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Abstract. Machine learning (ML) systems are increasingly being ap-
plied to critical tasks. Like all systems, ML systems must satisfy main-
tainability requirements. However, assessing and ensuring maintainabil-
ity is complicated by the dynamic, heterogeneous, and interconnected
components within ML systems—a mixture of structured code, script-
ing, data, and models. We propose that ensuring maintainability of ML
systems requires definition, specification, and measurements that can be
scoped across one or more of these components, in addition to the sys-
tem as a whole. To that end, we propose a component-based breakdown
of ML systems, a modified definition of maintainability, and examples
of modified modularity measurements. We use these to characterize the
modularity of real-world ML systems. Our contributions offer a starting
point for future research on maintainability for ML systems.
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1 Introduction
Machine Learning (ML) systems blend code-based functionality with function-
ality based on supervised, unsupervised, or reinforcement learning1 to perform
critical prediction tasks in domains including healthcare and automotive. The
number and complexity of ML systems is increasing. However, due to issues re-
lated to, e.g., non-deterministic behavior, explainability, and bias, ML systems
can be more difficult to specify, implement, and test than traditional systems.

Additionally, ML system behavior depends not only on traditional structured
code2, such systems also contain models, data, and scripting3 used to train mod-
els. For example, in an advanced driver assistance system, an ML model may
perform object detection, while traditional code interacts with sensors and actu-
ators based on the model’s predictions. These components integrate and interact
1 We focus, in this work, on supervised learning.
2 Code organized into dedicated classes, services, or other organizational structures

that cooperates with other structured code to deliver functionality.
3 Unstructured code in standalone files, not using a defined organizational structure.
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in potentially complex ways, have complex dependencies, and evolve in different
ways, increasing the complexity of development of the system as a whole.

As with any system, ML systems must satisfy quality requirements—also
known as non-functional requirements (NFRs)—for successful development, im-
plementation, and use [12]. Past research has reported challenges specific to the
definition, scoping, and measurement of NFRs for ML systems, including domain
dependence, interdependence among system components, lack of measurement
techniques, and lack of awareness among practitioners and users [10–12, 14].
We propose that addressing these challenges requires clear definition of NFRs,
scoping over different components within an ML system, and measurement of
NFRs over those scopes [10, 12, 22]. Clear definition, scope, and measurements
can reduce ambiguity and miscommunications among stakeholders, and enable
assessment of NFR satisfaction [10,13].

ISO/IEC 25059 specifies eight high-level quality requirements for ML sys-
tems, including maintainability [16]—the degree of effectiveness and efficiency
with which a system can be modified, corrected, or adapted to changes in its en-
vironments and requirements. Maintainability comprises five sub-characteristics,
including modularity, reusability, modifiability, analyzability, and testability [16].
In particular, in this study, we focus on modularity—the degree to which a
change to one discrete system component affects others [16].

For traditional systems, studies have shown an exponential relationship be-
tween decreasing maintainability and increasing development cost [6]. Although
maintainability as an NFR is well established for traditional systems, its def-
inition and interpretation when specifying ML systems are less clear [12]. ML
systems introduce unique maintainability challenges, impacting not just system
development, but also data and model engineering [25].

In this article, we focus on maintainability—specifically, modularity—as an
example of how NFR definition and measurement can be adapted to ML systems.
We introduce a breakdown of ML systems into typical components that could
be used to scope requirements and measurements. Comparatively, ISO/IEC
23050:2022 provides a breakdown of elements of ML systems, including tasks,
models, data, and software tools/techniques [15]. We propose that an architec-
tural breakdown for ML systems should place more emphasis on software com-
ponents present in complex ML system, including structured and unstructured
code, and code which is not directly related to ML. We introduce a modified
definition of maintainability and modularity metrics that take into account both
structured and unstructured code, as well as dependencies on models and data.

We examine how our breakdown and modified metrics can characterize the
modularity of a set of realistic ML systems from GitHub. We found that our
breakdown is applicable, and that the modified metrics capture dependencies
missed by traditional metrics—although typical code dependencies remain more
common than ML-related dependencies. We also found that training pipelines
and ML interfacing components tend to have higher-than-average coupling, and
that data acquisition and ML interfacing components tend to have lower-than-
average cohesion. Our contributions and observations offer a starting point for
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research on the maintainability of ML systems, and our proposed breakdown
and general approach can be applied to other NFRs for ML systems.

2 Background and Related Work
In this section we present existing common metrics for modularity as part of
maintainability, and related work on maintainability challenges for ML systems.

2.1 Modularity Measurement
Modularity metrics are often based on cohesion and coupling [27]. Coupling refers
to the degree of interdependence between system components while cohesion
refers to the degree to which grouped sub-components—e.g., functions collected
within a single class—belong together. High coupling indicates low modularity,
as components are more interdependent. Low cohesion indicates low modularity,
as components lack focused responsibility.
Coupling Measurement: One of the most common coupling metrics is “Cou-
pling Between Object Classes” (CBO) [9]. CBO for a class4 is:

CBO(C) =

c∑
i=1

I(C,Ci) (1)

where, C is the class-under-assessment, c is the total number of classes in the
system, and I(C,Ci) = 1 if class C is coupled to class Ci and 0 otherwise.

The CBO value for a class is, essentially, the number of other classes it is
coupled with. Two classes are coupled when one invokes methods or references
instance variables defined in the other [5]. The CBO of the entire system, then,
is the average CBO value. In past research, a CBO of 0–5 is considered low
coupling and > 9 is considered high [24].
Cohesion Measurement: One of the most common cohesion metrics is Loose
Class Cohesion (LCC) [7]. This metric considers direct connections between
methods in a class, when two methods read or modify a common variable, and
indirect connections, when two methods are both connected to a third that shares
variable with these two methods5. LCC measures the ratio of connected method
pairs to the total number of method pairs:

LCC(C) =
Ms

n(n−1)
2

(2)

where, C is the class-under-assessment, Ms is the number of method pairs that
are connected (directly or indirectly), and n is the total number of methods
in the class. LCC ranges from 0–1, where 0 indicates low and 1 indicates high
cohesion. When n = 0—i.e., a class contains no methods—LCC is undefined.
Again, the average LCC indicates the overall cohesion of the system.
4 CBO and LCC can be straightforwardly adapted to other code structures, or—for

scripting or imperative languages—to code files.
5 Consider, for example, three methods (A, B, C). A and B both modify variable x,

while B and C both modify variable y. A and B and B and C are directly connected.
As a consequence, A and C are indirectly connected, via B.
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2.2 Maintainability Challenges for ML Systems

Existing maintainability research for traditional systems primarily considers
structured code. ML systems contain code as well as additional components
that strongly affect system behavior [10,11]. Many additional challenges are in-
troduced by the inclusion of diverse component types, as well as dependencies
between these component types. Shivashankar et al. identified interdependent
maintainability challenges at each stage in the ML workflow, including data en-
gineering (e.g., ensuring quality and consistency of data over time, data depen-
dence), model engineering (e.g., model drift, hyperparameter tuning), and de-
ployment and operation (e.g., scaling to increasing data and user demands) [25].

Dataset maintenance differs from code maintenance and is focused on ongoing
quality assurance and data inclusion and labeling [20, 25]. Models, too, differ
from code in their maintenance process, involving continuous monitoring and
retraining [25]. Like code, models exhibit dynamic “behavior” when performing
prediction tasks. However, understanding this behavior can be difficult, as it is
difficult to infer the calculations that lead to an individual prediction [19]. This
increases the difficulty of maintaining both models and the overall ML system.
Models are also generally task-specific, leading to poor reusability.

The relationships between structured code components are generally well-
understood. In contrast, the relationships between ML system components are
not yet clear. Dependencies between structured and unstructured code, data
sources, external APIs, and models lead to additional maintainability challenges
such as complex inter-component communication, integration issues, version con-
trol complexity, and complex resource management [18].

Data, models, training pipelines, model testing and validation components,
and models-dependent functionality are highly coupled [8]. This makes system
modification more complex and error-prone. Many ML projects fail in the initial
phase because setting up infrastructure for deployment is more complex than for
traditional systems due to the need for integration and management of training
pipelines, code, and data monitoring [25]. Modularity challenges have also been
identified in modular neural networks—where a neural network is constructed
from multiple independent neural networks [1].

With regard to other sub-characteristics, modifiability is complicated by a
lack of design specifications—specifically affecting forecasting of time required
for the training process and assessments of component redundancy [17]. Testa-
bility of ML systems has also received significant attention. Identified challenges
include lack of explainability, non-determinism, large input spaces, sensitivity to
training data, testing for rare or special cases, and specifying test oracles [19,21].

Overall, there is a growing awareness of maintainability challenges unique
to ML systems—such as heterogeneous components, implicit dependencies, and
evolving data and model behavior. Although various studies reported the com-
plexity of maintaining ML systems, they lack systematic methods to manage
and measure maintenance across ML components. Current approaches are ei-
ther only code-centric or address ML-specific issues separately. Towards closing
this gap, we propose a component-aware definition, breakdown, and modularity
metrics that can characterize maintainability of complex ML systems.
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Fig. 1: ML system components, separated into groups.

3 Maintainability for ML Systems

In order to address the described challenges, we propose a breakdown of ML
systems into distinct components that could affect maintainability6. We then
propose a definition of maintainability and cohesion and coupling metrics that
take into account this breakdown.

3.1 ML System Scoping

Like many complex systems, an ML system is not a monolith, but many compo-
nents that work together [22]. Those components have different formats, informa-
tion, and behavior. NFRs can be defined, specified, and measured for the whole
system or across different scopes—individual or subsets of components [13]. How
NFR types are defined, how individual NFRs are specified, or how attainment is
measured, can vary between scopes. For example, the performance of a model, of
the training pipeline, and of the system as a whole may be assessed differently.

In Fig. 1, we present typical components of a ML system based on supervised
learning. As a basis for scoping NFRs, we propose dividing ML systems into (1)
“ML components”—responsible for supporting and performing ML operations—
(2) components that interface with ML, (3), components unrelated to ML, and
(4) data ingested at runtime. These three groups can be broken down further.
The ML components include models that perform predictions, as well as the
data and training pipelines used to produce models. ML-interfacing components
include code that loads, invokes, and monitors models. As compared to ISO/IEC
23050:2022 ( [15]), our breakdown, covers software-related elements in more gran-
ularity, including Non-ML Components and ML-interfacing components.

When scoping NFRs, the “type” of components may influence specification
and measurement. In Fig. 2, we also break down these components into four
types of information represented, including data—input to either the training
process or at runtime—trained models, structured code, and scripting.
6 This breakdown builds on previous work [10,11], but has been substantially modified.
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Fig. 2: Components, grouped by the type of information represented.

3.2 Maintainability Definition for ML Systems

We propose a definition of maintainability for ML systems, adapting the ISO/IEC
25059 definition of maintainability [16] and considering our breakdown in Fig. 1:

Maintainability refers to the degree of effectiveness and efficiency with which
modifications, including corrections, adaptations, or improvements, can be
applied to the ML system as a whole, or to scopes (individual components
or subsets of components) within the system.

Both individual components and subsets of components affect system main-
tainability in ways that are not fully understood. Textually, this is a simple
change to the definition. However, the intention of this change is that the core
concept of maintainability—as well as its five sub-characteristics—must be re-
considered in a way that incorporates the ability to scope components of a ML
system, as different scopes may have unique maintenance needs and challenges.

For example, reusability must extend beyond structured code to encompass
reusability of models, training pipelines, or data. How “reusable” these compo-
nents are differs from how reusability of code is defined. The modifiability of
a model depends on how difficult it is to retrain that model using a new or
modified dataset, which in turn may depend on the modifiability of the code
that performs the training process or on the sensitivity of the parameter tuning.
Similarly, the analyzability or testability of a model are strongly dependent on
the model’s explainability. Future work on this topic should take a scoping-aware
viewpoint and explore these effects.

3.3 Modified Modularity Metrics for Code

Existing modularity metrics only capture dependencies between structured code
components. However, in an ML system, a code segment may exist in either a
structured form or as part of a script, and that code may depend on other code,
data, and models, which are not considered in traditional metrics. For example,
consider one method that produces a dataset and a second that splits the dataset
into training, validation, and test subsets. These methods may not invoke each
other, but there is still a dependency through the shared dataset. Modifications
to the dataset’s format or contents would require maintenance of both methods,
and changes to one method may also lead to changes in the other. Traditional
metrics would not fully capture this relationship.
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As an example of how metrics can be modified to better characterize ML
systems, we introduce modified versions of CBO and LCC that (1) are calculated
at the file level (to account for both structured code and scripting), and (2),
that capture dependencies between code and data and models7. New metrics
should be developed in future work to assess further components, for example
the maintainability of data and models as individual components. However, these
examples offer a starting point for scope-aware assessment of maintainability.
Modified Coupling Measurement: We introduce a modified form of the
CBO metric, CBOML, that differs from the original in two ways. First, rather
than calculating for each class, which assumes structured code, we calculate for
each code file. Second, rather than the number of classes that the file-under-
assessment is coupled to, we count the number of other files that the file-under-
assessment is coupled to and the number of data files or models that the file-
under-assessment is coupled to.

Coupling between code files is determined based on a reference to a variable or
method in another code file. In our prototype implementation, coupling between
code and data files is determined by detection of invocations of read, write, and
load functions referencing a particular filename8. CBOML can be calculated
using the following formula:

CBOML(C) =

c∑
i=1

I(C,Ci) +

d∑
j=1

I(C,Dj) (3)

where C is the code file-under-assessment, c is the total number of code files
in the system, and d is the total number of data or model files in the system.
I(C,Ci) and I(C,Dj) are equal to 1 if C is coupled to the code or data/model
file and 0 otherwise.

Modified Cohesion Measurement: LCC considers a class to be cohesive if
many of its methods read or modify the same variables. We introduce a modified
version of LCC, which we refer to as LCCML, with three key changes.

First, rather than per class, we calculate LCCML for each code file. Second,
in addition to considering two methods to be cohesive if they have direct or
incorrect connections to the same variables, we consider methods to be cohesive
if they access the same data files or models. Third, we also consider two methods
to be cohesive if they invoke the same functions from a common ML library9.
Many ML systems depend on such libraries, and methods contained in the same
code file that use the same library functions are likely to be related in their
purpose. LCCML can be calculated using the following formula:

7 These modified formulae could also be applied to traditional systems, considering
dependencies on non-code elements such as databases.

8 Our concrete implementation is based on Python, but could be adapted to similar
functions in other languages.

9 The specific libraries are listed at https://anonymous.4open.science/r/
maintainability-for-MLSystems-3C12/cohesion_improved.py.

https://anonymous.4open.science/r/maintainability-for-MLSystems-3C12/cohesion_improved.py
https://anonymous.4open.science/r/maintainability-for-MLSystems-3C12/cohesion_improved.py
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LCCML(C) =
Mv ∪Mf ∪Ml

n(n−1)
2

(4)

where Mv is the number of method pairs that are directly or indirectly connected
by sharing at least one attribute, Mf is the number of method pairs that are
directly or indirectly connected by accessing at least one common file, Ml is the
number of method pairs that are directly or indirectly connected by accessing
the same library function, and n is the total number of methods in the class.
LCCML values range between 0 and 1, with 1 indicating maximum cohesion.
Prototype Implementation: Our measurement implementations for tradi-
tional and modified CBO and LCC can be found at https://anonymous.
4open.science/r/maintainability-for-MLSystems-3C12/. Our prototype per-
forms static analysis to detect dependencies on code and data files. Pseudocode
describing our implementations can be found at https://anonymous.4open.
science/r/maintainability-for-MLSystems-3C12/.

4 Evaluation
We are interested in characterizing the maintainability of ML systems using our
proposed breakdown and metrics:

RQ1: For the examined systems, what differences occur between traditional and
modified metrics?

RQ2: What factors explain these differences?
RQ3: To what extent do the examined systems match our conceptual breakdown?
RQ4: How and why do the traditional and modified metrics differ across scopes?

ML System Selection: We selected 10 representative ML systems by searching
GitHub for projects with the “ML” tag and choose the 10 systems with the most
stars—that is, the most popular on GitHub. We performed this selection on July
15th, 2024. We selected 10 projects because it is a sufficient number to highlight
some of the differences that can occur between systems, while still remaining a
reasonable number to manually inspect. Table 1 presents information about the
selected ML systems.

Table 1: Selected ML systems, description of the system, GitHub stars, the
number of files per scope, and link to the project.

Number of Files Per Scope

System Description Stars Data Ac-
quisition

Training
Pipeline

ML In-
terfacing Non-ML Whole

System Link (https://github.com/)

face recognition Face Detection 53k 0 4 22 2 28 ageitgey/face_recognition
faceswap Image Processing 52k 0 37 162 42 241 deepfakes/faceswap
Open Assistant Chat Bot 37k 51 69 64 201 385 LAION-AI/Open-Assistant
DeepFaceLive Image Processing 26k 1 2 45 45 93 iperov/DeepFaceLive
CLIP Image-to-Text 25k 1 2 2 1 7 openai/CLIP
EasyOCR Character Recognition 23k 1 46 13 0 60 JaidedAI/EasyOCR
DocsGPT Chat Bot 14k 1 10 28 32 71 arc53/DocsGPT
Chatterbot Chat Bot Creator 14k 0 5 17 7 29 gunthercox/ChatterBot
DeepFace Facial Analysis 12k 1 27 41 15 84 serengil/deepface
LaTeX-OCR Image Processing 12k 1 24 5 8 38 lukas-blecher/LaTeX-OCR

Partitioning Systems into Scopes: We manually inspected each project,
partitioning code files into four scopes based on components from Figure 1:

https://anonymous.4open.science/r/maintainability-for-MLSystems-3C12/
https://anonymous.4open.science/r/maintainability-for-MLSystems-3C12/
https://anonymous.4open.science/r/maintainability-for-MLSystems-3C12/
https://anonymous.4open.science/r/maintainability-for-MLSystems-3C12/
https://github.com/
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– Data Acquisition: Data extraction, ingestion, and labeling components.
– Training Pipeline: Data cleaning, pre-processing or model training, tun-

ing, validation, and testing components.
– ML-Interfacing Components: Components that load models, use models

to perform functionality, monitor models, and govern the use of models.
– Non-ML Components: Traditional components, independent of ML.

We chose these scopes, rather than individual components, because many of the
inspected projects merge individual components within the same files.

The second author performed this analysis manually by reviewing the folder
structure of the GitHub projects, file names, and code. They then assigned each
file to the appropriate partition based on the file’s functionality and alignment
with the specific scope. For all 10 projects, it took approximately four hours and
thirty minutes to partition the files and map them to specific scopes (an average
of 30 minutes per project). The first author checked the partitioning results for
two projects, and confirmed the assignment.

Some files, which have overlapping functionality, were difficult to partition.
For example, some files belonged to both the “ML-Interfacing” and “Training
Pipeline” scopes, and some blended both “ML-Interfacing” and “Non-ML” within
the same file. In these cases, the files were counted under both scopes. How-
ever, similarities in file, method, and variable naming conventions across projects
helped to understand scope assignment.
Data Collection: We collected both traditional and modified CBO and LCC
for each code file in each project. We then calculated the average for each scope
and the whole system.
Data Analysis: We used descriptive statistics (averages and distribution char-
acteristics) to compare CBO, CBOML, LCC, and LCCML values between
projects and scopes within and across projects. To identify factors leading to
differences in the metrics, we performed a qualitative analysis of the code of
a subset of the ML systems. To help understand differences in traditional and
revised metrics, we examined file and library dependencies in each system and
between scopes within the systems—searching for commonalities and differences
in variable access, library functions invoked, and file access.

5 Results and Discussion
5.1 Traditional and Revised Metrics, Whole System (RQ1)
Coupling Results: Table 2 presents the average CBO for each of the 10 ML
systems, while Table 3 presents the average CBOML. In Table 3, colored cells

Table 2: Average CBO for each system and scope.
System Whole System Data Acquisition Training Pipeline ML Interfacing Non-ML
face recognition 2.32 ✖ 2.50 2.65 1.00
faceswap 46.16 ✖ 43.09 50.24 41.72
Open Assistant 15.20 10.38 28.52 12.02 11.80
DeepFaceLive 22.47 17.00 35.00 27.18 27.18
CLIP 1.60 2.00 2.00 1.50 1.00
EasyOCR 11.51 13.00 11.62 12.58 ✖

DocsGPT 8.73 15.00 10.11 7.92 12.19
Chatterbot 8.86 ✖ 13.75 11.47 12.83
DeepFace 24.94 ✖ 27.39 28.97 10.56
LaTeX-OCR 6.08 4.00 6.71 6.00 6.00
Average 14.79 10.23 18.07 16.05 13.81
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Table 3: Average CBOML for each system and scope. Colored cells indicate
difference from CBO.

System Whole System Data Acquisition Training Pipeline ML Interfacing Non-ML
face recognition 2.32 ✖ 2.50 2.65 1.00
faceswap 46.16 ✖ 43.09 50.24 41.72
Open Assistant 15.25 (0.33%) 10.67 (2.79%) 28.61 (0.32%) 12.02 11.81 (0.08%)
DeepFaceLive 22.47 17.00 35.00 27.18 27.18
CLIP 1.60 2.00 2.00 1.50 1.00
EasyOCR 11.54 (0.26%) 13.00 11.62 12.58 ✖

DocsGPT 8.80 (0.80%) 15.00 11.11 (9.89%) 7.96 (0.51%) 12.19
Chatterbot 8.91 (0.56%) ✖ 13.75 11.47 12.83
DeepFace 24.94 ✖ 27.39 28.97 10.56
LaTeX-OCR 6.08 4.00 6.71 6.00 6.00
Average 14.81 (0.14%) 10.28 (0.49%) 18.18 (0.61%) 16.06 (0.06%) 13.81

Table 4: Average LCC for each system and scope.
System Whole System Data Acquisition Training Pipeline ML Interfacing Non-ML
face recognition 0.70 ✖ 0.50 0.05 0.00
faceswap 0.66 ✖ 0.60 0.56 0.61
Open Assistant 0.42 0.63 0.40 0.19 0.40
DeepFaceLive 0.65 0.54 0.97 0.87 0.88
CLIP 0.54 0.00 0.38 0.00 1.00
EasyOCR 0.47 0.22 0.45 0.16 ✖

DocsGPT 0.49 0.00 0.65 0.20 0.59
Chatterbot 0.87 ✖ 0.21 0.57 0.73
DeepFace 0.50 ✖ 0.37 0.20 0.64
LaTeX-OCR 0.46 0.00 0.35 0.01 0.49
Average 0.58 0.23 0.49 0.28 0.59

Table 5: Average LCCML for each system and scope. Colored cells indicate
difference from LCC.

System Whole System Data Acquisition Training Pipeline ML Interfacing Non-ML
face recognition 0.70 ✖ 0.50 0.05 0.00
faceswap 0.69 (3.79%) ✖ 0.64 (5.83%) 0.59 (4.82%) 0.61
Open Assistant 0.45 (5.95%) 0.64 (0.95%) 0.44 (9.75%) 0.20 (3.16%) 0.41 (1.25%)
DeepFaceLive 0.66 (2.00%) 0.54 0.97 0.87 0.88
CLIP 0.54 0.00 0.38 0.00 1.00
EasyOCR 0.55 (17.45%) 0.33 (51.36%) 0.52 (15.11%) 0.37 (133.75%) ✖

DocsGPT 0.49 0.00 0.65 0.20 0.59
Chatterbot 0.87 ✖ 0.21 0.57 0.73
DeepFace 0.53 (5.40%) ✖ 0.39 (5.95%) 0.23 (13.00%) 0.68 (5.78%)
LaTeX-OCR 0.49 (6.15%) 0.00 0.40 (12.86%) 0.03 (180.00%) 0.49
Average 0.60 (3.41%) 0.25 (8.35%) 0.51 (3.98%) 0.31 (10.53%) 0.60 (0.66%)

indicate an increase from CBO, with the magnitude of the increase in parenthe-
ses10. In previous research, a CBO greater than 9 indicated high coupling [24].
Five of the ten ML systems are highly coupled, under this interpretation, with
the faceswap system being the most (46.16 on average).

We hypothesize that CBOML is more accurate than CBO for assessing cou-
pling within ML systems, as it considers coupling between code-based compo-
nents through sharing of data or models. As expected, we see some increase in
the average CBOML values, as these additional dependencies are captured in
the metrics. However, these changes are not substantial—there is only a 0.14%
increase in the average across all systems and a 0.39% increase in the median.
The average CBOML only increases in four systems. This indicates that, al-
though there are more components considered when measuring CBOML than
when measuring CBO, there were not necessarily a large number of missed de-
pendencies. Coupling between code components remains more common.

Cohesion Results: Table 4 presents the average LCC, while Table 5 presents
LCCML. In Table 5, colored cells indicate an increase from LCC, with the

10 Because both of the revised metrics count additional elements not present in the
traditional metric, values can only increase from the traditional metric.
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magnitude of the increase in parentheses. Six systems have average LCC values
greater than 0.5, indicating that the systems tend to be relatively highly cohesive.
Chatterbot is the most cohesive system, with an average LCC of 0.87.

We hypothesize that LCCML is more accurate than LCC for assessing cohe-
sion within ML systems, as it consider methods to be cohesive through sharing
the same variables, data files, models, or library functions, and not just variables.
We see an increase in the average LCCML over LCC for five of the ML systems,
with an average increase of 3.41% (3.85% in median). The largest increase, an
average of 17.45%, was seen in EasyOCR. Like with CBO, the magnitude of the
increase indicates that cohesion through code-based mechanisms is more com-
mon than cohesion though data files or library functions. However, LCCML still
highlights dependencies that are missed by the traditional metric.

5.2 Factors that Contribute to Differences (RQ2)
Coupling Results: We make two observations regarding why the CBOML val-
ues are not substantially higher than the CBO values. First, file access operations
were not common in all examined ML systems. For example, in DeepFace, there
are only four locations where data files are opened and the operations were not
used for ML-based functionality. There are many more situations where code
components interact, limiting the impact of the data components.

Second, examining LaTeX-OCR, we found that the CBO value did not change
due to the limitations of static code analysis. We identified dependencies based
on, for example, specified filenames. However, in cases where filenames were
passed dynamically, we were not able to determine whether a dependency ex-
isted. In the four systems where CBOML values differed, file interactions were
always based on static filenames. This is a limitation in our implementation, and
in future work, we will explore dynamic analysis.
Cohesion Results: LCCML values are higher than LCC values, on average.
However, the magnitude of the increase is small. On average, there is only a 3.41%
increase. The reasons for the limited increase are the same as for CBO. First, tra-
ditional dependencies on variables, shared between methods within classes, are
more common than shared dependencies on data or external library functions.
Second, limitations in static analysis may result in missed data dependencies.

However, the magnitude of the differences is greater than it was for CBO.
There are two reasons for this. First, when data dependencies exist, they are
more often between two methods in the same file than across different files.
For example, in Open Assistant, file language_classification.py contains
methods that load and save the same model.

Second, LCCML also includes shared use of ML library calls between meth-
ods in the same code file. For example, For example, in DeepFace, file VGGFace.py
has multiple methods that use the same library functions as part of loading and
training models. We chose to include these calls in LCCML and not CBOML

after inspecting the code of several ML systems and identifying cases where
methods within individual files (i.e., cohesion) were clearly connected in their
purpose through their use of library functions. Such connections were not as
clear across files (i.e., in coupling).
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Fig. 3: Comparison of CBO and CBOML values across scopes.

5.3 Validity of Conceptual Breakdown (RQ3)
To assess the validity of our conceptual breakdown, we examined each ML system
and assigned its files to four scopes—selections of components from Figure 1.
Table 1 includes the number of files that we assigned to each scope. We were
able to assign the files to the proposed scopes, indicating that our conceptual
breakdown has validity.

Not all projects have a clean division between individual components. For ex-
ample, in the Open Assistant system, data extraction, ingestion, and labeling
are not cleanly divided, but are blended within the same set of files. Rather than
specifying NFRs for these components individually, it would be better to apply
NFRs to the “Data Acquisition” scope. Within the same system, components of
the “Training Pipeline” are more cleanly divided, with separate files responsible
for data cleaning, pre-processing, model training, and model validation and test-
ing. Here, NFRs could be specified over the individual components or across the
whole training pipeline.

Some components or scopes are missing in some of the ML systems. For
example, code related to the “Data Acquisition” scope was not found in four of
the projects. This indicates that the projects do not have code for preparing
datasets for use in model training. Instead, datasets may be manually created,
imported from another source, or the code for preparing datasets is not included
in the project. Additionally, the EasyOCR system does not have any “Non-ML
Components” because it is intended for use as an imported library.

5.4 Differences Between Scopes (RQ4)
Coupling Results: Table 2 presents CBO values for each scope, while Table 3
presents CBOML. Figures 3a–3b also visualize the values, split by scope. For
both versions of the metric, we can see differences between scopes. Although
there are exceptions (e.g., EasyOCR and Chatterbot), the “Training Pipeline”
and “ML Interfacing” components have higher average coupling than the average
for the system as a whole or for the non-ML components. In particular, the
“Training Pipeline” has the highest median and third quartile of any scope. These
observations hold between both versions of CBO, and the largest difference
between the two versions is in the “Training Pipeline” scope for DocsGPT.

In contrast, “Data Acquisition” and “Non-ML” scopes tend to have lower
coupling than the average across the full system. This suggests that—even when
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Fig. 4: Comparison of LCC and LCCML values across all scopes.

considering only code-based dependencies—the code files within the “Training
Pipeline” and “ML Interfacing” scopes are more densely interdependent than
code in other scopes. One reason for this, in the “ML Interfacing” components,
may be because interactions with models are often through an API wrapper.
Code that depends on a model, then, may have a dependency to this API.

Another factor is the number of code files in each scope. For example, in
faceswap, the “Training Pipeline” and “ML Interfacing” scopes have 37 and 162
files, respectively. On the other hand, face recognition, CLIP, or LaTeX-OCR
have a lower number of files in these scopes and lower coupling. The existence
of more files does not automatically imply that coupling will be higher, but it
does mean there are more opportunities for coupling to occur.
Cohesion Results: Table 4 present LCC values for each scope, while Table 5
presents LCCML values. Figures 4a–4b visualize values, split by scope.

For both LCC and LCCML, results differ between scopes. Figures 4a–4b
show that ML components (“Data Acquisition”, “Training Pipeline”, and “ML
Interfacing”) have a lower average cohesion than non-ML components. However,
looking at Tables 4–5, at least one ML component is more cohesive than the non-
ML components in five projects. Thus, the average LCCML scores are biased by
the other four projects—Clip, Chatterbot, DeepFace, and LaTeX-OCR—where
all ML scopes have a lower average cohesion than non-ML components. Note
that EasyOCR has no non-ML components. Because we do not see that ML
components are consistently more cohesive than non-ML components, we cannot
conclusively declare that ML components suffer from cohesion issues. However,
we can make some observations: First, the “Data Acquisition” scope seems to
suffer from the clearest cohesion issues, showing the lowest average cohesion
scores across all scopes for five of the six projects where that scope exists. In
three of those, the average cohesion is 0.00. Second, “ML Interfacing” components
also have lower cohesion than non-ML components in eight of the projects.

One reason for lower cohesion might be an unclear division of functionality
into distinct components. For example, data cleaning, ingestion, and labeling
might be mixed in a single code file, and these three might not share a large
number of variables, library functions, or files. Even if multiple functions in that
code file may depend on the same ML library, the functions may not be linked
through the same functions from that library.
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Summary: Overall, our results support claims in the literature that ML sys-
tems are more coupled [22, 23, 26] and less cohesive [3, 23] than traditional sys-
tems, potentially hindering maintainability.

6 Limitations and Threats to Validity
Construct Validity: Maintainability has five sub-characteristics, but we have
only focused on modularity—and specifically on cohesion and coupling measure-
ments. In addition, we focus on the modularity of code, and not the modularity of
data, models, or other ML system components. However, modularity is one of the
most critical sub-characteristics of maintainability, and cohesion and coupling
are the most common means of assessing modularity. Still, these metrics have
been criticized as too narrowly focused on code-level dependencies [2,4]. Future
work should propose adapted or new measurements for other sub-characteristics
and for additional ML system components or scopes.

Our measurements only account for modularity from the perspective of code
and scripts, including dependencies to data and ML files, but do not account for
modularity from the perspective of all ML system elements described in Fig. 1.
For example, we have not developed measurements that assess the “modularity”
of data, as measuring modularity of data requires a different interpretation of
modularity than applies to code. Future work should consider metrics from the
perspective of these other components.
External Validity: We have only examined ten systems to offer a reasonable
portrait of the domain while controlling experiment costs. We used popularity
(stars) to select systems. However, many of these systems are based on the use
of images as a data source. Thus, this subset may not represent the full diver-
sity of ML systems, including types of ML (e.g., we do not currently consider
unsupervised or reinforcement learning) or application domains. However, we
believe that this subset is sufficient to illustrate the proposed breakdown and
measurements, and offers lessons for future work. Furthermore, we focused on
Python. However, Python is the most popular language for ML system devel-
opment, and the proposed measurements and component breakdown are not
language-specific. Future studies should evaluate a wider variety of systems.
Internal Validity: Our metric implementations are based on static analysis
and could miss dependencies. However, we performed manual validation on two
projects to ensure accuracy. Future work should integrate dynamic analysis tech-
niques to capture additional dependencies. The second author manually mapped
files to scopes using set criteria, although this may be subjective, we mitigated
this threat by having the first author validate the mapping and conclusions for
two projects. There were no disagreements among the authors during manual
inspection, as code naming conventions made it easier to understand which file
belongs to what granular-level component, thus we have reasonable confidence
in our mapping.

7 Conclusion
We have proposed a breakdown of ML systems into common components as
well as a revised definition and measurements of maintainability that account
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for these components. We found that our breakdown is applicable to 10 systems,
and that the modified measurements capture dependencies missed by traditional
measurements—although code dependencies between and within components are
more common than data dependencies. We also found that training pipelines
and ML interfacing components tend to have higher-than-average coupling, and
that data acquisition and ML interfacing components tend to have lower-than-
average cohesion. Future work should evaluate our measurements and scoping
on further projects, other sub-characteristics of maintainability, other elements
of ML systems, and other NFRs critical for ML systems.
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