
A Framework for Managing Quality Requirements
for Machine Learning-Based Software Systems

Khan Mohammad Habibullah, Gregory Gay, and Jennifer Horkoff

Chalmers and University of Gothenburg, Sweden
khan.mohammad.habibullah@gu.se, greg@greggay.com, jennifer.horkoff@gu.se

Abstract. Systems containing Machine Learning (ML) are becoming
common, and the tasks performed by such systems must meet certain
quality thresholds, e.g., desired levels of transparency, safety, and trust.
Recent research has identified challenges in defining and measuring the
achievement of non-functional requirements (NFRs) for ML systems.
Managing NFRs is particularly challenging due to the differing nature
and definitions of NFRs for ML systems including non-deterministic be-
havior, the need to scope over different system components (e.g., data,
models, and code), and difficulty in establishing new measurements (e.g.,
measuring explainability). To address these challenges, we propose a
framework for identifying, prioritizing, specifying, and measuring attain-
ment of NFRs for ML systems. We present a preliminary evaluation of
the framework via an interview study with practitioners. The framework
captures a first step towards enabling practitioners to systematically de-
liver high-quality ML systems.

Keywords: Quality Framework · NFR Framework · Non-Functional Re-
quirements · Requirements Engineering · Machine Learning.

1 Introduction

Software systems have become increasingly dependent on Machine Learning
(ML)1 to perform complex decision-making and prediction tasks based on large
quantities of data [42]. Although the inclusion of ML advances the capabilities of
such systems, it also makes the systems and their development more complex—
introducing challenges related to the impossibility of exhaustive testing [20],
non-determinism and potentially unsafe operations [10], unfair or unexplainable
results [9], and unintended bias [28].

To ensure successful development, implementation, and operation, ML sys-
tems must satisfy certain quality requirements. In the field of requirements
engineering, these quality aspects are known as “non-functional requirements”
(NFRs). For ML systems, NFRs are arguably the key requirements, as it is
challenging to identify functional requirements over ML components [46]. NFRs
for ML systems have recently become a widely investigated topic, with research
investigating NFR importance, definition, and measurement [20], scoping over
1 We will use the term “ML systems” to describe such systems.
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different components (e.g., models, data, and code) [19, 20, 37, 41], and research
on specific NFR types such as explainability [11], trust [40], or safety [14].

Past research has uncovered challenges related to the difficulty in defining
different types of NFRs (e.g., correctness)—including prioritization, uncertainty,
domain dependence, requirement interdependence, lack of documentation, regu-
lations, and lack of awareness among practitioners and customers—as well chal-
lenges in measuring attainment of NFRs—including lack of established prac-
tices or clear baselines, complex ecosystems, testing costs, and bias [19, 20]. As
ML systems contain interacting code and non-code components (e.g., models),
NFRs may need to be scoped over different aspects of the system [19,20,37,41].
Further, the trade-offs between different NFRs may change with their shifting
definitions and are not yet well-understood [3,19,20,25]. Practitioners agree that
NFR attainment is a major contributor to the success of ML systems, but they
lack knowledge, processes, and tools to help define and measure NFRs for ML
systems [3, 20,41,45].

Towards addressing these challenges, we propose a framework to help prac-
titioners manage NFRs for ML systems. This framework, consisting of five
steps, guides NFR specification from a high level—identifying, prioritizing, defin-
ing, scoping, and balancing trade-offs between NFR types (e.g., accuracy)—to
template-based specification of low-level individual specific NFRs (e.g., “The lane
identification model must have an accuracy of 99.99%”).

Our framework could enable practitioners (e.g., ML system developers, ar-
chitects, product owners, and testers) and researchers to systematically deliver
high-quality ML systems by offering step-by-step guidance for defining, priori-
tizing, scoping, measuring, and specifying NFR types and specific NFRs during
the development process. Although such a framework could be useful for NFR
management in any type of system, the challenges specific to ML systems indi-
cate that this type of guidance and management is particularly needed, and the
framework has been designed with these ML system challenges in mind.

While describing our proposed framework, we use autonomous perception
systems—part of driving automation systems (DAS)—as a running example [22].
Autonomous perception systems use ML, trained on complex sensor data, to
identify and analyze objects within a vehicle’s environment. The framework has
undergone a preliminary evaluation through four interviews with five practi-
tioners. This evaluation demonstrates the potential of this framework, and also
provides feedback for future revisions.

2 Running Example

Driving automation systems (DAS)—including both autonomous driving and
advanced driver assistance systems—are systems designed to augment or auto-
mate aspects of vehicle operation. Autonomous perception systems (APS)—an
important element of the DAS ecosystem—are ML systems that identify and
analyze objects in a vehicle’s environment based on sensor input. Such systems
combine ML models with conventional signal processing [33].
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Fig. 1. Elements contributing to the quality of an APS, from [22].

The quality of an APS is dependent on—and must be specified at—multiple
scopes within the overall system. As illustrated in Figure 1, APS quality is
determined by the quality of data collected from the operational design domain,
the object detection model, functional code, and other aspects of the system.

Specifying NFRs for an APS is challenging due to the complexity of percep-
tion tasks, a dynamic environment where conditions change rapidly, uncertainty
and ambiguity inherent in sensor data, real-time data processing, compliance
with regulatory standards and guidelines, and ethical considerations [34].

An APS must satisfy certain NFRs (e.g., related to accuracy, safety, and per-
formance). However, it is difficult to determine what NFR types are the most
important and how to measure their attainment. Additionally, the meaning of
certain NFR types needs to be better understood, and that meaning must be
adapted to different scopes, as suggested in Figure 1. For example, a practitioner
may need to define broadly what “performance” means for an APS at the system
level, as well as what “performance” means in regards to a model or a code com-
ponent2. With this definition, it becomes easier to decide which measurements
should be employed at each scope to assess attainment of performance require-
ments, or how performance should be balanced against other NFR types such as
safety. Past research has shown that practitioners working in the APS domain
currently lack a structured process for managing NFRs [22]. As such, we employ
APS as a representative of ML systems that could benefit from our framework.

3 NFR Management Framework

Our proposed NFR management framework consists of five steps—each con-
sisting of one or more concrete tasks—presented in Fig. 2. Although the steps
are presented in an ordered sequence, practitioners can jump between steps and
tasks, as it is expected that NFR identification, definition, scoping, trade-off,
measurement, and specification will be iterative in nature.

We discuss NFR management at two levels. Steps 1–4 of the framework relate
to broad high-level types of NFRs (e.g., ‘performance”). Step 5 of the framework
relate to specific instances of those types (e.g., “PE003: the object detection

2 When discussing models, the term “performance” often is a synonym for accuracy,
while for code, “performance” generally refers to execution time.
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Fig. 2. Overview of the framework. Tasks in blue are performed on NFR types, tasks in
red compare NFR types, and tasks in green are performed on specific NFR instances.

Table 1. Mapping between NFR challenges for ML systems and our framework.
Challenge Framework Aspect
New NFR types are needed [20,24,41] Task 1.1
NFR types change in priority for systems with or without ML [19,20] Task 1.2
NFR type definitions need to be adjusted [20,41] Task 2.1
NFRs type definitions need to be scoped over components [19,20,41] Task 2.2
Trade-offs between NFR types are important and unclear [3, 20,25] Step 3
Difficulty measuring attainment of different types of NFRs [20] Step 4
Lack of documentation [20] Step 5
Lack of management guidance, practices, and knowledge [20,41] All
Lack of management solutions (e.g., frameworks or tools) [3, 20,45] All

function should detect objects defined in the operational design domain within
0.001 seconds.”).

We summarize how the elements of the framework address identified chal-
lenges in NFR management in Table 1. For example, “new” NFR types like
fairness can be discovered and considered as part of Task 1.1—where important
NFR types are identified—with the help of a list of potentially relevant NFRs.

3.1 Step 1: Select and Prioritize NFR Types

Task 1.1: Select Important NFR Types: Practitioners should first select
the subset of NFR types that are potentially important for their system. By se-
lecting important NFR types, practitioners can ensure research allocation (time,
effort, and budget) more effectively, mitigate risks and prevent potential issues
that could arise later, and make informed design decisions that prioritize aspects
of system architecture, infrastructure, and implementation that contribute most
significantly to meeting performance objectives. The importance of a particular
NFR type may depend on the context or domain of the system under develop-
ment. As a starting point, a set of important NFR types generally important for
ML systems was identified in previous work [20]—a subset are listed in Table 2.
This list must, however, be adapted to a specific domain or ML system (e.g., by
discarding irrelevant NFR types or adding additional types).

Running Example: In applying Task 1.1 for an APS, practitioners may iden-
tify NFR types such as accuracy, explainability, performance, reliability, safety,
security, and privacy as important (as suggested in recent research [22]). For
example, as a safety-critical system, understanding how the APS reaches a de-
cision is critical, and transparency makes it easier to understand how erroneous
decisions are made. Real-time performance can also be critical in a vehicle, as
this ensures the system reacts swiftly to changing environmental situations. En-
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Table 2. Example definitions of NFR types relevant for ML systems as identified and
defined by Habibullah et al. [19, 21]. Here we include only those NFR types that may
be important for an APS system (12/35 identified NFR types).
NFRs Definition
Accuracy The number of correctly predicted data points out of all the data points of ML systems.
Explainability The extent to which the internal mechanics of ML-enabled system can be explained in human terms.
Fairness The ability of a ML system to operate in a fair and unbiased manner.
Integrity The ability of the ML system to ensure that data is real, accurate and safeguarded from unauthorised modification.
Interpretability The extraction of relevant knowledge from a model concerning relationships in the data or learned by the model.
Performance The ability of a ML system to perform actions within defined time or throughput bounds.

Privacy An ML model or ML system is private if an observer examining the output is not able to determine whether a
specific information was used in the computation.

Reliability The probability of the ML system performing without failure for a specific number of uses or amount of time.
Safety The absence of failures or conditions that render a system dangerous.
Security Security measures ensure a ML system’s safety against malicious use or sabotage.

Transparency The extent to which a human user can infer why the ML system made a particular decision or produced a
particular externally-visible behaviour.

Usability How effectively users can learn and use an ML system.
... ....

suring security and privacy ensures that the APS is guarded against adversarial
attacks, data manipulation, or data leaks.

Task 1.2: Prioritize the Selected NFR Types: The initial list of selected
NFR types may be too large to practically manage. It is very difficult to prioritize
NFR types at a general level, as significance may vary from system to system.
Therefore, a practitioner may want to prioritize the NFR types based on the
context of the ML system to be developed. We first recommend that practitioners
rank the identified NFR types (e.g., very important, important, less important),
then use that ranking to determine where to prioritize efforts. Practitioners
can prioritize in an ad-hoc way, discussing among themselves and coming to
understand the meaning and purpose of the NFR types, or they can use one or
more established RE prioritization techniques (e.g., [2]).

Running Example: For an APS, accuracy is likely to be given the highest priority
because it is essential for the system to function correctly. Safety is also likely
to get high priority, as there is a risk of harm to drivers when hazards occur.
The practitioners might also prioritize performance, as the system needs to make
quick decisions to avoid obstacles or accidents.

3.2 Step 2: Define NFR Types and Identify NFR Type Scope

Task 2.1: Create NFR Type Definition Catalogue: After identifying im-
portant NFR types for the ML system to be developed, we recommend that
practitioners create a definition catalogue by adapting the general definitions of
these NFRs (e.g., from Table. 2) to their particular system. The adjustment is
needed as the definition of an NFR type may vary depending on context. The
resulting catalogue helps to establish a clear and shared understanding of the
NFRs among the stakeholders working on a particular system, facilitate the iden-
tification and management of potential quality issues, and enable more effective
decision-making and risk management [43,47].

Running Example: Example definitions for an APS are presented in Table 3.
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Table 3. Definitions of important NFR Types for autonomous perception system.
NFRs Definition
Accuracy The ability to precisely and correctly identify objects defined in the Operational Design Domain.

Reliability The system consistently identify objects correctly and without sudden errors, ensuring the system
can react appropriately to the environment.

Safety Objects are accurately identified and located—preventing collisions, accidents, and other potential
hazards—even in the presence of poor visibility, occlusions, and unexpected object behaviors.

Table 4. Examples of NFR scoping for an APS.
System Element the NFR Type Can be Defined Over

NFR Training Data ML Pipeline ML Model Results Whole System
Accuracy ✖ ✔ ✔ ✔ ✔
Explainability ✖ ✔ ✔ ✔ ✔
Integrity ✔ ✔ ✔ ✔ ✔
Performance ✔ ✔ ✔ ✔ ✔
Reliability ✔ ✔ ✔ ✔ ✔
Safety ✔ ✔ ✔ ✔ ✔

Task 2.2: Scope NFR Types over Different Elements of ML Systems:
A ML system is typically not a monolith, but different types of components
working together to deliver functionality [37]. Some components relate directly
to ML, while others do not. Therefore, the definitions of NFR types may differ
between components or groups of components. Past research suggests one form
of scoping—that NFRs could be specified over datasets, models, ML pipelines
used to train models, results of executing those models, and the system code [19].

Scoping is important, as the definition, importance, and measurement of
NFR types may differ depending on the components considered. For example,
“usability” of a ML pipeline refers to how difficult it is to use that pipeline
to train a model, “usability” of a model refers to how difficult it is to extract
decisions from the model, and “usability” of results refers to how effectively users
can understand and apply the model output for practical purpose.

We envision Tasks 2.1 and 2.2 to be highly iterative. Practitioners need to
understand how (and which) NFRs apply to different scopes and may need to
refine NFR type definitions at each scopes.

Running Example: An example of a possible scoping of NFR types for an APS
is presented in Table 4. For example, when specifying accuracy, one might have
requirements on the accuracy of a particular model (e.g., ability to detect par-
ticular types of objects). However, one might also specify NFRs on the meta-
accuracy of the ML pipeline—that is, any model produced by the pipeline must
meet a minimal level of accuracy. The system may have further requirements on
the accuracy of broader functions that make use of these models.

Similarly, reliability at the system level refers to the ability of the code to
operate correctly and without crashing, while at the training data level, this
may be reinterpreted to limit the amount of corrupt or noisy data. In different
scopes, reliability may refer to the ML pipeline’s ability to produce models or
the model’s ability to produce a prediction on-demand without error. The other
rows of Table 4 have similar explanations.
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Table 5. Examples of NFR type trade-offs for APS Systems. The cited papers offer
more discussion on the potential trade-offs.
Conflicting
NFR Types APS Example

Accuracy,
Interpretability [7]

Some model architectures, e.g., deep convolutional neural networks, provide high accuracy for
image recognition, but provide limited insight into how predictions are reached.

Accuracy,
Privacy [1]

Certain data (e.g., GPS or visual data) could enhance the accuracy of a model’s predictions.
However, this data is also potentially sensitive—violating the privacy of users or individuals in
the APS’ environment. Protecting privacy may require masking or removing sensitive informa-
tion from the training data, which could negatively impact the model’s accuracy.

Safety,
Performance [31]

Ensuring APS safety may require adding additional safeguards or constraints that could neg-
atively impact the performance. For example, an ensemble of models may collectively produce
safer verdicts than a single model, but this requires asking all models for predictions and then
calculating a combined verdict.

3.3 Step 3: Balance NFR Type Trade-offs

Practitioners may observe trade-offs among different NFR types—e.g., perfor-
mance, usability, and security often conflict. It is also important to note that the
nature and criticality of these trade-offs may differ based on the scope within
the system, or the context and domain of the system under development. For
example, trade-offs between accuracy and interpretability at the ML model level
may have a different weight and impact than trade-offs between the two at the
result-level.

In cases where a trade-off exists, practitioners need to find a balance between
the conflicting NFR types. Trade-offs can be considered in an ad-hoc way, or via
more structured methods (e.g., [36]). The emphasis here is to make such trade-
offs explicit and raise them for discussion and eventual resolution.
Running Example: Some examples of trade-offs among different NFR types for an
APS are presented in Table 5. An appropriate balance must be found, potentially
guided by standards like ISO 26262 in the automotive industry [26].

3.4 Step 4: Specify NFR Measurement Catalogue

At this stage, we suggest practitioners adapt a measurement catalogue for the
selected NFR types. In future work, we aim to provide an example NFR mea-
surement catalogue for the NFR types identified in our previous study [23]. A
partial excerpt of such a catalogue is shown in the first three columns of Table 6.
For each NFR type, the catalogue should record all measurements—including
equations—that will be used to assess the satisfaction of each of the specific
NFRs of each type at each scope in the system. Considering the scope of NFR
measurement is important (see Task 2.2), as our prior work found that definition
and measurement of NFR types varies depending on the scope [18].

Table 6. Example excerpt from a NFR measurement catalogue for an APS.
NFR Type Measurement Equation APS Example Application

Accuracy F-Score 2∗(Precision∗Recall)
(Precision+Recall)

The F-Score is the harmonic mean of a system’s precision
and recall, and is commonly used to assess the accuracy
of an APS (e.g., when detecting pedestrians).

Reliability
Mean Time
Between
Failures (MTBF)

Uptime
Num.Failures

MTBF can be used to define how often an APS is allowed
to fail in practice. If MTBF rises above the defined
threshold, improvements must be made.
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Having a clear and comprehensive measurement catalogue is crucial, as it
provides a systematic method to identify how to assess the attainment of each
NFR. It enables identification of targets to show that an NFR is attained. It also
enables detection of measurement challenges early in the development process,
provides a means to group related NFRs, and enables proactive management
and monitoring of NFR attainment and overall system quality.
Running Example: Table 6 illustrates an excerpt from an NFR measurement
catalogue for an APS.

3.5 Step 5: Specify NFRs Using Template
In the final step, practitioners fill out a template as part of the process of speci-
fying the low-level individual NFRs of the types selected and defined in the pre-
vious steps. Each NFR type will have many specific NFRs that must be fulfilled
to ensure the overall quality is upheld. It is important that NFRs have docu-
mentation that is stable, unambiguous, and complete, so that stakeholders can
form a shared understanding of the NFR and ensure that the NFR is satisfied.
A template can help ensure the attainment of this goal, facilitating discussion,
reducing development time, cost, and effort, and enabling verification [16].

Past research has found that the practitioners need to capture a context-
aware definition of the NFR, importance (and justification for the importance),
system scope, measurement method, measurement target, and trade-offs with
other specific NFRs. We capture these elements in a template—presented in
Table 7—inspired by existing templates such as the one offered by Volere [35].

Table 7. Template for specifying individual NFRs.
Requirement ID: A unique id.
Requirement Type: NFR Type (e.g., performance)
Definition: A context-adapted definition of the specific NFR type.
Description: The primary text describing the requirement.
Rationale: A justification of the requirement.
Importance Level: The overall importance of this specific NFR for the system (e.g., very important,
important, not important).
System Scope: System elements the specified NFR is relevant to.
Measurement: The measurement used to assess attainment of this NFR.
Measurement Target: The measurement threshold required to satisfy this NFR.
Trade-Offs: IDs of other specific NFRs that conflict with this specific NFR, and explanation of the
conflict.
Source: Person, regulation, document, etc. that suggested the requirement.
Responsible: Person responsible for managing this requirement.

Table 8. An example of a specific accuracy NFR for an APS.
Requirement ID: AC001
Requirement Type: Accuracy
Definition: Accuracy for object detection in an autonomous perception system refers to ability to
precisely and correctly identify objects defined in the Operational Design Domain.
Description: The lane identification model shall detect lane divisions on all road types with high
accuracy.
Rationale: If the perception system is not accurate, it may make mistakes or incorrect decisions
that could have serious consequences (e.g., accidents).
Importance Level: Very Important
System Scope: ML model
Measurement: F-Score
Measurement Target: 99.99999%
Trade-Offs: To protect passenger privacy, the system employ object detection models that blur or
anonymize faces and license plates, sacrificing some detection accuracy (requirement PR013).
Source: Tom Robertsson (product owner)
Responsible: Tom Robertsson (product owner)
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Running Example: Table 8 offers an example of a specific accuracy NFR for the
lane detection model that is part of the overall object detection functionality
of an APS. In reality, many similar accuracy requirements would need to be
captured for different aspects of the system functionality and for different scopes.

4 Preliminary Evaluation

4.1 Methodology

To gain initial feedback on the framework, we conducted a qualitative interview
study. We chose interviewees who had experience with NFRs and were currently
working with ML in industry.

Sampling: The sampling method was a mix of convenience and purposive sam-
pling. We contacted people in the industry who have requirements engineering
and ML experience, and then asked them if they knew any qualified candidates
we could contact.

Data Collection: We interviewed five practitioners over four interviews. These
practitioners have 6–25 years of experience working with RE and ML. Among
the five, three are from the automotive domain, one from the telecommunications
and networking domain, and another from the smart home monitoring domain.
Table. 9 presents demographic information of the interviewees. Although the
numbers of interviewees is small, this is a preliminary evaluation of our proposed
framework. We believe that the background and experience of the interviewees
will be valuable for refining the framework before conducting a more thorough
evaluation.

The interviews lasted approximately 60 minutes, and were conducted between
September and October 2023 via Microsoft Teams. We recorded interviews with
the permission of the interviewees, then transcribed and anonymized for further
analysis. During this interview, we first presented the framework steps, then
asked about the utility of the overall framework, as well as each step. We asked
if any elements should be removed, added, or adjusted. The interviews were
semi-structured, with the ability to ask follow-up questions3.

Data Analysis: The collected data was qualitative in nature. We applied a
mixed form of thematic analysis, where we started with high-level codes based
on our interview questions, then also extracted and refined additional induc-
tive codes from the transcripts. Codes were then grouped into themes and sub-
themes. The first author did the initial coding, then all codes were checked
and discussed by all authors. Based on this thematic analysis, we extracted im-
pressions and insights about the framework, as well as suggestions for future
improvements to the framework.
3 The interview guide and presentation to the interviewees can be found at https:
//doi.org/10.7910/DVN/QUPD8D. Due to the sensitive nature of the collected prac-
titioner data from the interviews, we can not share the full interview transcripts.

https://doi.org/10.7910/DVN/QUPD8D
https://doi.org/10.7910/DVN/QUPD8D
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Table 9. Interviewees’ Demographic Information
ID Field of

Work
Role Exp.

(Years)
ML
Exp.

NFR
Exp.

Responsibilities

I1 Smart home
monitoring

Software developer 6 Yes Yes Development and data analysis

I2 Automotive Researcher and senior
system safety engineer

8 Yes Yes Requirements specifications, safety
functions analysis, system design

I3 Automotive Researcher and chief
safety engineer

25 Yes Yes Responsible for safety compliance, Ful-
fill stakeholder requirements by ensuring
ISO 26262 standard, SOTIF standard,
and cybersecurity and quality standards

I4 Automotive Researcher and require-
ments engineer

14 Yes Yes Work with system level requirements,
ensure safety compliance

I5 Telecomm-
unications

Software engineer and
data analyst

8 Yes Yes Anomaly detection, data analysis, soft-
ware development

4.2 Impressions and Insights

Overall, the feedback was positive, with all interviewees suggesting the need
for such a framework. The interviewees did not suggest that any steps or tasks
be removed. However, they did make several observations about the individual
steps and tasks, as well as the framework as a whole. We indicate the number
of interviewees supporting a particular point in parentheses, e.g., (2).

Interviewees had feedback on when the framework would be useful. Two in-
terviewees (2) stated that our framework was potentially very useful at early
stages of development—particularly tasks centered around NFR types. Further-
more, interviewees (2) suggested that the framework would be very useful for a
new system or when performing a large overhaul, but that it may be less useful
as part of continuous evolution.

Interviewees (2) pointed out that the framework could be used to identify
important NFR types for an ML system, especially having been provided a pre-
existing list of NFRs that are commonly important for ML systems. In addition,
interviewees noted that creating a definition catalog could facilitate understand-
ing of the contextual meaning and purpose of an NFR type (2), and that having
a definition catalogue could improve shared understanding and facilitate discus-
sion among stakeholders (3).

In terms of prioritization, interviewees (2) pointed out that this step should
be iterative and repeated at different times and with different degrees of thor-
oughness. Scoping was identified as helping in prioritizing as well as identifying
and discussing trade-offs (2).

Interviewees (3) had comments on measurements, pointing out that some
NFR types may not be critical enough or too difficult to measure. They also
noted that some measurements and targets could be extracted from standards.
Finally, interviewees (2) suggested that the template was useful as a means of
documenting specific NFRs. However, they also noted that it would be too much
work to fill out the template for all NFRs.

4.3 Potential Future Improvements

Interviewees also pointed out many ways in which the framework can be im-
proved. Interviewees (3) suggested that the framework should also account for
stakeholder roles, it should document stakeholder roles more explicitly and at
many steps as possible to facilitate discussion and negotiation.
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Other interviews made suggestions concerning support for NFR breakdown
and traceability. One interviewee stated that the framework should consider
requirements breakdown and layering more explicitly (e.g., logical level, system
level, feature level), possibly as part of—or in addition to—scoping. Interviewees
(2) added that the framework should enable explicit traceability between NFR
types and specific NFRs to ensure decisions made at the type level are reflected
at the instance level.

In terms of process, interviewees (2) stressed that the framework must fit
into their process (e.g., it may need to be adapted to work within a specific agile
process). In addition, an interviewee mentioned that the framework should keep
historical records of decisions (e.g., trade-offs and prioritization).

Interviewees (3) expressed that it is difficult and time consuming to fill out
the template for every requirement, and we should identify when this type of doc-
umentation is needed. We should explore ways to make filling out the template
easier, like identifying optional fields, populating the framework with default
values, and providing examples to guide and ease application. Interviewees (2)
suggested the inclusion of a default definition catalogue (including defaults for
different scopes). As some scopes may not be applied to some systems, the frame-
work must be flexible enough to function without fully scoping all NFR types.
Another interviewee said that the framework could provide examples of trade-
offs among NFR types. Regarding default values and measurements, interviewees
(2) suggested that the framework include an extensive measurement catalogue
and guidance on the most common measurements and measurement targets.
Further interviewees (3) pointed out that standards (e.g., ISO 26262 [26]) could
provide template defaults and guidance for certain domains, and one interviewee
suggested that earlier steps regarding NFR types could populate generic default
templates for those types.

Our future work includes framework tooling. An interviewee mentioned that
a tool based on our framework could offer suggestions to the users of potentially
incomplete or missed aspects (e.g., trade-offs, measurements, template fields),
providing a type of quality or completeness check. In addition, we will explore
how our proposed framework will facilitate compliance with the EU AI Act [13].

Finally, currently, we have focused on trade-offs amongst NFR types, but one
interviewee rightly points out that the framework should also be able to identify
potential trade-offs at the instance level and inform responsible stakeholders. We
will enhance our proposed framework by incorporating the suggested improve-
ments from the interviewees, including a detailed breakdown of NFRs, better
traceability between NFR types and specific NFRs, managing historical records
of decisions, flexible scoping options, and easier implementation processes.

4.4 Threats to Validity

External validity: We used a mixture of purposive and convenience sampling
as the interviews required a certain set of expertise. The number of interview
participants may impact the reliability of the evaluation. In addition, three out
of five interviewees were from the automotive domain. However, we selected
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interviewees based on deep knowledge of both NFRs and ML, and their sugges-
tions are applicable to other domains. Importantly, the goal of this evaluation
is simply to gain preliminary feedback. We plan to conduct a comprehensive
assessment in the future, after incorporating some of the recommendations into
the framework. Although the focus of the framework has been on ML systems,
elements of the framework could be generally useful to manage NFRs for all
types of systems. However, by considering ML-specific definitions, scopes, and
measurements, we focus this work on the particular challenges of NFR handling
in ML systems.

Internal validity: In addition, while the evaluation analysis relies on thematic
coding, potential validity threats due to the need for interpretation were ad-
dressed by having all authors review and discuss the codes.

5 Related Work

In this section, we summarize related work on NFRs, and compare the framework
presented in this work to other NFR management frameworks.

NFRs: NFRs play a critical and important role in ensuring system quality [30].
However, consistent and clear approaches to eliciting, documenting, and vali-
dating NFRs are not fully established [15]. There is a lack of agreement among
researchers on when and how NFRs should be considered and integrated into the
overall RE process [4,12]. Stakeholders are sometimes unaware of NFRs, because
of lacking background knowledge of the domain [17].

Scope of NFRs over ML systems: ML aspects of a system are part of a
larger software system, which may include components for configuration, data
collection, feature extraction, analysis tools, monitoring, and glue code [37]. In
addition, an interview study with four data scientists noted the increasing com-
plexity of ML-based development processes, which require the effective use of
large data sets and a reliance on NFRs and suggested that requirements engi-
neering for ML should focus on requirements over data along with requirements
for the system [45]. As part of a systematic mapping study, Habibullah et al.
identified clusters of NFRs for ML systems based on shared characteristics and
scoped NFRs over datasets, ML pipelines, models, results, and system code [19].

Towards Solutions for Managing NFRs for ML Systems: Recent research
has reported several aspects that are required to address to manage NFRs for
ML systems. The importance of identifying and extracting relevant NFRs for
ML systems is reported in a survey study [39]. With an aim at constructing
a quality model for ML systems, Siebert et al. emphasized the need for NFR
identification, scoping, and measurement [41]. Two different systematic mapping
studies pointed out the need for further research and necessity of RE techniques
for managing NFRs for ML systems [3, 44].

Towards establishing solutions for managing NFRs, standards define nec-
essary quality properties of the software and its components. For example,
ISO/IEC 25010 defines quality models for software and systems [27]. However,
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Table 10. Comparison of select NFR frameworks to our proposed framework.

Framework Focus Identification Prioritization Definition
Catalogue Scope Trade-Offs Measurement

Catalogue
Template and/or
Documentation

[12] Non-ML ✔ ✔ ✖ ✖ ✔ ✖ ✖

[38] Non-ML ✔ ✖ ✖ ✖ ✔ ✖ ✔

[41] ML ✔ ✖ ✖ ✔ ✖ ✔ ✔

[29] ML ✔ ✔ ✔ ✖ ✖ ✖ ✖

[6] ML ✔ ✖ ✖ ✖ ✖ ✖ ✔

Our Framework ML ✔ ✔ ✔ ✔ ✔ ✔ ✔

these quality models cannot be applied directly to ML systems due to the chal-
lenges identified previously (e.g., definition, scoping, and measurement differ-
ences from traditional systems) [41]. While several frameworks exists that focus
on different aspects of RE for ML systems (e.g., Holistic DevOps [8], Ethics-
Aware SE for analyzing ethical requirements [5], and RE4ML for requirements
elicitation for ML systems [32]), few comprehensive frameworks exists for man-
aging NFRs for ML systems.

We compare our framework with other NFR-related frameworks proposed
from the literature in Table 10, where ✔ indicates that the framework provides
capabilities or guidelines for managing the aspect specified in that column. A ✖
indicates that the study either did not discuss the activity or mentioned it only
in passing, and the framework does not provide specific guidance on that aspect.

NFR frameworks have been proposed for traditional systems, including one
centered around acquiring domain knowledge, identifying and decomposing NFRs,
identifying operationalizations for meeting NFRs in the system, dealing with
ambiguities, trade-offs, priorities, and inter-dependencies among NFRs and op-
erationalizations, supporting decisions with rationale, and evaluating decision
impact [12]. A framework has also been proposed for managing NFRs in agile de-
velopment, supporting elicitation, analysis, documentation, and validation [38].

For ML systems, a quality model construction process has been proposed
that includes defining a quality meta-model, defining use case and application
context, identifying relevant ML quality requirements, identifying relevant en-
tities of an ML system, identifying reference elements of an ML quality model,
and instantiating the quality model for the use cases [41]. An approach has also
been proposed to build quality models that focuses on definition and ordering
of “characteristics” (NFRs) for AI systems [29]. In addition, templates exist for
documenting NFRs for ML systems [6].

Although these frameworks overlap with ours in certain aspects, illustrated
in Table 10, to our knowledge, our framework is the first to cover a wide range of
steps and tasks in the management of NFRs for ML systems, addressing many
of the ML system challenges identified in past studies (e.g., [3, 20,22,45]).

6 Conclusion
We have proposed a framework for managing NFRs for ML systems. This frame-
work can be used—starting from the early stages of a project—to define, scope,
and prioritize the NFR types that are important to the system-under-development.
It can be used to identify measurements to ensure specific NFRs of those types
are satisfied to the necessary degree. Finally, the framework offers templates to
specify and document individual NFRs of those types.
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We conducted semi-structured interviews to offer feedback on our proposed
framework. All of the participants stated that our proposed framework could be
useful in their practice, and suggested how it could improve the quality of the
systems they develop. However, the interviewees also recommended potential
improvements. The current framework can be considered as the first iteration of
a broader design science process. In future work, we will incorporate suggestions
from the interviewees (e.g., explicit representation of stakeholders, default defi-
nitions and measurements, and clarifying when the template should be used).
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