutation testing are worth the time
and effort required to learn to use the dashboard and report? Why or why
not?

2 How do you believe your experience would have changed if you had to com-
plete the tasks using only the dashboard or the report?

3 Would you use the report and dashboard if introduced at Zenseact? Why/why
not? What would you mainly use? Why?

4 Do you have any final thoughts you wish to share?

to a subset of mutation operators: arithmetic operator replacement
(e.g., + → −), shortcut operator replacement (e.g., 𝑥 + + → 𝑥 − −),
and relational operator replacement (e.g., <→≤). Throughout the
tasks, participants were encouraged to articulate their impressions,
interpretations, and opinions on the visual aspects. If they were
silent for extended periods, we prompted them to describe their
actions and thoughts. Clarifications on mutation testing, the report,
or the dashboard were provided as needed.

Interview study: The interview questions, shown in Table 3,
were organized into three sections: information, visualizations,
and final reflections. The questions aimed to gauge the perceived
usefulness and interpretability of mutation testing results. As the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Integrating Mutation Testing Into Developer Workflow: An Industrial Case Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

interviews were semi-structured, we also posed follow-up questions
to elicit further insights.

Reflexive thematic analysis: Reflexive thematic analysis is
an inductive process, where codes were created and refined to
analyze qualitative data [36]. To aid the analysis, we used a journal
to reflect on the coding process and examine our assumptions. The
noted assumptions were: “people do not often want to learn new
tools”, “participants might appear positive towards the developed
solution as they want to be nice”, “participants understand code”,
and “participants understood mutation testing”.

Voice recordings were transcribed using an AI-based speech
recognition tool [30], then manually corrected. Screen recordings
were used to clarify voice recordings. During the coding process,
we highlighted relevant parts of the transcripts and assigned code
labels—short identifiers—to each. We then developed codes describ-
ing each highlighted segment. We had multiple discussions and
iterations of the codes and code labels grouping them into themes
and sub-themes. This process was completed by the first two au-
thors, with feedback from the other authors.

We used Krippendorff’s 𝛼 to assess inter-rater reliability[14].
The first two authors independently coded one session to identify
overlapping or contrasting codes between both authors, hence dis-
cussing both agreements and disagreements in the coding process.
Due to a low agreement rate (𝛼 = 0.45, with a 95% confidence
interval of [0.25, 0.61]), authors independently coded a second ses-
sion which, then, showed sufficient agreement between authors
(𝛼 = 0.72, with a 95% confidence interval of [0.54, 0.86]).

5 TECHNICAL DELIVERABLES: CI
INTEGRATION AND DASHBOARD

In this section, we present two technical deliverables from our
research. The first is the integration of Mull, a mutation testing tool,
into a CI pipeline for nightly builds, and the second is the dashboard
designed to display and interpret mutation testing results.

5.1 Integrating Mull and Nightly Builds
The operations executed in the CI pipeline and their resulting arte-
facts are shown in Figure 3. Our integration included code and
scripting (i) to execute Mull, (ii) to handle issues such as the build
system failing, and (iii) to format and upload the results of executing
mutation testing for developer use.

Run Mull
1

Merge
Reports

Analyze
Report

Upload
Report

mull_metadata.json

merged_report.json
Results from
all executions

analyzed_report.json

Elasticsearch /
Kibana

Dashboards

Mutation Report
(HTML Format)

2 3 4

Figure 3: Operations in the CI pipeline and by-products.

Each time mutation testing is performed, our scripts collect: (i)
timestamp from the build, (ii) the commit in which the build was
executed on, and (iii) mutation score. For each mutant, we extract
whether the mutant survived or was killed, the line of code mutated,
and which mutation operator was used. Two formats were used

W13 - Surviving Mutants

Directory Filename Line Column Operator

/dir/a logic.cpp 12 8 == to !=

/dir/a || to &&145 21operations.cpp

/dir/a == to !=233 14validator.cpp

/dir/b < to <=65 12processor.cpp

/dir/b/utils > to >=37 18formatter.cpp

W12 - Directories and Files with the Most Surviving Mutants

logic.cpp

34%

operations.cpp

15%

processor.cpp

3%

algebra.cpp

23%

formatter.cpp

18%validator.cpp

7%

/dir/a /dir/b /dir/c/math

/dir/b/utils

W11 - Proportions of Surviving 
Operators

57%

== to !=

10%

|| to &&

33%

< to <=

W10 - Number of Surviving Mutants

134
surviving mutants

< to <=

|| to &&

== to !=

W9 - Surviving Mutation Operators

Date

su
rv

iv
in

g

W8 - Mutation Score per Directory

Directory
/dir/a 95%

89%/dir/b

43%/dir/b/utils

70%/dir/c/math

Score/dir/a

/dir/b

/dir/b/utils

/dir/c/maths

W7 - Surviving Mutants per Directory

Date

su

rv
iv

in
g

/dir/a

/dir/b

/dir/b/utils

/dir/c/maths

W6 - Mutation Score per Directory

Date

Sc
or

e

Team A 
Team B 
Team C

Team D

W5 - Overall Team Mutation Score

Date

Sc
or

e

W4 - Commit

3hb7z86v

W3 - Date

2024-03-27 
14:23

W2 - Team Mutation Score

87%

W1 - Team Filter

Team A

Team A
Team B
Team C

Team Dashboard

Figure 4: Example team-level dashboard with synthetic data.

to present this information to developers: a text-based report and
a dashboard. The text-based report is directly generated by Mull,
conforming to the Mutation Testing Elements schema [20]. Mull
produces one report per test suite2. Each time we execute mutation
testing, we execute it for all suites, then merged the generated
reports into a single aggregate report.

5.2 Designing the Mutation Testing Dashboard
We also developed a Kibana dashboard [21] presenting current
mutation testing results, and the how mutation testing results have
changed over time. We chose Kibana because it is already used at
Zenseact, hence practitioners are already familiar with using such
dashboards as part of development. Note that this choice also limits
the supported visualization types.

The dashboard—an anonimized illustration is shown in Figure 4—
consists of a set of interactive widgets—specific visualizations of
underlying information (e.g., mutation score or lines of code in a file)
detailed in Table 4. The dashboard allows users to filter results to a
particular team, directory, file, or mutation operator. As previously
explained, Zenseact utilizes guardianship. A user could select their
team, then they would be presented with a dashboard containing
results for the directories “guarded” by their team.

2We use the term “test suite” to refer to a C++ file containing one or more test cases.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA van Heijningen and Wiik, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 4: Widgets implemented in the dashboard.

Name Visualization Description

Filter Dropdown Filter values by team, directory, or file.
Current Mutation Score Gauge The current mutation score for the chosen filter.
Date Single Value Timestamp of current results.
Commit Single Value The commit the current analysis was run on.
Overall Mutation Score Line Chart Overall mutation score over time for the chosen filter.
Number of Surviving Mutants Single Value Number of surviving mutants at the chosen level of filtering.
Surviving Mutants Per Directory or File Stacked Area Chart Number of surviving mutants per directory or file, depending on the chosen level of filtering.
Mutation Score per Directory Line Chart Mutation score over time for all directories.
Mutation Score per File Table Mutation score per file within a chosen directory.
Surviving Mutation Operators Stacked Area Chart Number of surviving mutants per operator over time, for the chosen filter.
Proportions of Surviving Mutants Per Operator Pie Chart The proportion of surviving mutants in each mutation operator, for the chosen filter.
Directories and Files with the Most Surviving Mutants Tree Map Hierarchical view of files with the most surviving mutants, for the chosen filter.
Surviving Mutants Table The surviving mutants, including their location and mutation operator, for the chosen filter.

6 RESULTS
6.1 RQ1: Mutation Testing Integration
Here, we summarise the main challenges and recommendations
found when integrating Mull into a CI pipeline for nightly builds.
One observation we made was that most of the knowledge required
to execute Mull on the codebase was related to the codebase and
its build system, rather than the tool itself. Expertise in mutation
testing was not required for this integration—rather, it was more
important to be familiar with the build system.
Executing Mull on the Full Codebase: Our next step was to
apply Mull to all test suites, rather than to a single test suite. To
detect and solve issues early, we followed an incremental strategy
by starting with a small subset of mutation operators and test
suites and expanding gradually. This strategy led to the discovery
that specific code operations could cause Mull to crash, including
the use of hardware-specific and CUDA code, which is used to
execute operations on GPUs. To account for errors, we implemented
scripting that would scan the codebase for test suites, then execute
Mull on each in sequence, moving on to the next test suite and
logging output for inspection if Mull crashed.

Mull must be executed for each test suite, which means that a
report is generated for each suite as well. Our goal was to generate
a single report for the entire codebase, which meant that we needed
to merge multiple reports into a single one. This was an unexpected
limitation of the usability of Mull—most industrial-scale codebases
will contain multiple test suites.

When a test suite is executed by Mull, all code invoked, directly
or indirectly3, by that test suite is mutated. This means that the same
mutants4 could be used in the evaluation of multiple test suites.
To reduce computational costs and reduce ambiguity in assessing
mutation score when merging reports, we chose to only assess
mutation score on code directly invoked by each test suite. Mull
has the ability to specify a whitelist of files to mutate. We generate
a new whitelist for each test suite. This decreased the execution
time for mutation testing on the codebase by approximately 40%.
Presentation of Results: The HTML reports generated by Mull
were not in a format that could be directly uploaded into the dash-
board. We also needed to include information not already in the

3E.g., calls to dependencies of the code directly tested by a test suite.
4Mutants in the same file, line, and column, mutated with the same mutation operator
and replacement value.

report, such as code guardianship. We developed scripting to con-
vert the report into a suitable format.

One observation made at this stage was that the dashboard is
independent of the specific mutation testing framework. Given a
wrapper to convert its output into the correct format, the mutation
testing framework used in the backend becomes interchangeable.
This adds flexibility to the integration.

Integration Into CI: We performed the initial development on
a local machine, then integrated Mull and the scripting into the
CI pipeline afterwards. This led to the discovery of behavioral
differences between the two environments, related to how the build
system (Bazel) and Mull execute.

Mull performs mutation testing in two separate steps: compi-
lation and execution. In the compilation step, Mull records the
location of each mutant generated, including the file path, line, and
column. During the second step, Mull executes tests and checks
whether each mutant survives. To build a target, Bazel moves all
files into a sandbox. When building locally, the file system inside
the sandbox remains unchanged between steps. However, in CI, tar-
gets were compiled inside the sandbox and then executed outside.
Mull saved references to file paths inside the sandbox that were no
longer valid. To solve this issue, both compilation and execution of
test targets had to be performed inside the sandbox.

Retrospective:Most of the time dedicated to integrating Mull into
the CI pipeline was related to developing scripting to circumvent
unexpected issues caused by the unique combination of codebase,
build system, and mutation testing framework. Although Mull was
“usable” from the first day, a number of issues had to be addressed
to actually integrate the tool. We hypothesize that more work was
required to integrate Mull than would be required to integrate code
coverage tools into the same pipeline.

Although Mull is suitable for CI integration, we do not consider
the tool mature enough to be easy to integrate into a complex code-
base. The previous issues encountered with Dextool also suggest
the maintenance issues that could occur over time. Mutual depen-
dencies of the codebase, mutation testing framework, and build
system, such as Clang or LLVM, must remain in relative lockstep.
The effort required to integrate and maintain mutation testing is
not insignificant. Therefore, the value provided by mutation testing
must be more than the cost of its integration and maintenance for
the technique to gain traction in an industrial environment.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Integrating Mutation Testing Into Developer Workflow: An Industrial Case Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: Description of themes (bolded) and sub-themes.

Theme Description

Capabilities What provided information enables users to do
Summarize Ability to see the overall status of the test suite
Improve Test Suites Ability to improve test suite quality
Indicate Source Code Quality Ability to estimate source code quality

End Users Who the solution could provide value to
Teams and Team Managers Value of mutation testing for teams andmanagers
Developers Value of mutation testing for developers
Complementary Components The relation between the report and dashboard

Valued Information What information was perceived as useful or
missing

Score and Surviving Mutants Perception of mutation score and surviving mu-
tants

Source Code Context Desire for more context regarding source code
Surviving Mutant Context Desire for more context regarding surviving mu-

tants

Visual Elements Which factors were important when visualizing
information

Scalability How developers perceived solution scalability
Simplicity Developer preferences regarding visualization

complexity
Evolution and Trends Thoughts on showing mutation testing results

over time

User Experience Which factors were important when using the
solution

Filtering Ability to filter information in the dashboard
Navigability Interconnectedness of elements of the solution
Learning Curve The learning curve associated with both the over-

all solution
and mutation testing in general

Usability Ease of use of the solution
Cognitive Workload Mental effort required to use the solution

6.2 RQ2 and RQ3: Visualising Mutation Testing
An overview of the themes and subthemes extracted from the the-
matic analysis is presented in Table 5. Note that the “solution” refers
to the combination of the HTML report and dashboard.
Capabilities:Many of our participants shared how the information
provided by our solutions empowers users. The dashboard was
particularly useful for summarising the state of testing for the entire
codebase, i.e., getting a general impression of how test quality was
evolving, and enabling them to locate code regions that needed
improved testing the most. Moreover, eight participants pointed
out that the details from the report such as the surviving mutants,
helped them to improve the test suite.

“I think the use case for the report is that you will get very detailed information
on which mutants were not killed... I would like to improve the tests so that the
mutations get killed, if possible.” - P7

Another capability brought up by experienced developers was
that mutation testing gave an indication of source code quality, in
addition to test quality. They speculated that code regions dense
withmutants could be taken as code smells or indicative of technical
debt. They argued that such complex regions could be refactored
to improve readability or testability.

“I think this framework is also quite good to give hints that you have some poor
logic. Especially, for instance, if you do a lot of comparisons in one statement, then
it’s very error-prone. It could help with refactoring the source code.” - P3

End Users: Our analysis also revealed that both teams and man-
agers can benefit from the developed solution. Nine participants

thought the dashboard, in particular, could offer observability into
the state of the testing process for non-technical stakeholders such
as product owners (PO) or team managers, as no in-depth knowl-
edge of the code was required to interpret the dashboard.

“To give an overview for people that do not work with the specific functions, maybe
the dashboard is better.” - P7

Many participants considered the dashboard and report to be
complementary components of their toolkit. Participants shared that
developers would use the report more often than the dashboard.
Their main focus is on the code and the tests they are responsible
for, and need more than just the overview. Participants also felt that
knowledge about the code was required to use the report effectively.

“I think I would be able to do everything with only the report. But it would be
much more difficult for me to navigate because the visualization [in the dashboard]
makes it easier to pinpoint where you want to look.” - P1

Valued Information Participants shared some examples of infor-
mation that they felt was useful or wasmissing from the dashsboard.
The majority of participants indicated that they mainly used the
mutation score and surviving mutants to assess test suite quality.
Less focus was given to the number of surviving mutants, the dis-
tribution of mutation operators applied, or other metadata.

When asked what additional information could be beneficial for
improving test suite quality, nine out of ten participants discussed
information related to the code-under-test. Examples of desired
source code context included relating mutation testing results to
code coverage, file sizes (in lines of code), code criticality, code com-
plexity, and compliance to specific safety standards. Participants
also desired surviving mutant context, mainly to prioritize which to
address first.

“If you could somehow include the [coverage] report, then you could have all
testing in one place, which would be nice. At least double check that there is a test
that covers [the same code] or not ... Then you could quickly know if the mutant
survives because I didn’t have a test or my test was bad. Maybe that could help me
investigate more quickly what I should do.” - P6

“If you want to improve your code you would want the tool to show the [mutants]
that you should focus on first ... You want to remove the most dangerous first and,
maybe, eventually go down to zero.” - P5

Visual Elements: This theme encompasses the relevant factors
when visualizing information. Eight participants noted that the
dashboard’s visualizations fulfilled their purpose despite the large
scale of the codebase. They mainly attribute scalability to the filter-
ing functionality, which allows them to see only relevant informa-
tion in the visualizations.

“Since it’s possible to go to particular directories, I don’t think [scalability] is a big
problem, at least in our code base. ” - P3

Participants preferred simplicity in the visualizations over more
detailed, but complex, ones. For example, there is significant hier-
archy in mutation testing results—teams guard directories, which
contain main files, each with surviving mutants. Participants pre-
ferred a separate visualization for each level in the hierarchy instead
of one that shows information related to multiple levels at once
(e.g., tree maps). Participants frequently praised visualizations that
evolution and trends of the mutation testing results. This helped

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA van Heijningen and Wiik, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

them see how test quality changed over the development process
and the impact of their changes.

“[The tree map] is a bit hard to read. Maybe one can do something else there.” - P7

“[The line chart] is quite good, the surviving mutants per directory over time. You’re
seeing how the directory is getting affected.” - P1

User Experience: This theme relates the the user experience of
the solution. The possibility of filtering the data—available in the
dashboard, but not the report—was considered very important to
avoid overwhelming information.

“I think since we have quite a huge code base, I don’t know how useful these are
without filtering.” - P3

Participants frequently switched between the dashboard and
the report, highlighting the importance of navigability. A common
point brought up was that they lacked a way to easily switch be-
tween the two — they would find a point of interest using the
dashboard and manually navigate to the report. They requested,
e.g., a button to directly move from the dashboard to the same point
in the report. Some also argued in favor of combining the dashboard
and report into a single component.

“If I could press on the link and open [the report] to see it directly ... some kind of
link from this page to this” - P2

Seven participants reflected that, even with the initial presenta-
tion, they experienced a steep learning curve to understandmutation
testing or use the solution. They did not find the mutation score
intuitive to interpret, unlike a code coverage score. Many wanted
to see the results for other teams to get a notion of what a “good”
mutation score would be. Regarding the solution, some interactive
elements were not straightforward to interpret.

“I feel like it is a bit hard to know what is a good value.I guess there would be
guidelines ... like code coverage.” - P10

Participants reflected positively on the usability of our solution,
explaining that it was easy to use after some guidance and familiar-
ization. The participants did not consider the amount of information
displayed overwhelming. Again, the ability to filter data was seen
to assist, reducing the mental fatigue associated with analyzing
mutation testing results.

“It was great getting some hands-on experience and it was easier than I expected ...
When you first hear about [mutation testing], it seems like a complex concept, but
it’s really quite simple actually ... with the help of the tools, I mean. Otherwise, if
you just get some kind of console output, then that would be much harder.” - P6

“ Coming in, I expected to be overwhelmed, but it was not overwhelming and it
felt like a good amount [of information], actually. Usually, it takes a while for you
to learn how to use these [tools] efficiently and what to look for. But, it felt pretty
good initially. ” - P5

7 DISCUSSION
7.1 Mutation Testing Integration (RQ1)
We identified challenges and offer recommendations regarding the
integration of mutation testing into a development workflow.

Challenge 1:Mutation testing frameworks are often imma-
ture, and may have nuanced and error-prone behavior.

Recommendation 1: Assess the framework on a simple ex-
ample to understand the framework and its limitations before
integrating it into the full codebase.

The first recommendation is to develop a proof-of-concept to
evaluate a candidate mutation testing framework’s features, nu-
ances, workflow, and limitations. This enables developers to ob-
serve and develop solutions for errors and incompatibilities with
the codebase before attempting a full integration. Not all issues will
be discovered, but many will—and the issues encountered will be
easier to debug in a simplified environment.

Challenge 2: Issues can emerge from the combination of the
mutation testing framework, codebase, and/or build system.
Recommendation 2: When planning, include time for inves-
tigating and handling issues emerging from this integration.

For example, we encountered an issue where the build system
compiled code in a sandbox, then moved files outside. It is difficult
to predict integration issues in advance as they will differ between
mutation testing frameworks, codebases, and build systems, so
project planning must include time to debug these issues.

Challenge 3: Integrating a mutation testing framework re-
quires project and build system expertise.
Recommendation 3: Rather than prioritizing mutation test-
ing experts, involve developers who have expertise in the
codebase, build systems, and tool maintenance during the in-
tegration process.

We found that little knowledge of mutation testing was required
during integration. Rather, general experience with tool integration,
as well as specific experience with the codebase and build system,
were more important. Involving developers with such expertise,
even if they are not normally involved in testing, will help ensure
a smooth integration.

Challenge 4: Issues that emerged when the integration was
moved from a local environment to CI were difficult and time-
consuming to debug.
Recommendation 4: When integrating a mutation testing
framework, perform the integration incrementally, both locally
and in CI.

When performing the initial integration in a local environment,
we operated in a manner where test suites and mutation operators
were gradually added. This enabled a quick feedback loop when
investigating and correcting issues. However, we then moved our
integration into the CI pipeline all at once. The new issues that
emerged required a significant amount of time to investigate and fix
due to the increased feedback time and complexity. We recommend
adopting an incremental integration in both environments.

Challenge 5: A significant amount of code needed to be de-
veloped to integrate the mutation testing framework.
Recommendation 5: Framework developers should prioritize
the flexibility of their mutation testing frameworks, so that

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Integrating Mutation Testing Into Developer Workflow: An Industrial Case Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

they can be deployed for a variety of use cases and software
ecosystems.

Vercacmmen et al. found that “mature testing tools that break
down the initial startup effort and continuous human effort cost
are needed before companies will be willing to integrate muta-
tion testing in their workflows. [35]” Our findings are in line with
this statement. Mull is one of the most mature C++ mutation test-
ing frameworks [25]. Yet, we still needed to dedicate a significant
amount of time to adapt it for our specific use case, codebase, and
build system. As is, we consider the integration of mutation testing
to still be problematic and would expect many developers to be
dissuaded from attempting it or to give up.

Ideally, integrating a new tool should not require significant
adaptation effort, and the need for such effort will slow adoption of
new techniques. Further, the need for maintenance introduces an
ongoing cost within an organization. The developers of mutation
testing frameworks should focus usability and flexibility, which
would lower the initial integration cost and ease maintenance.

It is unrealistic to expect developers to invest in mutation testing
unless there is clear evidence that it will provide such value. The
report and the dashboard were both positively received. If the initial
positive impressions continue, it is likely that the integration will be
fixed when it breaks. However, if not, it will slowly deprecate. We
consider the regular use of mutation testing results by developers
to be an essential part of a successful integration process.

7.2 Dashboard and Report (RQ2–3)
Participants offered insight into how they would use mutation
testing, who should use it, what information they wanted, how it
should be presented, and how beneficial the results were.

Finding 1: Providing an overview of mutation testing results
in the dashboard enabled developers to more easily identify
the areas most in need of improvement in the test suite.
Recommendation 6: The ability to gain an overview of mu-
tation testing results is important, not just the ability to see
surviving mutants.

When discussing mutation testing, there is often a focus on the
specific surviving mutants. However, the participants also found
value in using mutation testing to gain an overview of the test suite.
There should be more research on how to efficiently use mutation
testing to judge the health of a test suite over time and to identify
under-tested aspects of the software. The dashboard, by offering
filtering and visualizations, made it easier to gain this overview
than a situation where developers had the report alone.

Finding 2: Mutation testing can benefit non-technical stake-
holders when presented in a form that does not require knowl-
edge of the codebase.
Recommendation 7: Certain mutation testing information
(e.g., filterable mutation scores), overviews, and visualizations
can offer non-technical stakeholders observability into the
testing process.

Mutation testing is framed as a tool for developers who directly
work on the codebase-under-test. Our observations suggest that
mutation testing can also be used by non-technical stakeholders
(e.g., team managers) to gain observability into the testing process
via the visualisations in our dashboard.

Finding 3: Developers were primarily interested in mutation
score and surviving mutants. They were not interested in
mutation operator details or raw number of surviving mutants.
Recommendation 8:When presenting mutation testing re-
sults to developers, emphasise the mutation score and details
on the surviving mutants.

Mutation testing frameworks can present multiple forms of in-
formation after executing the test suites. We found that the primary
pieces of information valued by developers were the mutation score
and details on the specific mutations that survived testing (e.g., loca-
tion and the change made). Other information, such as the number
of mutants created per operator, the list of operators applied, or the
raw number of surviving mutants were not seen as useful.

Finding 4: Developers desire more contextual information
about surviving mutants to make the results more actionable.
Recommendation 9: Combine mutation testing information
with other data, such as code coverage or complexity.

When asked what information was missing to make mutation
testing useful for improving test quality, participants consistently
requested contextual information related to the mutated aspects
of the code—e.g., establishing traceability between mutations and
code coverage, source code metrics (such as cyclomatic complexity)
for the areas of the code with surviving mutants, and the safety
standards that the company must meet.

In current research, mutation testing is generally applied alone.
However, linking mutation testing results with measurements from
other testing and monitoring tools integrated into a CI pipeline can
offer a more effective path to improving test and code quality.

Finding 5: Developers desire information to help prioritize
which surviving mutants to target for elimination.
Recommendation 10: Frameworks should provide contex-
tual information related to the severity of surviving mutants.
Recommendation 11: Develop guidance and link mutation
testing results to other information and tool results to enable
developers to prioritize surviving mutants.

Another observation—also discussed in related work [4, 28]—is
that developers struggle to prioritize surviving mutants for elimi-
nation. Participants requested a way to establish the “severity” of
each mutant and the effort that would be required to eliminate
each. Future research should explore how to estimate the severity
and effort, including both general and domain-specific factors for
prioritization. Researchers and development organizations should
work to establish appropriate guidance, and the developers of muta-
tion testing frameworks should consider incorporating information
that could help developers make prioritization decisions (e.g., code
quality and complexity measurements).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA van Heijningen and Wiik, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Finding 6: Visualizations enable developers to understand the
evolution of test quality over time.
Recommendation 12: Accompany mutation testing results
from a single execution with visualizations showing the evo-
lution of the results from past executions.

The reports generated by current mutation testing frameworks
reflect the results of a single execution of the framework. One of the
most useful aspects of the dashboard, as pointed out by participants,
was the ability to understand how mutation testing results have
changed over time. Such visualizations are important in giving
observability into the current state of the testing process.

Finding 7: Participants found scalability and simplicity to be
important when interpreting visualizations.
Recommendation 13: Focus on simple visualizations, filtered
to a chosen level of granularity, over complex visualizations
showing multiple levels of a hierarchy simultaneously.

Visualizations that are difficult to interpret can hinder the use-
fulness of mutation testing results. The participants favored simple
visualizations, largely rooted in the current level of granularity—
team, directory, or single file—to be the easiest to interpret and
use, while hierarchical visualization such as tree maps were seen
as harder to interpret.

Finding 8:Mutation testing information and visualization can
be presented at multiple levels of granularity (team, directory,
file), each enabling different use cases for stakeholders. The
ability to filter results to a level improves the efficiency and
effectiveness of mutation testing.
Recommendation 14: Allow filtering information and visu-
alizations to different levels of granularity.

Different mutation testing information and visualizations can be
presented based on different levels of result granularity, including
the team, directory, and file levels. Each level is useful for different
use cases, at different times and to different stakeholders—e.g., a
team manager may use the “team” level to understand how test
quality is evolving over time, while a specific developer may look
at surviving mutants in a single file.

The ability to filter to a specific level and only see relevant in-
formation and visualizations enables more efficient and effective
improvement of test quality and improves the usability of muta-
tion testing results. Future approaches should include both the
ability to filter, as well as the ability to directly navigate between
visualizations and relevant aspects of the report.

Finding 9: Many participants were unfamiliar with mutation
testing and required guidance to use the solution successfully.
Recommendation 15: Education (e.g., workshops or user
guides) is still needed before introducing mutation testing into
a development workflow.

Finally, it should be highlighted that mutation testing is still not
a widespread technique. Participants reflected that they still needed
to use the solutionmore before they could understandwhat a “good”

mutation score was. Improved mutation testing frameworks are not
enough to ensure the technique is adopted—education and guidance
are needed before mutation testing can offer value.

7.3 Threats to Validity
Conclusion Validity: The sessions were performed with a rela-
tively small number of participants. However, during the thematic
analysis, saturation was reached in fewer than 10 sessions.
Internal Validity: We answered RQ1 based on our own obser-
vations of an integration process that we performed, introducing
further risk of biased interpretations. We attempted to mitigate this
threat by following a systematic observation protocol. Furthermore,
developers at Zenseact also participated in making and discussing
observations, reducing bias.

Participants may have given incomplete or inaccurate answers
during the think-aloud and interview sessions since theywere being
observed or to appear more agreeable with researchers. Resistance
to change and biases regarding organizational culture are also pos-
sible. Such biases are an expected risk during qualitative analyses,
and are mitigated by focusing on common themes—not individual
statements [36]. Agreement between coders was also assessed and
used to strengthen the analysis.
Construct Validity:Mutation testing is still relatively uncommon,
and participants may have misunderstood underlying concepts.
We gave an overview of mutation testing to mitigate this threat.
Participants could also ask for clarification at any time.
External Validity: The case study was conducted at a single com-
pany, based on code in C++ and a CI pipeline based on the Bazel
build system. We also focused on a single mutation testing frame-
work, Mull. All of these factors potentially limit the generalizability
of our findings. However, we argue that our findings are not spe-
cific to the build system, language, or framework. We believe that
our findings will apply, at a minimum, to similar contexts, such as
organizations developing safety-critical systems.

8 CONCLUSION
In this study, we have explored the technical challenges of imple-
menting mutation testing in continuous integration, what informa-
tion from mutation testing is of use to developers, and how that
information should be presented.

Ultimately, we have identified five technical challenges, including
tool immaturity, issues emerging from the combination of mutation
testing framework, codebase, and build system, and the integration
process itself. We also offer 16 recommendations regarding muta-
tion testing information including the importance of gaining an
overview of test suite quality and its evolution, the information
useful to different stakeholders, missing contextual information,
the value of filtering mutation testing results for different levels
of granularity, effective visualization, and the continuing need for
education on how to interpret mutation testing results.

In future work, we aim to investigate different metrics that could
offer context lacking in current mutation frameworks. We will
also implement additional visualizations, validate our findings at
additional organizations, explore how mutation testing can be used
by different stakeholders, and conduct a long-term study to quantify
the impact of mutation testing over time.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Integrating Mutation Testing Into Developer Workflow: An Industrial Case Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Yoram Adler, Noam Behar, Orna Raz, Onn Shehory, Nadav Steindler, Shmuel Ur,

and Aviad Zlotnick. 2011. Code coverage analysis in practice for large systems. In
Proceedings of the 33rd International Conference on Software Engineering. 736–745.

[2] Maurício Aniche. 2022. Effective Software Testing: A developer’s guide. Simon and
Schuster.

[3] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research:
A critical review and guidelines. Empirical Software Engineering 27, 4 (2022), 94.

[4] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What it would take to use mutation testing
in industry—a study at facebook. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 268–
277.

[5] Joakim Brännström. [n. d.]. Dextool Mutate. https://github.com/joakim-
brannstrom/dextool/.

[6] Yiqun T Chen, Rahul Gopinath, Anita Tadakamalla, Michael D Ernst, Reid
Holmes, Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the
relationship between fault detection, test adequacy criteria, and test set size. In
Proceedings of the 35th IEEE/ACM international conference on automated software
engineering. 237–249.

[7] ISO/TC 22/SC 32 Committee. 2018. Road vehicles — Functional safety (2 ed.).
Standard. International Organization for Standardization, Geneva, CH.

[8] Renzo Degiovanni and Mike Papadakis. 2022. 𝜇BERT: Mutation Testing using
Pre-Trained Language Models. arXiv:2203.03289 [cs.SE]

[9] A. Denisov and S. Pankevich. [n. d.]. Mull. https://github.com/mull-project/
mull/.

[10] Martin Fowler. 2006. Code Ownership. https://martinfowler.com/bliki/
CodeOwnership.html. Accessed: 2024-03-21.

[11] Dawson R Hancock, Bob Algozzine, and Jae Hoon Lim. 2021. Doing case study
research: A practical guide for beginning researchers. Teachers College Press.
47–50 pages.

[12] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In FSE 2014, Proceedings of the ACM SIGSOFT 22nd Symposium on the
Foundations of Software Engineering. Hong Kong, 654–665.

[13] Mingwan Kim, Neunghoe Kim, and Hoh Peter In. 2020. Investigating the relation-
ship between mutants and real faults with respect to mutated code. International
Journal of Software Engineering and Knowledge Engineering 30, 08 (2020), 1119–
1137.

[14] Klaus Krippendorff. 2018. Content analysis: An introduction to its methodology.
Sage publications. 221 –222,251 –252 pages.

[15] Klaus Krogmann, Christian M Schweda, Sabine Buckl, Michael Kuperberg, Anne
Martens, and Florian Matthes. 2009. Improved feedback for architectural perfor-
mance prediction using software cartography visualizations. In Architectures for
Adaptive Software Systems: 5th International Conference on the Quality of Software
Architectures, QoSA 2009, East Stroudsburg, PA, USA, June 24-26, 2009 Proceedings
5. Springer, 52–69.

[16] Nan Li, MichaelWest, Anthony Escalona, and Vinicius HSDurelli. 2015. Mutation
testing in practice using ruby. In 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 1–6.

[17] Yang Li and Walid Maalej. 2012. Which traceability visualization is suitable
in this context? a comparative study. In Requirements Engineering: Foundation
for Software Quality: 18th International Working Conference, REFSQ 2012, Essen,
Germany, March 19-22, 2012. Proceedings 18. Springer, 194–210.

[18] Wei Ma, Thomas Laurent, Miloš Ojdanić, Thierry Titcheu Chekam, Anthony
Ventresque, and Mike Papadakis. 2020. Commit-aware mutation testing. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 394–405.

[19] Wei Ma, Thierry Titcheu Chekam, Mike Papadakis, and Mark Harman. 2021.
Mudelta: Delta-oriented mutation testing at commit time. 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE) (2021). https://doi.org/
10.1109/icse43902.2021.00086

[20] Stryker Mutator. 2024. Mutation Testing Elements Schema. https://github.com/
stryker-mutator/mutation-testing-elements. Accessed: 2024-06-14.

[21] Elastic NV. 2024. Kibana. https://www.elastic.co/kibana. Accessed: 2024-03-25.
[22] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian

Zapf. 1996. An experimental determination of sufficient mutant operators. ACM
Transactions on Software Engineering and Methodology 5, 2 (1996), 99–118. https:
//doi.org/10.1145/227607.227610

[23] Milos Ojdanic, Ezekiel Soremekun, Renzo Degiovanni, Mike Papadakis, and Yves
Le Traon. 2023. Mutation Testing in Evolving Systems: Studying the relevance
of mutants to code evolution. ACM Transactions on Software Engineering and
Methodology 32, 1 (2023), 1–39.

[24] Sebastiaan Oosterwaal, Arie van Deursen, Roberta Coelho, Anand Ashok Sawant,
and Alberto Bacchelli. 2016. Visualizing code and coverage changes for code
review. In Proceedings of the 2016 24th ACM SIGSOFT international symposium on
foundations of software engineering. 1038–1041.

[25] Jonathan Örgård, Gregory Gay, Francisco Gomes de Oliveira Neto, and Kim
Viggedal. 2023. Mutation Testing in Continuous Integration: An Exploratory
Industrial Case Study. In 2023 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, 324–333.

[26] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275–378.

[27] Ali Parsai and Serge Demeyer. 2020. Comparing mutation coverage against
branch coverage in an industrial setting. International Journal on Software Tools
for Technology Transfer 22, 4 (2020), 365–388.

[28] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René Just.
2018. An Industrial Application of Mutation Testing: Lessons, Challenges, and
Research Directions. In 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). 47–53. https://doi.org/10.1109/
ICSTW.2018.00027

[29] M. Pezze and M. Young. 2006. Software Test and Analysis: Process, Principles, and
Techniques. John Wiley and Sons.

[30] Alec Radford, JongWook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. 2023. Robust speech recognition via large-scale weak supervision.
In International Conference on Machine Learning. PMLR, 28492–28518.

[31] Marvin Rausand. 2014. Reliability of safety-critical systems: theory and applica-
tions. John Wiley & Sons.

[32] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering 14
(2009), 131–164.

[33] Gayane Sedrakyan, Erik Mannens, and Katrien Verbert. 2019. Guiding the
choice of learning dashboard visualizations: Linking dashboard design and data
visualization concepts. Journal of Computer Languages 50 (2019), 19–38.

[34] Edward R Tufte. 2001. The visual display of quantitative information. Vol. 2.
Graphics press Cheshire, CT.

[35] Sten Vercacmmen, Markus Borg, and Serge Demeyer. 2023. Validation of Mu-
tation Testing in the Safety Critical Industry through a Pilot Study. In 2023
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 334–343.

[36] Victoria Clarke Virginia Braun. 2021. Thematic Analysis - A practical guide (1st
ed.). SAGE Publications Ltd.

[37] Zenseact. 2024. Zenseact Linkedin Post. https://www.linkedin.com/
posts/zenseact_today-eid-al-fitr-marks-the-end-of-ramadan-activity-
7183796792193413121-FEUW?utm_source=share&utm_medium=member_
desktop. Accessed: 2024-04-16.

[38] Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang.
2019. Predictive Mutation Testing. IEEE Transactions on Software Engineering 45,
9 (2019), 898–918. https://doi.org/10.1109/TSE.2018.2809496

11

https://github.com/joakim-brannstrom/dextool/
https://github.com/joakim-brannstrom/dextool/
https://arxiv.org/abs/2203.03289
https://github.com/mull-project/mull/
https://github.com/mull-project/mull/
https://martinfowler.com/bliki/CodeOwnership.html
https://martinfowler.com/bliki/CodeOwnership.html
https://doi.org/10.1109/icse43902.2021.00086
https://doi.org/10.1109/icse43902.2021.00086
https://github.com/stryker-mutator/mutation-testing-elements
https://github.com/stryker-mutator/mutation-testing-elements
https://www.elastic.co/kibana
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/227607.227610
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1109/ICSTW.2018.00027
https://www.linkedin.com/posts/zenseact_today-eid-al-fitr-marks-the-end-of-ramadan-activity-7183796792193413121-FEUW?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/zenseact_today-eid-al-fitr-marks-the-end-of-ramadan-activity-7183796792193413121-FEUW?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/zenseact_today-eid-al-fitr-marks-the-end-of-ramadan-activity-7183796792193413121-FEUW?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/zenseact_today-eid-al-fitr-marks-the-end-of-ramadan-activity-7183796792193413121-FEUW?utm_source=share&utm_medium=member_desktop
https://doi.org/10.1109/TSE.2018.2809496

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Research Methodology
	4.1 Case Study Context
	4.2 Mutation Testing Integration (RQ1)
	4.3 Mutation Testing Information and Result Presentation (RQ2–3)

	5 Technical Deliverables: CI Integration and Dashboard
	5.1 Integrating Mull and Nightly Builds
	5.2 Designing the Mutation Testing Dashboard

	6 Results
	6.1 RQ1: Mutation Testing Integration
	6.2 RQ2 and RQ3: Visualising Mutation Testing

	7 Discussion
	7.1 Mutation Testing Integration (RQ1)
	7.2 Dashboard and Report (RQ2–3)
	7.3 Threats to Validity

	8 Conclusion
	References

